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Abstract An analytical solution for simply supported layered plates with viscoelastic inter-
layers under a transverse load is proposed. The deformation of each plate layer is described
by the exact three-dimensional elasticity equations. The viscoelastic property of interlayer
is simulated by the generalized Maxwell model. The constitutive relation of the interlayer
is simplified by the quasi-elastic approximation, which significantly simplifies the analyti-
cal process. The solution of stress and displacement fields with undetermined coefficients
is derived by solving a group of ordinary differential equations. The undetermined coeffi-
cients can be efficiently deduced by using the recursive matrix technique for the plate with
any number of layers. The practical convergence is observed during numerical tests. The
comparison analysis indicates that the present solution has a close agreement with the finite
element solution. However, the solution based on the Mindlin–Reissner hypothesis is sig-
nificantly different from the present solution for thick plates. Finally, the effect of interlayer
thickness on stress and displacement distributions of a five-layer plate is discussed in detail.
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1 Introduction

Layered structures are extensively used in different branches of mechanical and civil en-
gineering. In addition to high strength, high stiffness and low density, another important
advantage of layered structures is that their mechanical behavior can be tailored by chang-
ing material type of layers and layer number. The common applications are steel–concrete
structures (Shafaei et al. 2016; Hu et al. 2016; Yan et al. 2016; Othman and Marzouk 2016),
fiber reinforced polymers strengthened concrete structures (Xu et al. 2015; Teng et al. 2015;
Neto et al. 2016; Hadigheh and Gravina 2016), laminated glass structures (Foraboschi 2012;
Zhu and Khanna 2016; Del Linz et al. 2016), and so on. The character of connection be-
tween adjacent layers has a great effect on the mechanical property of layered structures.
If adjacent layers are connected by rigid connectors, perfect connection can be obtained.
However, the rigid connectors can hardly be realized in practice. The common connectors,
like nails, dowels, studs, structural adhesives, and so on, can only provide finite stiffness.
Therefore, interfacial slip often occurs in layered structures. Because the structural adhe-
sives possess viscoelastic property, the mechanical behavior of interfacial bonding between
adjacent layers is essentially time-dependent. Some investigators studied layered beams with
viscoelastic interlayer (Zhang and Wang 2011; Galuppi and Royer-Carfagni 2012, 2014; Li
et al. 2014; Wu et al. 2016a, 2016b). However, researches on layered plates with viscoelastic
interlayer are rare.

The classical plate theory (CPT) based on the well-known Kirchhoff–Love hypothesis
(Kirchhoff 1850) is recognized as the most popular theory for plates. By use of the CPT,
various static and dynamic problems of plates were studied. Foraboschi (2013a, 2014) pre-
sented analytical solutions for simply-supported three-layered plate, composed of two rela-
tively stiff outer layers and a more compliant interlayer, subjected to a transverse load. The
outer layers behave following the Kirchhoff–Love hypothesis. A homogenized Kirchhoff–
Love model was developed by Dallot and Sab (2008) for limit analysis of multi-layered
plates. By use of a modified couple stress theory, Thai and Choi (2013) developed size-
dependent models for bending, buckling, and vibration problems of functionally graded
plates. A frequency-domain spectral element model was developed by Park and Lee (2015)
to analyze transverse vibration of a symmetric laminated plate. An analytical model for
two-layer plate with discontinuous interfacial connection was investigated by Foraboschi
(2013b).

However, the CPT neglects the transverse shear deformation, which is increasingly im-
portant when the plate becomes thicker. Therefore, it may lead to inaccurate results for thick
plates. In order to consider the transverse shear deformation, the first-order shear deforma-
tion theory (FSDT) was developed to analyze moderately thick plates. This theory assumes
the transverse shear strains to be constant through the thickness during deformation and
a shear correction factor is used to adjust the transverse shear stiffness (Reissner 1945;
Mindlin 1951). Bending behavior and stress analysis of angle-ply laminated and sandwich
plates under arbitrary distributed loads were studied by Alipour (2016) using the FSDT.
Romanoff and Varsta (2007) presented bending response of web-core sandwich plates, in
which the discrete core was transformed into an equivalent homogenous continuous one.
Using adjusted differential evolution algorithm and smoothed triangular plate element, Le-
Anh et al. (2015) proposed a coupled numerical method for static optimization of folded
laminated plates. Golmakani and Mehrabian (2014) tackled bending problem of annular
general angle-ply laminated plates subjected to a transverse load with various boundary
conditions. Mantari and Ore (2015) developed a simplified FSDT, with a new displacement
field containing only four unknowns and gave the Navier-type close-form solution for free
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vibration of sandwich plates. Based on the Hamilton’s principle, damping effect of compos-
ite plate with viscoelastic mid-layer was analyzed by Yang et al. (2016). The viscoelastic
behavior of the mid-layer was described by the hysteric damping model. Since the shear
correction factor in FSDT depends on boundary conditions, material and geometric param-
eters, it is difficult to be accurately deduced. In order to improve the accuracy, higher-order
shear deformation theories (HSDTs), which assume shear strain to be nonlinearly distributed
through the thickness, have been developed. Some typical HSDTs were proposed by Reddy
(1984), Khdeir (1988), Matsunaga (2000), Kant and Swaminathan (2002), Ferreira et al.
(2003), Swaminathan and Patil (2007), Kim et al. (2009), etc.

