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Abstract This work considers a previously developed constitutive theory for the time de-
pendent mechanical response of fibrous soft tissue resulting from the time dependent remod-
eling of a collagen fiber network that is embedded in a ground substance matrix. The matrix
is taken to be an incompressible nonlinear elastic solid. The remodeling process consists
of the continual dissolution of existing fibers and the creation of new fibers. Motivated by
experimental reports on the enzyme degradation of collagen fibers, the remodeling is gov-
erned by first order chemical kinetics such that the dissolution rate is dependent upon the
fiber stretch. The resulting time dependent mechanical response is sensitive to the natural
configuration of the fibers when they are created, and different assumptions on the nature of
the fiber’s stress free state are considered here. The response under biaxial loading, a type
of loading that has particular significance for the characterization of biological materials, is
studied. The inflation of a spherical membrane is then analyzed in terms of the equal biaxial
stretch that occurs in the membrane approximation. Different assumptions on the natural
configuration of the fibers, combined with their time dependent dissolution and reform-
ing, are shown to emulate alternative forms of creep and relaxation response. This formal
similarity to viscoelastic phenomena occurs even though the underlying mechanisms are
fundamentally different from the mechanism of macromolecular reconfiguration that one
typically associates with viscoelastic response.
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1 Introduction

Biological soft tissues such as arteries (Holzapfel and Ogden 2010) and cervical tissues (My-
ers et al. 2015) consist of a mixture of a matrix material and collagen fibers. One of the aims
of soft tissue biomechanics is to understand and to describe the mechanical properties of the
resultant matrix–collagen fiber system as well as the interaction of the constituents. An im-
portant aspect of these biomaterial systems is that the tissue microstructure, and especially
the fiber morphology, changes with time due to ongoing processes of growth and remod-
eling. These changes result from complex biochemical, mechanical, and thermodynamical
processes that operate on a variety of length and time scales. To make this remodeling possi-
ble, the tissue’s solid phase constituents are infused with a liquid phase that facilitates local
transport and provides for the necessary nutrition. This has been treated in the context of
the theory of mixtures (Humphrey and Rajagopal 2002, and Myers and Ateshian 2014). The
specific role of diffusion in such remodeling processes has been the object of both experi-
mental and modeling studies (Stoffel et al. 2009 and Yi 2013).

The fiber remodeling processes involve the breakdown of existing fibers and their re-
placement by new fibers in a manner that is directly affected by stress and deformation.
The orientation of newly deposited fibers appears to be particularly sensitive to these me-
chanical effects (Driessen et al. 2008; Karšaj et al. 2009; Shirazi et al. 2011). Recent ex-
periments on the influence of cyclic stimulation on fiber remodeling are reported in Stoffel
et al. (2011). Stress mediated fiber remodeling in intracranial saccular aneurysms and in-
tracranial fusiform aneurysms was taken into account by Baek et al. (2005, 2006). As an
example of the significance of deformation-dependent remodeling processes in tissue, Ro-
dríguez and Merodio (2010) studied how a loss of strain-mediated stiffening processes leads
to instability, i.e., the formation of aneurysms as a result of Marfan’s syndrome.

Degradation of collagen fibers in soft tissue is mediated by enzymes. Experiments in-
dicate that the rate of fiber degradation and resorption is sensitive to the amount of fiber
stretch. Specifically it is reported that increasing stretch tends to make the fibers more resis-
tant to breakdown (Bhole et al. 2009; Robitaille et al. 2011). In order to describe this enzyme
mediated breakdown, Hadi et al. (2012) represented the network of collagen fibers as rods in
a three-dimensional truss-like structure. The rods were simultaneously axially loaded while
their radii were subjected to a time dependent decrease that was modeled by a first order
differential equation with stretch dependent coefficients.

Motivated by these works, and with the purpose of describing such processes within
a broader continuum mechanics setting, Demirkoparan et al. (2013) developed a constitu-
tive framework in which the matrix constituent is treated as an incompressible, isotropic
and time-independent hyperelastic ground state matrix, while the fibrous constituent remod-
els within this matrix by an ongoing process of fiber creation and dissolution. This time-
dependent process takes into account the influence of fiber stretch in a manner suggested
by the above mentioned experiments. Fiber creation and dissolution are treated as separate
processes and the continuum mechanical description of both are affected by the current state
of tissue deformation. The state of deformation affects the fiber creation description because
the specification of the stress-free (relaxed) state of each newly synthesized fiber would typ-
ically depend on the existing state of deformation when the fiber is made. The theory can
accommodate different modeling hypotheses as regards the nature of this stress-free state.
The state of deformation affects the degradation process by virtue of the already indicated
stretch dependent enzymatic degradation rate.
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In the theory presented here, all fiber directions are formally equivalent in their original
process response. However, because load and deformation typically cause certain directions
to stretch more than others, this quickly leads to directional dependence in fiber properties,
which then confers anisotropy on the overall material properties. In any given direction, the
overall effect is to give a first order chemical kinetics description for the expected lifetime
of any individual fiber. This formally makes the material exhibit time-dependent mechanical
affects in a manner that is not unlike that of other time-dependent materials. The mechanical
response of the tissue therefore exhibits a pronounced rate effect which emerges naturally
from the underlying physical description.

Specific time scales can be identified for both the creation and dissolution processes. If
the external mechanical environment is held fixed, then these processes can come into bal-
ance leading to a steady state fiber morphology. This type of dynamic equilibrium between
dissolution of aged fibers and the creation of new replacement fibers with identical properties
is a necessary condition for tissue homeostasis. If the mechanical environment is not fixed,
meaning that either load or deformation is changing, then there is one type of characteris-
tic response if the boundary conditions change rapidly and a different type of characteristic
response if the boundary conditions change slowly. As in other theories for time-dependent
materials, such as either linear or nonlinear viscoelasticity, an idealized process with ei-
ther an infinitely fast or an infinitely slow rate of loading is easily modeled because reduced
mathematical models emerge easily from the overall framework under these specialized lim-
its. Also, as in these other theories for time-dependent materials, mechanical processes that
proceed at a finite nonzero rate require consideration of the more complicated full mathe-
matical framework, although the specialized fast and slow limits can serve as useful bounds
on the process description.