Three-dimensional elasticity theory (3DET) is always recognized as a benchmark for
comparisons, since it renounces any transverse shear deformation hypothesis. Pagano (1969,
1970) presented analytical solutions for laminate plates composed of arbitrary numbers of
layers. Bending, buckling and vibration of simply supported thick laminate plates were in-
vestigated by Srinivas and Rao (1970). Williams and Addessio (1997) extended Pagano’s
work (1969) to laminate plates with delamination. Using p-Ritz method, Wang et al. (2000)
tackled free vibration for skew sandwich plates composed of two laminated facings sand-
wiching an orthotropic core. Though the 3DET can provide accurate results for plates with
any thickness, it is often computationally expensive, especially for laminated plates with a
large number of layers. Asymptotic approach based on 3DET was used to investigate me-
chanical behavior of thin-walled elastic bodies by Reissner (1980), Gregory and Wan (1993),
and Kaplunov et al. (1998).

In this work, a new analytical method based on the 3DET is presented to study simply
supported layered plates with viscoelastic interlayer under an arbitrary distributed load. The
plate layers behave according to the 3DET. The viscoelastic interlayer between adjacent
layers is simulated by the generalized Maxwell model, and its constitutive relation is sim-
plified by the quasi-elastic approximation. The present solution can be efficiently obtained
by use of the recursive matrix technique, even if the number of the plate layers is large. The
present solution can provide accurate results of stress and displacement distribution, which
cannot be provided by the simplified solution such as the one based on the Mindlin–Reissner
hypothesis.

2 Analytical model

As shown in Fig. 1, a simply supported layered plate with length a, width b, and total thick-
ness h is considered, which is made of p elastic layers with thickness hi adhesively bonded
by p − 1 viscoelastic interlayers with the same thickness �h, subjected to a distributed load
q(x, y) on the top surface of the plate. Two Cartesian coordinate systems are established
to describe the plate and layers respectively, global Cartesian coordinates o-xyz with origin
o at the bottom of the plate and local Cartesian coordinates oi -xyzi with origin oi at the
bottom of ith layer.

2.1 Assumptions

The analytical process of the layered plate with viscoelastic interlayer keeps the following
assumptions:

(1) The deformation of the layered plate is within the extent of linear elasticity.
(2) The interlayer thickness is very small compared to the layer thickness, i.e., �h � hi .
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Fig. 1 Simply supported layered plate with viscoelastic interlayer

(3) The adhesive interlayer is thin and soft. Its capacity to bear x-directional and y-
directional normal stresses is weak. Therefore, the x-directional and y-directional normal
stresses in the interlayer are negligible.

(4) The displacements in the interlayer are considered to be linearly distributed through
the thickness. Therefore, the strains through the interlayer thickness are constants.

2.2 Equations for a plate layer

The ith layer of the plate is considered within the local Cartesian coordinates oi -xyzi . Ac-
cording to the 3DET, the constitutive relations for ith layer are

σ (i)
x = (λi + 2Gi)ε

(i)
x + λiε

(i)
y + λiε

(i)
zi

,

σ (i)
y = λiε

(i)
x + (λi + 2Gi)ε

(i)
y + λiε

(i)
zi

,

σ (i)
zi

= λiε
(i)
x + λiε

(i)
y + (λi + 2Gi)ε

(i)
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,

τ (i)
yzi

= Giγ
(i)
yzi

, τ (i)
xzi

= Giγ
(i)
yzi

, τ (i)
xy = Giγ

(i)
xy , i = 1,2, . . . , p, (1)

in which σ (i)
x , σ (i)

y , σ (i)
zi

, τ (i)
yzi

, τ (i)
xzi

, and τ (i)
xy are stress components, ε(i)

x , ε(i)
y , ε(i)

zi
, γ (i)

yzi
, γ (i)

yzi
,

and γ (i)
xy are strain components. The symbols λi and Gi are Lame constants, which are given
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by

λi = μiEi

(1 + μi)(1 − 2μi)
, Gi = Ei

2(1 + μi)
, i = 1,2, . . . , p, (2)

where Ei and μi denote elastic modulus and Poisson’s ratio of the ith layer, respectively.
The geometrical relations of the ith layer are

ε(i)
x = ∂u(i)

∂x
, ε(i)

y = ∂v(i)

∂y
, ε(i)

zi
= ∂w(i)

∂zi

,

γ (i)
yzi

= ∂v(i)

∂zi

+ ∂w(i)

∂y
, γ (i)

xzi
= ∂u(i)

∂zi

+ ∂w(i)

∂x
,

γ (i)
xy = ∂u(i)

∂y
+ ∂v(i)

∂x
, i = 1,2, . . . , p, (3)

where u(i), v(i), and w(i) respectively represent the displacement components in the x, y,
and z directions. The equilibrium equations of the ith layer, in the absence of body forces,
are described by

∂σ (i)
x

∂x
+ ∂τ (i)

xy

∂y
+ ∂τ (i)

xzi

∂zi

= 0,
∂σ (i)

y

∂y
+ ∂τ (i)

xy

∂x
+ ∂τ (i)

yzi

∂zi

= 0,

∂σ (i)
zi

∂zi

+ ∂τ (i)
xzi

∂x
+ ∂τ (i)

yzi

∂y
= 0, i = 1,2, . . . , p. (4)

Because of the viscoelasticity of the interlayer, the stress, strain, and displacement com-
ponents of the plate are time-dependent in nature. Substituting Eq. (3) into Eq. (1) yields

σ (i)
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,
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)
,
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)
,

i = 1,2, . . . , p. (5)

Substituting Eq. (5) into Eq. (4) leads to a group of differential equations, as follows:

Gi
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The boundary conditions of four simply supported edges are

σ (i)
x = v(i) = w(i) = 0, at x = 0, a,

σ (i)
y = u(i) = w(i) = 0, at y = 0, b, i = 1,2, . . . , p. (7)