This paper describes how the collagen material model of Demirkoparan et al. (2013)
generates such a time-dependent material response. Previous study of the present material
constitutive model has focused attention on states of uniaxial loading and simple shearing
(Topol et al. 2014, 2015; Topol and Demirkoparan 2014). Here we consider more general
conditions of biaxial loading, a type of loading that has particular significance with respect
to the characterization of biological materials (Sacks 2000). We also consider the mechan-
ical response of a spherical membrane composed of such a material under symmetric in-
flation. In this case the material undergoes the same equal biaxial deformation history at
each membrane location. The inflation response of even purely hyperelastic materials can
be quite complicated (Holzapfel et al. 1996; Holzapfel 2000; Patil et al. 2014; Mangan and
Destrade 2015). Specifically within the field of biomechanics the consideration of spheri-
cal inflation has a long history (see, e.g., Osborne (1909)). With regard to rate-dependent
materials, Wineman (1977) has investigated spherical inflation for viscoelastic membranes.
Myers and Wineman (2003) and Wineman (2009) have studied the spherical inflation re-
sponse of an elastomeric membrane as it undergoes time-dependent processes of scission
and formation of new molecular networks. It is therefore natural to study spherical infla-
tion using the constitutive theory for materials undergoing the fiber remodeling processes
considered here.

This work is organized as follows: Sect. 2 gives a summary of the material model. Sec-
tion 3 discusses the time-dependent material response under the separate conditions of biax-
ial stretch-control and biaxial load-control. Of particular interest is the distinction between
the instantaneous short time response and an asymptotic large time response. Using these
results, Sect. 4 examines the inflation of a spherical membrane. The broader implications of
this modeling are discussed in Sect. 5.
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2 Summary of the material model

In view of the somewhat detailed technical development, some commentary on our notation
convention is useful. A variety of different constants and functions enter into the treatment,
all with various units. We shall often use a superscript ∗ to denote associated dimensionless
quantities. This includes a dimensionless time t∗, dimensionless stress quantities (e.g., T ∗

22
in (38)) and dimensionless elastic moduli (e.g., μ∗ in (45)). Certain functions are naturally
introduced as constitutive functions of specific variables (e.g., the fiber dissolution rate η as
a function of the stretch invariant I4 in (9)), but then, in the context of a specific problem,
those variables become a function of other quantities. This causes the original function to
then become a direct function of the other quantities. We often use an overscript ˆ(·) to
identify this change in functional dependence (e.g., η̂ in (29)). Finally, of significant interest
is the material response when either load or displacement are suddenly changed. If this
sudden change occurs at time t = 0 then we use t = 0− to describe the state of the system
just before the sudden change and t = 0+ to describe the system just after the change.

We consider soft tissue constructs in which a collagen-fiber network permeates a ground
substance matrix. When the tissue is deformed, the mechanical response of the matrix does
not change with time, while the fibers undergo a time-dependent remodeling process involv-
ing destruction of existing fibers and creation of new fibers. These ongoing processes, which
endow a time-dependence on the material mechanical response, are heavily influenced by
the current state of deformation. The governing relations that seek to describe these pro-
cesses are presented in this section.

This mechanical response is described with respect to a configuration κ0 which is the
natural configuration for the matrix. The natural configuration for the fibers might be differ-
ent from that of the matrix. The natural configuration for such fibers might also change so
as to be dependent on their time of creation. This is especially to be expected if the fiber’s
natural configuration is dependent on the state of deformation when it was created. Hence
we introduce the natural configuration κf (τ ) for fibers created at time τ . A deformation
gradient tensor A(τ ) = A(κ0→κf (τ)) is introduced to describe the mapping from κ0 to κf (τ ).
For a deformation described by the deformation gradient tensor F = F(t) from configuration
κ0 to configuration κ(t) = κ , the deformation gradient at time t for the fiber created at time
τ is therefore given by F(t)[A(τ )]−1. These configurations and deformation gradients are
illustrated in Fig. 1.

A significant question concerns the determination of A(τ ) because this is directly depen-
dent on how collagen fibers are created by the tissue fibroblasts within the ground substance.
We consider two hypothetical deposition processes and this motivates the consideration of
two alternatives for the stipulation of A(τ ):

Fig. 1 The different material
configurations. The natural
configuration of the matrix serves
as the reference configuration
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– If the fibers exhibit prestress when created so as to be in the same deformed state as the
surrounding matrix then both the matrix and the fiber constituents share the same natural
configuration, i.e., κ0 = κf . In this case A = I, where I is the identity tensor.

– If the fibers are undeformed at their time of creation τ , then the fiber natural configura-
tion is identical with the current deformation at time τ , i.e., κf (τ ) = κ(τ). In this case
A(τ ) = F(τ ).

For any stipulation of A(τ ), a unit vector N = Nκ0 along a line element in κ0 deforms into
FN in κ(t). Its stretch ratio is Λ = Λ(κ0→κ) = √

FN · FN = √
N · CN, where C = C(κ0→κ) =

FT F is the right Cauchy–Green tensor for the deformation κ0 → κ(t). A unit vector Nκf

in the fiber natural configuration κf is related to the corresponding unit vector N = Nκ0 in
configuration κ0 by

Nκf = AN
‖AN‖ . (1)

This unit vector deforms into

F(t)A−1Nκf = F(t)N
‖AN‖ (2)

in configuration κ(t), with stretch ratio Λ̂ = Λ̂(κf →κ) given by

Λ̂
(
C(t),N,A(τ )

) =
√

F(t)N · F(t)N√
A(τ )N · A(τ )N

=
√

N · C(t)N
A(τ )N · A(τ )N

. (3)

As discussed by Holzapfel and Ogden (2010), many soft tissues can be treated as in-
compressible so that det F = 1. At each instant of time, the body is assumed to respond as
an anisotropic hyperelastic material whose Helmholtz free energy density is denoted by W .
Each point X in the reference configuration is regarded as containing both fibrous and matrix
components in the standard manner of continuum mechanics. In other words, the fiber and
matrix components are not spatially resolved in this treatment; instead W is a bulk averaged
energy density that may be regarded as following from a suitable homogenization treatment
of a finer scale representative volume element. In modeling fiber reinforced materials, W

is often decomposed into W = Wm + Wf , where Wm represents the contribution from the
matrix constituent and Wf represents the contribution of the fibrous components. The con-
stitutive relation for the Cauchy stress tensor T in such a hyperelastic model then has the
form

T = −pI + 2F
∂W

∂C
FT , where W = Wm + Wf , (4)

and p is a scalar resulting from the incompressibility constraint. For the time-dependent
fiber dissolution and reassembly process considered here, Wf takes on a time dependence
that is a reflection of this changing microstructure. The matrix contribution Wm describes
the ground substance which is assumed to be isotropic with Wm = Wm(I1, I2), where I1

and I2 are the invariants of C associated with isotropy. Any time dependence in this ground
substance is taken to be negligible compared to that of the fiber constituent. In this paper, it
is sufficient to describe this matrix constituent as a neo-Hookean material with

Wm(I1) = μ

2
[I1 − 3] (5)

where μ ≥ 0 is a material parameter.
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In contrast, the Helmholtz free energy density function for the collagen fiber network
reflects the time-dependent chemomechanical processes that govern the fiber dissolution
and regeneration. These processes are continuously ongoing such that the current state of
the fiber morphology is a consequence of deformation mediated events whose influence
extends back in time. As discussed in Demirkoparan et al. (2013) and briefly recapitulated
here, the consideration of these processes motivates a mathematical description of Wf in the
form

Wf =
∫

N

∫ t

−∞
ψ

(
I4

(
C(t),N,A(τ )

))
ζ(t,N, τ )dτ dN, (6)

where
∫

N . . .dN is a notation for the integration over the unit sphere, and ψ = ψ(I4(C(t),

N,A(τ ))) is the Helmholtz free energy density function for a single fiber, a protofiber, with
orientation N.

The nature of this type of model is that each location x is regarded as containing both
matrix and fiber constituents. Furthermore, each such continuum point is regarded as con-
taining fibers in all directions. The integral with respect to N in (6) takes all such fibers into
account. Thus the individual protofiber entities are not individually resolved. Instead the
treatment makes use of the factor ζ = ζ(t,N, τ ). This is the fiber survival kernel; it provides
the density of fibers at time t that were created at time τ with orientation N.

The argument of ψ in (6) is the invariant I4(C(t),N,A(τ )) = I
(κf →κ)

4 for the fibrous con-
stituent. Such a dependence is consistent with the notion that each protofiber is transversely
isotropic in its natural configuration κf . For the deformation from κf to κ the invariant

I4(C(t),N,A(τ )) = I
(κf →κ)

4 is

I4 = I
(κf →κ)

4 = N · C(t)N
A(τ )N · A(τ )N

. (7)

According to (3), I
(κf →κ)

4 = [Λ̂(C(t),N,A(τ ))]2 which represents the square of the fiber
stretch. It will be assumed that ψ is given by the relatively standard model form

ψ = γ

2
[I4 − 1]2, (8)

where γ is a material stiffness parameter (Qiu and Pence 1997). Other forms for ψ such as
those discussed in Holzapfel et al. (2000), Merodio and Ogden (2003), and Holzapfel and
Ogden (2010) can be accommodated in the present framework.

The following expression for ζ(t,N, τ ) is a consequence of a more fundamental devel-
opment presented by Demirkoparan et al. (2013). On the basis of first order degradation
kinetics, and motivated by the experimental evidence for stretch stabilized fiber dissolution
(Bhole et al. 2009; Robitaille et al. 2011), Demirkoparan et al. (2013) developed the expres-
sion

ζ(t,N, τ ) = χc exp

(
−

∫ t

τ

η
(
I4

(
C(s),N,A(τ )

)
ds

)
, (9)

where χc is a constant fiber creation rate, and η = η(I4) is the deformation dependent fiber
dissolution rate. The fiber survival kernel also permits the determination of the fiber orien-
tation density function

R(t,N) =
∫ t

−∞
ζ(t,N, τ )dτ = χc

∫ t

−∞
exp

(
−

∫ t

τ

η
(
I4

(
C(s),N,A(τ )

))
ds

)
dτ. (10)
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A treatment based on (1)–(4), (6)–(7), (9), and (10) represents a rather general homogenized
continuum. As developed in Demirkoparan et al. (2013), the various time integrals in (6),
(9), and (10) arise from the solution of specific differential equations that describe the in-
terplay of aged fiber dissolution and new replacement fiber creation. On the other hand, the
stipulations (5) and (8) are particular modeling choices that are taken here on the basis of
standard modeling practice. Another modeling choice is the form of η in (9) and (10). Here
we seek to model a stretch dependent fiber dissolution rate. For this purpose the form of η

is taken to be

η(I4) = k1I
−k2
4 . (11)

The coefficient k1 is a positive constant that has the physical dimension of (time)−1 and
represents the reciprocal of a characteristic time for dissolution in the absence of fiber stretch
(I4 = 1). The exponent k2 represents the influence of fiber stretch on dissolution. The larger
the value of k2 the smaller is the dissolution rate for a given fiber stretch. Constants k1 and
k2 can be chosen to approximate known experimental results.