For simply supported plates, the displacement components can be expressed as double
Fourier series as follows:

u(i)(x, y, zi, t) =
∞∑

m=1

∞∑
n=1

U(i)
mn(zi, t) cos(αmx) sin(βny),

v(i)(x, y, zi, t) =
∞∑
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∞∑
n=1

V (i)
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∞∑
n=1

W(i)
mn(zi, t) sin(αmx) sin(βny), i = 1,2, . . . , p, (8)

where αm = mπ/a, βn = nπ/b. Substituting Eq. (8) into Eq. (6) gives

Gi
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]
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∂2W(i)
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2
]
W(i)

mn(zi, t)
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− (λi + Gi)βn

∂V (i)
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i = 1,2, . . . , p. (9)

Solving the above ordinary differential equations, we have the solutions:

u(i)(x, y, zi, t) =
∞∑

m=1

∞∑
n=1

βn cos(αmx) sin(βny)

[
αm

φmn

zi sinh(φmnzi)C
(i)
mn(t)
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φmn

zi cosh(φmnzi)D
(i)
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(i)
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(i)
mn(t)

]
,
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v(i)(x, y, zi, t) =
∞∑

m=1

∞∑
n=1

sin(αmx) cos(βny)

[
φmn sinh(φmnzi)A

(i)
mn(t)

+ φmn cosh(φmnzi)B
(i)
mn(t)

+
(
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2
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)
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2
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]
,
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∞∑
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∞∑
n=1

βn sin(αmx) sin(βny)
[
cosh(φmnzi)A

(i)
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(i)
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(i)
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(i)
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]
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where φmn = √
(αm)2 + (βn)2;A(i)

mn(t), B(i)
mn(t), C(i)

mn(t), D(i)
mn(t), E(i)

mn(t), and F (i)
mn(t) are the

undetermined coefficients with respect to the time variable t . Substituting Eq. (10) into
Eq. (5) yields the stress components

σ (i)
x (x, y, zi, t) = −

∞∑
m=1

∞∑
n=1
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,
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2
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)
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sinh(φmnzi) + (βn)
2
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)
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(i)
mn(t)

]
,
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σ (i)
zi

(x, y, zi, t) =
∞∑

m=1

∞∑
n=1

2βnGi sin(αmx) sin(βny)

×
[
φmn sinh(φmnzi)A

(i)
mn(t) + φmn cosh(φmnzi)B

(i)
mn(t)

+
(
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λi + Gi

cosh(φmnzi) + φmnzi sinh(φmnzi)

)
C(i)

mn(t)

+
(

Gi

λi + Gi

sinh(φmnzi) + φmnzi cosh(φmnzi)

)
D(i)

mn(t)

]
,

τ (i)
xzi

(x, y, zi, t) =
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m=1

∞∑
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]
,
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∞∑
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×
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2
]
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2
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2

φmn

)
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]
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mn(t)

+
[(
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λi + Gi

φmn + (βn)
2

φmn

)
cosh(φmnzi)

+ 2(βn)
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]
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− αmφmn sinh(φmnzi)E
(i)
mn(t) − αmφmn cosh(φmnzi)F

(i)
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}
,
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Fig. 2 Generalized Maxwell
model

τ (i)
xy (x, y, zi, t) =

∞∑
m=1

∞∑
n=1

Gi cos(αmx) cos(βny)

×
[
αmφmn sinh(φmnzi)A

(i)
mn(t) + αmφmn cosh(φmnzi)B

(i)
mn(t)

+
(

λi + 3Gi

λi + Gi

αm cosh(φmnzi) + 2αm(βn)
2

φmn

zi sinh(φmnzi)

)
C(i)

mn(t)

+
(

λi + 3Gi

λi + Gi

αm sinh(φmnzi) + 2αm(βn)
2

φmn

zi cosh(φmnzi)

)
D(i)

mn(t)

+ [
(βn)

2 − (αm)2
]

cosh(φmnzi)E
(i)
mn(t)

+ [
(βn)

2 − (αm)2
]

sinh(φmnzi)F
(i)
mn(t)

]
, i = 1,2, . . . , p. (11)

One can find that no matter what values the undetermined coefficients in Eqs. (10)
and (11) are prescribed, the simply supported boundary conditions in Eq. (7) have been
rigorously satisfied.

2.3 Equations for an interlayer

The rheological models, consisting of springs and dashpots, are effective methods to sim-
ulate viscoelastic property (Neville et al. 1983). The classical Maxwell and Kelvin models
provide the simple mathematical descriptions of viscoelastic property. The most commonly
used model is the generalized Maxwell model, as shown in Fig. 2. By using the generalized
Maxwell model, the time-dependent elastic modulus E(t) and shear modulus G(t) in the
interlayer can be described by

E(t) = E∞ +
k∑

j=1

Eje
−t/θE,j , G(t) = G∞ +

l∑
j=1

Gje
−t/θG,j , (12)

where Ej and Gj are the relaxation elastic and shear modulus, respectively; E∞ and G∞
are the long-term elastic and shear modulus, respectively; θE,j and θG,j are the relaxation
times. These viscoelastic parameters can be obtained through the creep or relaxation tests
(Guedes et al. 1998; Arzoumanidis and Liechti 2003; Kim et al. 2008). Consider the ith in-
terlayer within the local Cartesian coordinates oi -xyzi . According to Assumption 4 given in
Sect. 2.1, the shear and normal strains in the interlayer are independent of the coordinate zi .
The constitutive relations of the interlayer can be described by the Boltzmann superposition
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principle (Boltzmann 1874), as follows:

σ̄ (i)
zi

(x, y, t) = E(t)ε̄(i)
zi

(x, y,0) +
∫ t

0
E(t − ξ)

∂ε̄(i)
zi

(x, y, ξ)

∂ξ
dξ,

τ̄ (i)
yzi

(x, y, t) = G(t)γ̄ (i)
yzi

(x, y,0) +
∫ t

0
G(t − ξ)

∂γ̄ (i)
yzi

(x, y, ξ)

∂ξ
dξ,

τ̄ (i)
xzi

(x, y, t) = G(t)γ̄ (i)
xzi

(x, y,0) +
∫ t

0
G(t − ξ)

∂γ̄ (i)
xzi

(x, y, ξ)

∂ξ
dξ,

i = 1,2, . . . , p − 1, (13)

in which σ̄ (i)
zi

, τ̄ (i)
yzi

, and τ̄ (i)
xzi

denote the stress components in the interlayer; ε̄(i)
zi

, γ̄ (i)
yzi

, and
γ̄ (i)

xzi
denote the strain components in the interlayer. However, such full viscoelastic anal-

ysis is computationally expensive. The quasi-elastic approximation (Galuppi and Royer-
Carfagni 2012, 2013), which assumes the viscoelastic material as a linear elastic one with
time-dependent properties, is commonly used in practice. By use of the quasi-elastic ap-
proximation, Eq. (13) is simplified as

σ̄ (i)
zi

(x, y, t) = E(t)ε̄(i)
zi

(x, y, t), τ̄ (i)
xzi

(x, y, t) = G(t)γ̄ (i)
xzi

(x, y, t),

τ̄ (i)
yzi

(x, y, t) = G(t)γ̄ (i)
yzi

(x, y, t), i = 1,2, . . . , p − 1. (14)

One can find from Eq. (14) that the stress of viscoelastic material is only dependent on
the current strain. The effect of strain history is neglected in the quasi-elastic approximation.
For a given time, the analysis with parametric dependence on time is similar to the static one.
Compared with the viscoelastic solution, the solution based on the quasi-elastic approxima-
tion is always on the side of safety for time-independent load (Galuppi and Royer-Carfagni
2012), while the quasi-elastic approximation may be unserviceable for time-dependent load
with loading–unloading path (Galuppi and Royer-Carfagni 2013).

2.4 Loading conditions and consistent conditions

The undetermined coefficients in the stress and displacement components can be uniquely
determined by the loading conditions as well as the consistent conditions between the layers
and interlayers. The loading conditions on the surfaces of the plate are given by

σ (1)
z1

(x, y,h1, t) = 0, τ (1)
xz1

(x, y,h1, t) = 0, τ (1)
yz1

(x, y,h1, t) = 0,

σ (p)
zp

(x, y,0, t) = −q(x, y), τ (p)
xzp

(x, y,0, t) = 0, τ (p)
yp

(x, y,0, t) = 0. (15)

Since the stress and displacement components are all expressed by double Fourier series,
the load q(x, y) is also expanded into series form as follows:

q(x, y) = 4

ab

∞∑
m=1

∞∑
n=1

[∫ a

0

∫ b

0
q(x, y) sin(αmx) sin(βny)dxdy

]
sin(αmx) sin(βny). (16)

The consistent conditions for stresses are given as follows:

σ (i)
zi

(x, y,0, t) = σ̄ (i)
zi

(x, y, t) = σ (i+1)
zi+1

(x, y,hi+1, t),
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τ (i)
xzi

(x, y,0, t) = τ̄ (i)
xzi

(x, y, t) = τ (i+1)
xzi+1

(x, y,hi+1, t),

τ (i)
yzi

(x, y,0, t) = τ̄ (i)
yzi

(x, y, t) = τ (i+1)
yzi+1

(x, y,hi+1, t), i = 1,2, . . . , p − 1. (17)

According to Assumption 4 in Sect. 2.1, the strains in the ith interlayer can be expressed
as

ε̄(i)
zi

(x, y, t) = −w(i+1)(x, y,hi+1, t) + w(i)(x, y,0, t)

�h
,

γ̄ (i)
xzi

(x, y, t) = −u(i+1)(x, y,hi+1, t) + u(i)(x, y,0, t)

�h
− ∂w(i)

∂x

∣∣∣∣
zi=0

,

γ̄ (i)
yzi

(x, y, t) = −v(i+1)(x, y,hi+1, t) + v(i)(x, y,0, t)

�h
− ∂w(i)

∂y

∣∣∣∣
zi=0

,

i = 1,2, . . . , p − 1. (18)

Substituting Eqs. (14) and (17) into Eq. (18) yields the consistent conditions for displace-
ments:

w(i+1)(x, y,hi+1, t) = w(i)(x, y,0, t) − �h

E(t)
σ (i)

zi
(x, y,0, t),

u(i+1)(x, y,hi+1, t) = u(i)(x, y,0, t) − �h

G(t)
τ (i)
xzi

(x, y,0, t) + �h
∂w(i)

∂x

∣∣∣∣
zi=0

,

v(i+1)(x, y,hi+1, t) = v(i)(x, y,0, t) − �h

G(t)
τ (i)
yzi

(x, y,0, t) + �h
∂w(i)

∂y

∣∣∣∣
zi=0

,

i = 1,2, . . . , p − 1. (19)

2.5 Recursive matrix

The stress and displacement components in Eqs. (10) and (11) are rewritten in the matrix
form as ⎡

⎢⎢⎢⎢⎢⎢⎣

u(i)(x, y, zi, t)

v(i)(x, y, zi, t)

w(i)(x, y, zi, t)