In order to obtain the Cauchy stress (4) from (6), we observe from (7) and (8) that

∂ψ

∂C

∣
∣∣
∣
I4=I4(C,N,A)

=
{

∂ψ

∂I4

∂I4

∂C

}∣
∣∣
∣
I4=I4(C,N,A)

= γ
I4(C,N,A) − 1

AN · AN
N ⊗ N. (12)

The Cauchy stress in (4) thus becomes

T = −pI + μB + 2FSf FT , (13)

where B = FFT is the left Cauchy–Green tensor, and

Sf = γχc

∫

N

∫ t

−∞

{
I4(C(t),N,A(τ )) − 1

A(τ )N · A(τ )N

× exp

(
−

∫ t

τ

η
(
I4

(
C(s),N,A(τ )

))
ds

)
dτ

}
N ⊗ N dN. (14)

Equations (14) and (10) connect the time dependence of the stress and the time dependence
of the fiber orientation density.

2.1 Homeostatic initial conditions

Equations (13) and (14) show that the stress response at time t is determined not only by the
deformation state at time t , but also by the past deformation history, in principle extending
t to −∞. Suppose, however, that the material has been held in a fixed state of deformation
for a sufficiently long time with constant deformation gradient tensor F = F0. Then A also
remains constant for fibers created during this time period and so is described by a fixed A0.
In the limit as the time period of constant F0 becomes arbitrary large, the fiber orientation
density (10) approaches the limit

R(t,N) = χc

∫ t

−∞
exp

(−η
(
I4(C0,N,A0)

)[t − τ ])dτ = χc

η(I4(C0,N,A0))
, (15)

where C0 = FT
0 F0. The Cauchy stress as given by (13) then approaches the limit

T = −pI + μB0 + 2F0Sf FT
0 where B0 = F0FT

0 , and Sf as given by (14) tends to

Sf = γχc

∫

N

[I4(C0,N,A0) − 1]
[A0N · A0N]η(I4(C0,N,A0))

N ⊗ N dN. (16)
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Both R and T approach constant values in time because the fiber creation and dissolution
are now in balance. This process in which fiber remodeling is ongoing at the finer subcontin-
uum length scales while the overall properties of the biological material remain constant at
the coarser continuum scale is denoted as homeostasis (see, e.g., Cowin and Doty 2007 and
Bader et al. 2011). The evaluated limits in (15) and (16) show that homeostasis is a general
feature of this model. The particular homeostatic states are determined by a fixed deforma-
tion F0 in terms of the fiber creation rate constant χc and the fiber dissolution function η(I4).

If a condition of homeostasis prevails at time t = 0 and this state is disrupted by some
new loading for t > 0 then the formulae (14) and (10) for Sf and R are naturally analyzed by
having their integrals with respect to τ decomposed into separate portions with −∞ < τ < 0
and 0 < τ < t . The integrals over the domain −∞ < τ < 0 can then be evaluated by the
same type of procedures used to obtain (15) and (16). The result of this process is that the
fiber orientation density (10) is given by

R(t,N) = χc

[
1

η(I4(C0,N,A0))
exp

(
−

∫ t

0
η
(
I4

(
C(s),N,A0

))
ds

)

+
∫ t

0
exp

(
−

∫ t

τ

η
(
I4

(
C(s),N,A(τ )

))
ds

)
dτ

]
(17)

and the Cauchy stress continues to be given by T = −pI+μB+2FSf FT where Sf = Sf (t)

as given by (14) now becomes

Sf (t) = γχc

∫

N

{ [I4(C(t),N,A0) − 1]
A0N · A0N

1

η(I4(C0,N,A0))

× exp

(
−

∫ t

0
η
(
I4

(
C(s),N,A0

))
ds

)
+

∫ t

0

[I4(C(t),N,A(τ )) − 1]
A(τ )N · A(τ )N

× exp

(
−

∫ t

τ

η
(
I4

(
C(s),N,A(τ )

))
ds

)
dτ

}
N ⊗ N dN. (18)

The essential point is that now, unlike (10) and (14), the tensors F, C = FT F, and A are
functions of time only for t > 0. In particular, there is no longer a need to consider t < 0 in
the mathematical formulation.

We study this case in which homeostatic initial conditions at t = 0 are disrupted by a new
loading state for t > 0. Specifically, we shall restrict attention to an undeformed homeostatic
condition. Then (17) and (18) apply with both F0 = I and A0 = I. Consequently, (17) and
(18) simplify further to

R(t,N) = χc

{
1

η0
exp

(
−

∫ t

0
η
(
I4

(
C(s),N, I

))
ds

)

+
∫ t

0
exp

(
−

∫ t

τ

η
(
I4

(
C(s),N,A(τ )

))
ds

)
dτ

}
(19)

and

Sf (t) = γχc

∫

N

{ [I4(C(t),N, I) − 1]
η0

exp

(
−

∫ t

0
η
(
I4

(
C(s),N, I

))
ds

)

+
∫ t

0

[I4(C(t),N,A(τ )) − 1]
A(τ )N · A(τ )N
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× exp

(
−

∫ t

τ

η
(
I4

(
C(s),N,A(τ )

))
ds

)
dτ

}
N ⊗ N dN, (20)

where η0 = η(I4(I,N, I)) = η(1) is the initial homeostatic dissolution rate which, because
of (7), is now independent of fiber direction N. For the model constitutive law (11), this is
simply η0 = k1.

The evolution of the fiber structure and the stress–deformation relation under the new
loading (t > 0) is then strongly influenced by the way that A is constitutively specified.
Different specifications of the tensor A result in different expressions for the invariant I4

in (19) and (20):

– The first case A = I provides a model for a process where the fibers, at the time of their
creation, are in the same deformation state as the surrounding matrix. In this case the
invariant I4 is given by

I4

(
C(t),N, I

) = N · C(t)N. (21)

– The second case A(τ ) = F(τ ) provides a model for a process where the fibers are unde-
formed at the time of their creation τ . In this case the invariant I4 is given by

I4

(
C(t),N,C(τ )

) = N · C(t)N
N · C(τ )N

. (22)

We now examine the separate mechanical loading consequences associated with these two
separate cases.

3 Biaxial loading

We consider a Cartesian coordinate system represented by the unit vectors {E1,E2,E3}, and
an initially undeformed cube of material in configuration κ0 with edges parallel to these unit
vectors. As indicated above, the initial state is one in which the material is undeformed and
the fiber remodeling process is initially in homeostasis. This initial state is disrupted at t = 0
by a biaxial loading for t > 0 in which uniform normal tractions act on the surfaces normal
to the E2 and E3 directions; the surface normal to E1 remains traction free. As shown in
Fig. 2, the cube deforms into a rectangular parallelepiped along the coordinate directions.
The Cauchy stress tensor T and the deformation gradient tensor F are then of the form

T = T22E2 ⊗ E2 + T33E3 ⊗ E3, (23a)

F = 1

λ2λ3
E1 ⊗ E1 + λ2E2 ⊗ E2 + λ3E3 ⊗ E3. (23b)

The components T22, T33, λ2, and λ3 are functions of time t . For displacement-control the
pair λ2 and λ3 are specified and T22 and T33 are to be found. For load-control the total force
on each loaded face is specified. This corresponds to specified values of the ratios T22/λ2

and T33/λ3. It is to be noted in all cases that the loading condition T11 = 0 is easily satisfied
by the appropriate choice of p.

The tensor A is also necessarily of the general form

A = 1

a2a3
E1 ⊗ E1 + a2E2 ⊗ E2 + a3E3 ⊗ E3. (24)
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Fig. 2 Elongation of the
material in the E2 and E3
directions, contraction in the E1
direction. The surfaces normal to
the E1 direction are traction free,
while the surfaces perpendicular
to the E2 and E3 directions are
subject to the respective normal
stresses T22 and T33. At each
material point of the scale of this
figure, the fibers are distributed in
all directions as governed by R

in (19)

Both a2 and a3 are functions of time as determined by the constitutive rule for the determi-
nation of A. For the options under consideration here the case A = I yields a2 = a3 = 1 and
the case A(τ ) = F(τ ) yields a2(τ ) = λ2(τ ) and a3(τ ) = λ3(τ ).

With respect to the fixed unit vectors {E1,E2,E3}, one can always let the fiber orientation
vectors N be represented using angles φ and θ in the following standard way

N = cos θE1 + sin θ cosφE2 + sin θ sinφE3, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π. (25)

Then integrals such as (20) are evaluated by means of the replacement

∫

N
{. . . }dN −→

∫ 2π

0

∫ π

0
{. . . } sin θ dθ dφ. (26)

On combining the deformation gradient tensors (23b) and (24) with this representation for
N, the invariant I4 in (7) becomes

I4 = [λ2λ3]−2 cos2 θ + λ2
2 sin2 θ cos2 φ + λ2

3 sin2 θ sin2 φ

[a2a3]−2 cos2 θ + a2
2 sin2 θ cos2 φ + a2

3 sin2 θ sin2 φ
≡ Î4(λ2, λ3, a2, a3, θ,φ). (27)

Observe in particular that the last step in the above equation defines a new function that will
often replace I4(C,N,A) in subsequent expressions. We may further define

Ĩ4(t, τ, θ,φ) = Î4

(
λ2(t), λ3(t), a2(τ ), a3(τ ), θ,φ

)
(28)

and this will often serve to replace I4(C(t),N,A(τ )). In a corresponding fashion, we define

η̂(λ2, λ3, a2, a3, θ,φ) = η
(
Î4(λ2, λ3, a2, a3, θ,φ)

)
. (29)

3.1 Application of a constant deformation

Let a step deformation be applied that has a step change at t = 0 and which then remains
constant for t > 0. Then the values λ2, λ3, a2 and a3 in the deformation gradients (23b)
and (24) take on constant values which will be denoted by λ2+, λ3+, a2+, and a3+. The
parameters a2+ and a3+ become a2+ = a3+ = 1 for the A = I treatment, whereas a2+ = λ2+
and a3+ = λ3+ in the A(τ ) = F(τ ) treatment. This step deformation results in values for the
invariants I1 and I4 and the dissolution rate η that do not vary with time although I4 and η

do vary with direction.
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For t > 0, the fiber orientation density function (19) takes the form R = R(t, θ,φ,λ2+,

λ3+, a2+, a3+) where, suppressing some of the tedious argument structure,

R(t, θ,φ) = χc

η0
exp (−η+0t) + χc

η++

[
1 − exp (−η++t)

]
. (30)

Here η0 continues to be given by η0 = η(I4(I,N, I)) = η(1) and so is a directionally inde-
pendent quantity. The new notations η+0 and η++ are shorthand for

η+0 = η̂(λ2+, λ3+,1,1, θ,φ), η++ = η̂(λ2+, λ3+, a2+, a3+, θ,φ). (31)

These formulae apply to both the A = I treatment and the A(τ ) = F(τ ) treatment. Unlike
η0, both η+0 and η++ are dependent on spatial direction. Observe as t → ∞ that the above
expression (30) approaches χc/η++ which, as seen by comparison with (15), is confirmation
that a new condition of homeostasis is approached in the large time limit because of the fixed
displacement.