σ (i)
zi

(x, y, zi, t)

τ (i)
xzi

(x, y, zi, t)

τ (i)
yzi

(x, y, zi, t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=
∞∑

m=1

∞∑
n=1

⎡
⎢⎢⎢⎢⎢⎢⎣

U(i)
mn(zi, t) cos(αmx) sin(βny)

V (i)
mn(zi, t) sin(αmx) cos(βny)

W(i)
mn(zi, t) sin(αmx) sin(βny)

Z(i)
mn(zi, t) sin(αmx) sin(βny)

X(i)
mn(zi, t) cos(αmx) sin(βny)

Y (i)
mn(zi, t) sin(αmx) cos(βny)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (20)

in which the functions U(i)
mn(zi, t), V (i)

mn(zi, t), W(i)
mn(zi, t), Z(i)

mn(zi, t), X(i)
mn(zi, t), and

Y (i)
mn(zi, t) can be determined by substituting Eqs. (10) and (11) into Eq. (20) as follows:

R(i)
mn(zi, t) = M(i)

mn(zi)Ω
(i)
mn(t), i = 1,2, . . . , p, m,n = 1,2,3, . . . , (21)

where

R(i)
mn(zi, t) = [

U(i)
mn(zi, t) V (i)

mn(zi, t) W(i)
mn(zi, t) Z(i)

mn(zi, t) X(i)
mn(zi, t) Y (i)

mn(zi, t)
]T

,

Ω(i)
mn(t) = [

A(i)
mn(t) B(i)

mn(t) C(i)
mn(t) D(i)

mn(t) E(i)
mn(t) F (i)

mn(t)
]T

,
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and

M(i)
mn(zi) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 f 13
mn(zi) f 14

mn(zi) f 15
mn(zi) f 16

mn(zi)

f 21
mn(zi) f 22

mn(zi) f 23
mn(zi) f 24

mn(zi) f 25
mn(zi) f 26

mn(zi)

f 31
mn(zi) f 32

mn(zi) f 33
mn(zi) f 34

mn(zi) 0 0
f 41

mn(zi) f 42
mn(zi) f 43

mn(zi) f 44
mn(zi) 0 0

f 51
mn(zi) f 52

mn(zi) f 53
mn(zi) f 54

mn(zi) f 55
mn(zi) f 56

mn(zi)

f 61
mn(zi) f 62

mn(zi) f 63
mn(zi) f 64

mn(zi) f 65
mn(zi) f 66

mn(zi)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

in which the nonzero elements in the matrix are showed in Appendix. By letting zi = 0 and
zi = hi in Eq. (21), respectively, one has

R(i)
mn(0, t) = M(i)

mn(0)Ω(i)
mn(t), R(i)

mn(hi, t) = M(i)
mn(hi)Ω

(i)
mn(t),

i = 1,2, . . . , p, m,n = 1,2,3, . . . (22)

Eliminating Ω(i)
mn(t) yields

R(i)
mn(0, t) = M(i)

mn(0)M(i)
mn(hi)

−1R(i)
mn(hi, t), i = 1,2, . . . , p, m,n = 1,2,3, . . . (23)

Similarly, the consistent conditions of Eqs. (17) and (19) can be given in the matrix form
as follows:

R(i+1)
mn (hi+1, t) = K(i)

mn(t)R
(i)
mn(0, t), i = 1,2, . . . , p − 1, m,n = 1,2,3, . . . , (24)

where

K(i)
mn(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 αm�h 0 − �h
G(t)

0
0 1 βn�h 0 0 − �h

G(t)

0 0 1 − �h
E(t)

0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Combining Eq. (23) with Eq. (24), one has

R(p)
mn (0, t) =

[
2∏

i=p

M(i)
mn(0)M(i)

mn(hi)
−1K(i−1)

mn (t)

]
M(1)

mn(0)M(1)
mn(h1)

−1R(1)
mn(h1, t),

m,n = 1,2,3, . . . (25)

The above equation indicates a direct relationship between the top surface and the bottom
surface of the layered plate. We define

[
S11

mn(t) S12
mn(t)

S21
mn(t) S22

mn(t)

]
=

[
2∏

i=p

M(i)
mn(0)M(i)

mn(hi)
−1K(i−1)

mn (t)

]
M(1)

mn(0)M(1)
mn(h1)

−1,

m,n = 1,2,3, . . . , (26)
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in which S11
mn(t), S12

mn(t), S21
mn(t), and S22

mn(t) are 3 × 3 sub-matrixes. Therefore, Eq. (25)
becomes⎡

⎢⎢⎢⎢⎢⎢⎢⎣

U
(p)
mn (0, t)

V
(p)
mn (0, t)

W
(p)
mn (0, t)

Z
(p)
mn (0, t)

X
(p)
mn (0, t)

Y
(p)
mn (0, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[

S11
mn(t) S12

mn(t)

S21
mn(t) S22

mn(t)

]
⎡
⎢⎢⎢⎢⎢⎢⎣

U(1)
mn(h1, t)

V (1)
mn (h1, t)

W(1)
mn (h1, t)

Z(1)
mn(h1, t)

X(1)
mn(h1, t)

Y (1)
mn (h1, t)

⎤
⎥⎥⎥⎥⎥⎥⎦

, m,n = 1,2,3, . . . (27)

According to Eq. (20), the loading conditions of Eqs. (15) and (16) are rewritten as