The Cauchy stress components T22 and T33 for t > 0 are found by first determining p

from (13) using T11 = 0 and then substituting from (20)–(25). Using A(τ )N · A(τ )N =
Î4(a2+, a3+,1,1, θ,φ), this gives

T22 = μ

[
λ2

2+ − 1

[λ2+λ3+]2

]
+ 2χcγ

∫ 2π

0

∫ π

0

{[
Î4(λ2+, λ3+,1,1, θ,φ) − 1

]

× exp(−η+0t)

η0
+

[
Î4(λ2+, λ3+, a2+, a3+, θ,φ) − 1

Î4(a2+, a3+,1,1, θ,φ)

]
1 − exp(−η++t)

η++

}

×
[
λ2

2+ sin2 θ cos2 φ − cos2 θ

[λ2+λ3+]2

]
sin θ dθ dφ, (32a)

T33 = μ

[
λ2

3+ − 1

[λ2+λ3+]2

]
+ 2χcγ

∫ 2π

0

∫ π

0

{
[
Î4(λ2+, λ3+,1,1, θ,φ) − 1

]

× exp(−η+0t)

η0
+

[
Î4(λ2+, λ3+, a2+, a3+, θ,φ) − 1

Î4(a2+, a3+,1,1, θ,φ)

]
1 − exp(−η++t)

η++

}

×
[
λ2

3+ sin2 θ sin2 φ − cos2 θ

[λ2+λ3+]2

]
sin θ dθ dφ. (32b)

Both the fiber orientation density (30) and the Cauchy stresses (32a), (32b) are seen to
depend on the choice of a2+ and a3+.

Initial response Consider the response immediately after application of the step deforma-
tion at t = 0. It follows from (30) that the fiber orientation density through the step remains
at R = χc/η0, which is independent of θ and φ and indicates a uniform distribution. The
absence of a jump in R is indicative of the finite time that it takes the microstructure to
evolve in the present model. In contrast, the Cauchy stresses do exhibit a jump at t = 0.
Specifically, the t = 0+ Cauchy stresses obtained from Eqs. (32a), (32b) are

T22 = μ

[
λ2

2+ − 1

[λ2+λ3+]2

]
+ 8

15

1

η0

πγχc

λ2
2+λ2

3+

{
5λ2

2+λ2
3+

[
1 − λ4

2+λ2
3+

]

× 3
[
λ8

2+λ4
3+ − 1

] + λ2
2+λ4

3+
[
λ4

2+λ2
3+ − 1

]}
, (33a)
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T33 = μ

[
λ2

3+ − 1

[λ2+λ3+]2

]
+ 8

15

1

η0

πγχc

λ2
2+λ2

3+

{
5λ2

2+λ2
3+

[
1 − λ2

2+λ4
3+

]

× 3
[
λ4

2+λ8
3+ − 1

] + λ4
2+λ2

3+
[
λ2

2+λ4
3+ − 1

]}
. (33b)

These values do not depend upon a2+ and a3+. This is because the fibrous component has
not yet had time to undergo its A-dependent remodeling process.

Asymptotic large time response In the limit as t → ∞, the fiber orientation density (30)
approaches the limiting value

R = χc

η++
(t → ∞). (34)

The orientation distribution is no longer directionally uniform by virtue of the dependence
of η++ upon θ and φ as given in (31). The asymptotic Cauchy stresses are obtained from
Eqs. (32a), (32b) as follows:

T22 = μ

[
λ2

2+ − 1

[λ2+λ3+]2

]
+ 2χcγ

∫ 2π

0

∫ π

0

[Î4(λ2+, λ3+, a2+, a3+, θ,φ) − 1]
Î4(a2+, a3+,1,1, θ,φ)

× 1

η++

[
λ2

2+ sin2 θ cos2 φ − cos2 θ

[λ2+λ3+]2

]
sin θ dθ dφ, (35a)

T33 = μ

[
λ2

3+ − 1

[λ2+λ3+]2

]
+ 2χcγ

∫ 2π

0

∫ π

0

[Î4(λ2+, λ3+, a2+, a3+, θ,φ) − 1]
Î4(a2+, a3+,1,1, θ,φ)

× 1

η++

[
λ2

3+ sin2 θ sin2 φ − cos2 θ

[λ2+λ3+]2

]
sin θ dθ dφ. (35b)

Equations (34) and (35a), (35b) are specific cases of (13), (19), and (20) for biaxial deforma-
tion. They show that as t → ∞ the limiting values for the fiber orientation density and the
Cauchy stresses depend on the choice of a2+ and a3+ because of its effect on both the invari-
ant Î4(λ2+, λ3+, a2+, a3+, θ,φ) and the dissolution rate η++ = η̂(λ2+, λ3+, a2+, a3+, θ,φ).
In the case of a2+ = λ2+ and a3+ = λ3+, (27) shows that Î4(λ2+, λ3+, λ2+, λ3+, θ,φ) = 1,
and consequently η++ = k1. The limiting Cauchy stresses (35a), (35b) are in this case solely
reduced to the matrix contribution.

Intermediate time response The fiber orientation density function (30) evolves from the
uniform distribution R = χc/η0 to the non-uniform distribution R = χc/η++ in a manner
that depends on the model stipulation of a2+ and a3+.

– In the case of a2+ = a3+ = 1, the dissolution rates η̂(λ2+, λ3+,1,1, θ,φ) and η̂(λ2+, λ3+,

a2+, a3+, θ,φ) are equal, and the fiber orientation density function approaches its limit as
t → ∞ monotonically at a rate that depends on θ and φ.

– In the case of a2+ = λ2+ and a3+ = λ3+, (27) shows that I4(λ2+, λ3+, a2+, a3+, θ,φ) = 1
and thus η++ = k1. The distribution deviates from uniformity, reaches a maximum that
depends on θ and φ and then returns to uniformity. This occurs because the fiber orienta-
tion density immediately increases after deformation due to the just-imposed stretch. The
stretched fibers, which were created before the application of the deformation, dissolve
and new undeformed fibers are created that remain undeformed. Hence the fiber orien-
tation density approaches a local maximum and then decreases until it reapproaches the
initial fiber density.
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Fig. 3 (Color figure online)
Normalized fiber orientation
density R∗ = R/χc for
λ2+ = 1.5, λ3+ = 2λ2+ , and
different normalized times
t∗ = k1t : (a) A = I;
(b) A(τ ) = F(τ )

Both stress components T22 and T33 in (32a), (32b) evolve with time in a complex fashion
because the exponentials in the integrand vary in a manner that depends on θ and φ.