Z(p)
mn (0, t) = 0, Z(p)

mn (0, t) = 0,

Z(p)
mn (0, t) = − 4

ab

∫ a

0

∫ b

0
q(x, y) sin

mπx

a
sin

nπy

b
dxdy,

Z(1)
mn(h1, t) = 0, X(1)

mn(h1, t) = 0, Y (1)
mn (h1, t) = 0, m,n = 1,2,3, . . . (28)

Decomposing Eq. (27) into two equations, one has

S11
mn(t)

⎡
⎣ U(1)

mn(h1, t)

V (1)
mn (h1, t)

W(1)
mn (h1, t)

⎤
⎦ =

⎡
⎢⎣

U
(p)
mn (0, t)

V
(p)
mn (0, t)

W
(p)
mn (0, t)

⎤
⎥⎦ ,

S21
mn(t)

⎡
⎣ U(1)

mn(h1, t)

V (1)
mn (h1, t)

W(1)
mn (h1, t)

⎤
⎦ =

⎡
⎣ 0

0
− 4

ab

∫ a

0

∫ b

0 q(x, y) sin mπx
a

sin nπy

b
dxdy

⎤
⎦ ,

m,n = 1,2,3, . . . (29)

Solving the second equation in Eq. (29), one has
⎡
⎣ U(1)

mn(h1, t)

V (1)
mn (h1, t)

W(1)
mn (h1, t)

⎤
⎦ = (

S21
mn(t)

)−1

⎡
⎣− 4

ab

∫ a

0

∫ b

0 q(x, y) sin mπx
a

sin nπy

b
dxdy

0
0

⎤
⎦ ,

m,n = 1,2,3, . . . (30)

The solutions of stress and displacement components certainly exist, therefore, the six un-
known coefficients in Eq. (21) should be uniquely determined, which means |M(i)

mn(zi)| �= 0.
Because |K(i)

mn(t)| = 1, |[∏2
i=p M(i)

mn(0)M(i)
mn(hi)

−1K(i−1)
mn (t)]M(1)

mn(0)M(1)
mn(h1)

−1| �= 0 is cer-
tainly true. Thus, we conclude that the inverse matrix of S21

mn(t) always exists. Combining
Eq. (23) with Eq. (24), one has

R(i)
mn(0, t) =

[
1∏

j=i

M(j)
mn(0)

(
M(j)

mn(hj )
)−1

K(t)

](
K(t)

)−1
R(1)

mn(h1, t),

i = 1,2, . . . , p, m,n = 1,2,3, . . . (31)

The undetermined coefficients for each layer are deduced as follows:

Ω(i)
mn(t) = (

M(i)
mn(0)

)−1
R(i)

mn(0, t), i = 1,2, . . . , p, m,n = 1,2,3, . . . (32)
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Substituting these coefficients into Eqs. (10) and (11), the solution for stress and dis-
placement components is finally obtained.

It should be pointed out that with the increase of the layer number p, only the computa-
tional cost in Eq. (26) correspondingly increases. As a result, the recursive matrix method
has high efficiency in the present analysis.

3 Numerical results and discussion

Since the present solution is expressed by a double Fourier series with infinitely many terms,
it should be truncated for practical calculation. The series terms for m and n are both trun-
cated at N , i.e., m,n = 1,2,3, . . . ,N . The Poisson’s ratio of the interlayer, denoted by μ0,
is assumed to be time-independent. Thus, E(t) = 2(1+μ0)G(t). In the following numerical
examples, the location of the plate is identified by the global Cartesian coordinates o-xyz.
The locations in local Cartesian coordinates oi -xyzi can be transferred into global Cartesian
coordinates o-xyz by the following relation:

z = zi + (i − 1)�h +
i−1∑
j=1

hj . (33)

According to Assumption 2 given in Sect. 2.1, Eq. (33) can be simplified as

z = zi +
i−1∑
j=1

hj . (34)

For brevity, four quantities are defined for the following analysis: σ = σ (1)
x at x = 0.5a,

y = 0.5b, z = h, τ1 = τ (1)
xz at x = 0, y = 0.5b, z = h − h1, τ2 = τ (2)

xz at x = 0, y = 0.5b,
z = h − h1 − h2, and w = w(1) at x = 0.5a, y = 0.5b, z = h.

3.1 Convergence analysis

Since the present solution is expressed in a series, a convergence study should be carried
out first. Consider a three-layer rectangle plate under the uniform load q(x, y) = 1 N/mm2.
The parameters are taken as h1 = h3 = 20 mm, h2 = 60 mm, �h = 0.25 mm, E1 = E3 =
90 GPa, μ1 = μ3 = 0.3, μ2 = 0.2, μ0 = 0.3, t = 1 year (3.1536 × 107 s), while a, b, and
E2 are variable. The viscoelastic interlayers are made of polyvinyl butyral with parameters
taken from Galuppi and Royer-Carfagni (2012), as displayed in Table 1.

Table 2 gives the stress and displacement components for different series terms N from
1 to 15 with a = 1000 mm, b = 750 mm, E2 = 30 GPa. From Table 2, a quick convergence
property of present solution can be observed and the accuracy has at least two significant
digits when N = 15. As a result, the series terms are taken up to N = 15 in all the following
calculations.