3.1.1 Influence of unequal biaxial stretch ratios on the fiber orientation density

Consider the deformation (23b) with (24) for λ2+ = 1.5 and various values of λ3+. The
value λ2+ = 1.5 is chosen so as to be well beyond a small strain regime while still being
representative for a deformation in a biological tissue. Figure 3 shows the development of
the fiber orientation density in the (E2,E3)-plane represented by the angles {θ = π

2 ,0 ≤ φ ≤
2π}. The E2-direction corresponds to {θ = π

2 , φ = 0,π}, and the E3-direction corresponds
to {θ = π

2 , φ = π
2 , 3π

2 }. Results are shown for λ3+ = 2λ2+, corresponding to greater stretch
along E3. The results depend on the stipulation of A as follows:

– The development of the fiber orientation density R with time t for the A = I case is illus-
trated in the top panel of Fig. 3. The material is stretched in this plane and, as determined
from (30), the fiber density increases monotonically as t increases, so that

R|t=0 < R|t=1/k1 < R|t=10/k1 < lim
t→∞R. (36)
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Fig. 4 Evolution of the normalized fiber orientation density R∗(θ = φ = π/2) = R/χc with normalized time
t∗ = k1t for λ2+ = 1.5 and different values for λ3+ . The upper curve in a line style correspond to A = I, and
the lower curves to A(τ ) = F(τ ). The direction θ = φ = π/2 corresponds to the direction of E3. Both panels
present the same problem but for different ranges of R∗ and t∗

– The development of R with t for A(τ ) = F(τ ) is illustrated in the bottom panel of Fig. 3.
The diagram illustrates that

R|t=0 < lim
t→∞R < R|t=10/k1 < R|t=1/k1 , (37)

so that a local maximum has occurred for each θ and φ.

Figure 4 presents the evolution of the fiber orientation density in the direction {θ = φ =
π
2 } (E3-direction) for λ2+ = 1.5 and different values for λ3+. The fiber orientation density
becomes larger as λ3+ increases.

3.1.2 Influence of unequal biaxial stretch ratios on the stress distribution

An important feature of the constitutive theory is that the continuous time evolution of the
fiber orientation density gives rise to a time evolution in the state of stress when the defor-
mation is fixed. To show this, we continue with our example of a deformation given by (23b)
with λ2+ = 1.5. Figure 5 contrasts the evolution of the normalized Cauchy stresses,

T ∗
22 = T22k1

γχc

, T ∗
33 = T33k1

γχc

, (38)

for λ3+ = 1.0 (no stretch in the E2-direction) and λ3+ = 2.0 (larger stretch in the E3-
direction) and for both cases A = I and A(τ ) = F(τ ).

To discuss and interpret the results in Fig. 5, it is necessary to also consider the fiber
density presented in Fig. 4. The Cauchy stresses at t = 0 are independent of the choice for
A, as was shown in (32a), (32b). However, stresses for t > 0 depend on the choice of A:

– In the case of A = I, the fiber orientation density increases and the material becomes
stiffer so that a higher stress is needed to keep the material in the fixed deformation state.

– In the case of A(τ ) = F(τ ), the fibers created at τ ≥ 0 are undeformed. Because the
deformation of the material remains constant, less Cauchy stress is required to maintain
material in the deformed state, so that the Cauchy stress decreases as t → ∞.
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Fig. 5 Normalized Cauchy stresses as a function of normalized time t∗ = k1t for λ2+ = 1.5 so as to contrast
A = I and A(τ ) = F(τ ). For simplicity we have here taken μ = 0 (the matrix component is regarded as having
negligible stiffness). The left panels illustrate T ∗

22 (see (38)), the right panels illustrate T ∗
33. The upper panels

illustrate the stresses for λ3+ = 1, the bottom panels illustrate the stresses for λ3+ = 2

Fig. 6 Evolution of the normalized Cauchy stresses (38) as a function of normalized time t∗ = k1t for
λ2+ = 1.5 and λ3+ = 2.0 taking μ = 0. Panel (a) illustrates T ∗

22, panel (b) illustrates T ∗
33. The rising curves

correspond to A = I, and the falling curves correspond to A(τ ) = F(τ )

3.1.3 Influence of the dissolution exponent on the stresses

The parameter k2 in (11) determines the sensitivity of dissolution to fiber stretch and thus has
an effect on the stresses. Figure 6 shows how different values of k2 influence the develop-
ment of the stresses. Results are presented for λ2+ = 1.5 and λ3+ = 2.0. The matrix influence
is neglected so that μ = 0. The left panels illustrate T ∗

22 (see (38)), the right panels illustrate
T ∗

33. The rising curves correspond to A = I, and the decreasing curves to A(τ ) = F(τ ).
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– In the case of A(τ ) = F(τ ), the curves decrease faster with smaller values of k2. In all
cases the stress decreases to its matrix determined value as t → ∞.

– In the case of A = I, the curves increase faster with larger values of k2. As t → ∞, the
stresses approach a finite limit value which also becomes larger with higher choices for k2.

3.2 Application of constant forces

The situation considered in Sect. 3.1 involves displacement-control. We now turn to consider
a situation of load-control. The material is again taken to be undeformed and in homeostasis
for t < 0. Its reference configuration is a cube with sides of length �. Biaxial forces P2 and
P3 are suddenly applied to the surfaces of the cube at t = 0 and then held fixed for t > 0.
The deformation process continues to be described by the Cauchy stress tensor (23a) and the
deformation gradient tensors (23b) and (24). P2 is a constant tensile force on the surfaces of
the cube normal to the E2 direction, and P3 is a constant tensile force on the surfaces of the
cube normal to the E3 direction. The cube deforms into a rectangular cuboid. At time t , the
edges parallel to the Ei direction have lengths �i = �i(t), i = 1,2,3, where �i = �λi , and
λ1 = [λ2λ3]−1. The forces P2 and P3 and the components T22(t) and T33(t) of the Cauchy
stress tensor (23a) are related via

T22(t) =
{

0, for t < 0,

P2λ2(t)/�
2, for t ≥ 0,

(39a)

T33(t) =
{

0, for t < 0,

P3λ3(t)/�
2, for t ≥ 0.