Figures 3 and 4 respectively studied the influences of length–thickness ratio a/h and
elasticity modulus ratio E1/E2 on convergence of the stress components σ (3)

x , σ (3)
z , τ (2)

xz ,
and τ (2)

xy . It can be observed that the convergence rates of the four components all increase
with the decrease of a/h. With the increase of E1/E2, the convergence rate of σ (3)

x increases
and that of τ (2)

xz decreases. However, the convergence rates of σ (3)
z and τ (2)

xy are less affected
by E1/E2. Moreover, it is seen that τ (2)

xz and τ (2)
xy are monotonically convergent while σ (3)

x

and σ (3)
z are oscillating convergent.
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3.2 Comparison analysis

The present solution is compared with the solution from moderately thick plate theory based
on Mindlin–Reissner (MR) hypothesis and the three-dimensional finite element (3DFE) so-
lution. The MR solution is provided by the commercial software ANSYS using the two-
dimensional SHELL-181 element, which considers the first-order transverse shear deforma-
tion of the plate. The 3DFE solution is obtained from ANSYS using the three-dimensional
SOLID-185 element. Consider a two-layer square plate with a = b, under the uniform
load q(x, y) = 1 N/mm2. The geometric and material parameters are h1 = h2 = 50 mm,
�h = 0.5 mm, E1 = E2, μ1 = μ2 = μ0 = 0.3, and G(t), as given in Table 1.

Table 1 Material parameters for
polyvinyl butyral (G(t) =
G∞ + ∑l

j=1 Gje
−t/θG,j )

Term index j Gj [MPa] θG,j [s]

1 75.6426 3.256 × 10−11

2 37.0677 4.949 × 10−9

3 137.1552 7.243 × 10−8

4 33.5140 9.864 × 10−6

5 126.6048 2.806 × 10−3

6 42.1950 1.644 × 10−1

7 14.2162 2.265 × 100

8 3.5822 3.536 × 101

9 0.4538 9.368 × 103

10 0.1912 6.414 × 105

11 0.2893 4.135 × 107

∞(G∞) 0.0880 –

Table 2 Convergence of the present results σ
(3)
x , σ (3)

y , σ (3)
zi

, w(3) at x = 500 mm, y = 375 mm, z3 = 20 mm,

and τ
(2)
yzi

, τ
(2)
xzi

, τ
(2)
xy , u(2) , v(2) at x = 250 mm, y = 187.5 mm, z2 = 10 mm

N σ
(3)
x σ

(3)
y σ

(3)
zi

τ
(2)
yzi

τ
(2)
xzi

τ
(2)
xy u(2) v(2) w(3)

1 49.36 67.12 −1.426 1.384 1.038 8.749 0.08354 0.1114 3.482

3 25.23 45.25 −0.8960 1.313 0.845 8.175 0.07933 0.1114 3.140

5 35.10 47.15 −0.9686 1.305 0.804 8.152 0.07900 0.1113 3.180

7 29.95 45.38 −0.9472 1.304 0.813 8.154 0.07903 0.1113 3.169

9 32.47 46.10 −0.9537 1.304 0.816 8.154 0.07904 0.1113 3.172

11 31.01 45.63 −0.9511 1.304 0.815 8.154 0.07904 0.1113 3.171

13 31.89 45.90 −0.9522 1.304 0.814 8.154 0.07904 0.1113 3.172

15 31.30 45.71 −0.9516 1.304 0.814 8.154 0.07904 0.1113 3.171

Note: the units of stresses and displacements are [MPa] and [mm], respectively.
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Fig. 3 Convergence rates of the stress components with a = b and E2 = 30 GPa for different length–thick-
ness ratios a/h

Comparisons of σ , τ1, and w with E1 = 70 GPa when t = 1 day (8.64 × 104 s) among
the present, 3DFE and MR results for different length–thickness ratios a/h are displayed
in Table 3. Close agreement between the present and 3DFE results can be observed. The
errors are less than 1.5 % for all cases. It is seen from Table 3 that the MR results are close
to the present ones for thin plate, however, the error increases as the length–thickness ratio
increases. The errors of σ and w from MR theory respectively reach 9.61 % and 17.7 %
when a/h = 7.5.

Figure 5 shows comparisons of σ , τ1, and w with E1 = 8 GPa and a = 1000 mm between
the present solutions and the solutions from Foraboschi (2013a) where the interlayer was
considered as fully elastic. It can be seen from Fig. 5 that the results from Foraboschi (2013a)
are time-independent and are close to our results at the initial stage. However, σ and w in
the present analysis increase with time while τ1 decreases with time. They are all close to
constants for the long time such as t = 108 s, which is greatly different from the solutions
of Foraboschi (2013a). This demonstrates that the effects of viscosity cannot be ignored for
layered plates with viscoelastic interlayers.
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Fig. 4 Convergence rate of stress components with a = b = 2000 for different elasticity modulus ratios
E1/E2

3.3 Parametric analysis

Consider a five-layer square plate under the sinusoidal load q(x, y) = sin(πx/a) sin(πy/b)

N/mm2. The geometric and material parameters are assumed as a = b = 1000 mm, hi =
20 mm, Ei = 11 GPa, μi = 0.3, μ0 = 0.3, (i = 1,2 . . .5). G(t) is given in Table 1.

Figure 6 plots the distributions of stress components σ (i)
x , σ (i)

z , τ (i)
xy , and τ (i)

xz along the
thickness and τ (2)

xz in the x-o-y plane with �h = 0.25 mm when t = 1 day (8.64 × 104 s),
1 year (3.1536 × 107 s), and 10 years (3.1536 × 108 s), respectively. It can be seen from
Fig. 6 that the absolute values of σ (i)

x and τ (i)
xy at the upper and lower surfaces of each plate

layer increase with t . However, the variation of σ (i)
z with respect to t is small. τ (i)

xz near the
interlayer and τ (2)

xz in the x-o-y plane, in absolute values, decrease with t .
Variations of σ , τ2, and w with respect to t for three different interlayer thicknesses

�h = 0.25, 0.5 and 1 mm are respectively plotted in Fig. 7. It can be seen from Fig. 7 that
σ and w increase with t , while τ2 decreases with t . They all tend to be invariable after
10 years. Moreover, it is seen that σ and w increase as the interlayer thickness increases,
while τ2 decreases as the interlayer thickness increases.
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Table 3 Comparisons of σ , τ1, and w when t = 1 day (8.64 × 104 s) between the present, 3DFE and MR
results for different length–thickness ratios a/h

a/h Solutions Present 3DFE MR Error for 3DFE (%) Error for MR (%)

20 σ [Mpa] 192.4 192.3 192.8 0.0783 0.197

τ1 [MPa] 2.435 2.431 2.419 0.193 0.685

w [mm] 31.21 31.16 31.42 0.155 0.700

12 σ [Mpa] 77.21 77.63 76.85 0.543 0.464

τ1 [MPa] 0.6479 0.6473 0.6429 0.103 0.774

w [mm] 4.646 4.669 4.765 0.503 2.55

9 σ [MPa] 43.64 43.97 44.62 0.745 2.24

τ1 [MPa] 0.2901 0.2896 0.2878 0.164 0.788

w [mm] 1.466 1.479 1.586 0.946 8.24

7.5 σ [Mpa] 28.66 29.03 31.42 1.27 9.61

τ1 [MPa] 0.1720 0.1713 0.1706 0.393 0.848

w [mm] 0.6663 0.6755 0.7841 1.38 17.7

Note: Error for 3DFE denotes |(3DFE-Present)/Present|; error for MR denotes |(MR-Present)/Present|.

Fig. 5 Comparisons of σ , τ1, and w between the present solutions and the solutions for the two-layer plate
sandwiching an elastic interlayer
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Fig. 6 Distributions of stress components with �h = 0.25 mm when t = 1 day (8.64 × 104 s), 1 year
(3.1536 × 107 s), and 10 years (3.1536 × 108 s), respectively
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Fig. 7 Variations of σ , τ2, and w with respect to t for �h = 0.25, 0.5, and 1 mm, respectively

4 Concluding remarks

Based on the exact three-dimensional elasticity theory, an analytical solution for simply
supported layered plates with viscoelastic interlayers under a transverse load is proposed.
By using the recursive matrix technique, the solution is obtained efficiently. The following
conclusions can be drawn:

1. The solution based on the Mindlin–Reissner plate theory is close to the present three-
dimensional elasticity solution for thin plates; however, implies considerable errors for
thick plates.

2. The present solution has good convergence. The convergence rate increases as the plate
thickness increases.

3. The displacements and stresses of the plate vary with the time; however, they tend to be
constants after a certain time.

4. The longitudinal normal stress and the deflection, in absolute values, increase as the
interlayer thickness increases, while the absolute value of shear stress in the interlayer
decreases as the interlayer thickness increases.
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Appendix

The nonzero elements of M(i)
mn(zi) in Eq. (21) are obtained as follows:

f 13
mn(zi) = αmβn

φmn

zi sinh(φmnzi), f 14
mn(zi) = αmβn

φmn

zi cosh(φmnzi),

f 15
mn(zi) = βn cosh(φmnzi), f 16

mn(zi) = βn sinh(φmnzi),

f 21
mn(zi) = φmn sinh(φmnzi), f 22

mn(zi) = φmn cosh(φmnzi),

f 23
mn(zi) = λi + 3Gi

λi + Gi

cosh(φmnzi) + (βn)
2

φmn

zi sinh(φmnzi),

f 24
mn(zi) = λi + 3Gi

λi + Gi

sinh(φmnzi) + (βn)
2

φmn

zi cosh(φmnzi),

f 33
mn(zi) = βnzi cosh(φmnzi), f 34

mn(zi) = βnzi sinh(φmnzi),

f 41
mn(zi) = 2βnGiφmn sinh(φmnzi), f 42

mn(zi) = 2βnGiφmn cosh(φmnzi),

f 43
mn(zi) = 2βnGi

(
Gi

λi + Gi

cosh(φmnzi) + φmnzi sinh(φmnzi)

)
,

f 44
mn(zi) = 2βnGi

(
Gi

λi + Gi

sinh(φmnzi) + φmnzi cosh(φmnzi)

)
,

f 51
mn(zi) = αmβnGi cosh(φmnzi), f 52

mn(zi) = αmβnGi sinh(φmnzi),

f 53
mn(zi) = βnGi

(
αm

φmn

sinh(φmnzi) + 2αmzi cosh(φmnzi)

)
,

f 54
mn(zi) = βnGi

(
αm

φmn

cosh(φmnzi) + 2αmzi sinh(φmnzi)

)
,

f 55
mn(zi) = βnφmnGi sinh(φmnzi), f 56

mn(zi) = βnφmnGi cosh(φmnzi),

f 61
mn(zi) = [

(βn)
2 + (φmn)

2
]
Gi cosh(φmnzi),

f 62
mn(zi) = [

(βn)
2 + (φmn)

2
]
Gi sinh(φmnzi),

f 63
mn(zi) =

[(
λi + 3Gi

λi + Gi

φmn + (βn)
2

φmn

)
sinh(φmnzi) + 2(βn)

2zi cosh(φmnzi)

]
Gi,

f 64
mn(zi) =

[(
λi + 3Gi

λi + Gi

φmn + (βn)
2

φmn

)
cosh(φmnzi) + 2(βn)

2zi sinh(φmnzi)

]
Gi,

f 65
mn(zi) = −αmφmnGi sinh(φmnzi), f 66

mn(zi) = −αmφmnGi sinh(φmnzi).
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