(39b)

The relation between the forces P2 and P3 and the resulting deformation at t ≥ 0 is obtained
from Eqs. (23a)–(29), (39a), (39b), and reads

P2

�2
= μ

[
λ2(t) − 1

λ3
2(t)λ

2
3(t)

]
+ 2χcγ

∫ 2π

0

∫ π

0

{
[
Î4

(
λ2(t), λ3(t),1,1, θ,φ

) − 1
]

× 1

η0
exp

(
−

∫ t

0
η̂
(
λ2(s), λ3(s),1,1, θ,φ

)
ds

)

+
∫ t

0

Î4(λ2(t), λ3(t), a2(τ ), a3(τ ), θ,φ) − 1

Î4(a2(τ ), a3(τ ),1,1, θ,φ)

× exp

(
−

∫ t

τ

η̂
(
λ2(s), λ3(s), a2(τ ), a3(τ ), θ,φ

)
ds

)
dτ

}

×
[
λ2(t) sin2 θ cos2 φ − cos2 θ

λ3
2(t)λ

2
3(t)

]
sin θ dθ dφ, (40a)

P3

�2
= μ

[
λ3(t) − 1

λ2
2(t)λ

3
3(t)

]
+ 2χcγ

∫ 2π

0

∫ π

0

{
[
Î4

(
λ2(t), λ3(t),1,1, θ,φ

) − 1
]

× 1

η0
exp

(
−

∫ t

0
η̂
(
λ2(s), λ3(s),1,1, θ,φ

)
ds

)

+
∫ t

0

Î4(λ2(t), λ3(t), a2(τ ), a3(τ ), θ,φ) − 1

Î4(a2(τ ), a3(τ ),1,1, θ,φ)
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× exp

(
−

∫ t

τ

η̂
(
λ2(s), λ3(s), a2(τ ), a3(τ ), θ,φ

)
ds

)
dτ

}

×
[
λ3(t) sin2 θ sin2 φ − cos2 θ

λ2
2(t)λ

3
3(t)

]
sin θ dθ dφ. (40b)

Initial response The relation between the input forces P2 and P3 and the stretch ratios
λ20 = λ2(0+) and λ30 = λ3(0+) at t = 0+ can be determined exactly. In this case Eqs. (40a),
(40b) yield

P2

�2
= μ

[
λ20 − 1

λ3
20

λ2
30

]
+ 8

15

1

η0

πγχc

λ5
20

λ4
30

{
5λ2

20
λ2

30

[
1 − λ4

20
λ2

30

]

+ 3
[
λ8

20
λ4

30
− 1

] + λ2
20

λ4
30

[
λ4

20
λ2

30
− 1

]}
, (41a)

P3

�2
= μ

[
λ30 − 1

λ2
20

λ3
30

]
+ 8

15

1

η0

πγχc

λ5
20

λ4
30

{
5λ2

20
λ2

30

[
1 − λ2

20
λ4

30

]

+ 3
[
λ4

20
λ8

30
− 1

] + λ4
20

λ2
30

[
λ2

20
λ4

30
− 1

]}
. (41b)

This relation between the input forces and the resulting deformation (41a), (41b) is indepen-
dent of the choice of A.

Asymptotic large time response As t → ∞ the exponentials in the various governing
integrals impart a fading memory effect on the fiber creation process. Eventually all of the
newly created fibers at time τ are formed in a state for which the material has substantially
approached its limiting deformation. Consequently, the parameters λ2(t), λ3(t), a2(τ ), and
a3(τ ) take the forms

lim
t→∞λ2(t) = λ2∞ , lim

τ→∞a2(τ ) = a2∞ , (42a)

lim
t→∞λ3(t) = λ3∞ , lim

τ→∞a3(τ ) = a3∞ . (42b)

Here a2∞ = a3∞ = 1 if A = I, and a2∞ = λ2∞ , a3∞ = λ3∞ if A(τ ) = F(τ ). Then (16) to-
gether with (40a), (40b) and (42a), (42b) gives the following relations for t → ∞:

P2

�2
= μ

[
λ2∞ − 1

λ3
2∞λ2

3∞

]
+ 2γχc

∫ 2π

0

∫ π

0

[Î4(λ2∞ , λ3∞ , a2∞ , a3∞) − 1]
Î4(a2∞ , a3∞ ,1,1)

× 1

η̂(λ2∞ , λ3∞ , a2∞ , a3∞)

[
λ2∞ sin2 θ cos2 φ − cos2 θ

λ3
2∞λ2

3∞

]
sin θ dθ dφ, (43a)

P3

�2
= μ

[
λ3∞ − 1

λ2
2∞λ3

3∞

]
+ 2γχc

∫ 2π

0

∫ π

0

[Î4(λ2∞ , λ3∞ , a2∞ , a3∞) − 1]
Î4(a2∞ , a3∞ ,1,1)

× 1

η̂(λ2∞ , λ3∞ , a2∞ , a3∞)

[
λ3∞ sin2 θ sin2 φ − cos2 θ

λ2
2∞λ3

3∞

]
sin θ dθ dφ. (43b)

Intermediate time response While (41a), (41b) gives the initial force–deformation rela-
tion exactly at t = 0+, the deformation process for t > 0+ requires a numerical treatment
using time steps �ti = ti+1 − ti , i = 1,2, . . . . The integrals with respect to times t and τ
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Fig. 7 The initial values λ20 and λ30 for P ∗ = 100, different force ratios P3/P2, and k2 = 1 on the range
0 ≤ μ∗ < 200. These values do not depend on A

between t0 and t1 in (40a), (40b) are approximated by the trapezoidal rule (see Appendix A)
and the displacements λ2(ti+1) and λ3(ti+1) are obtained by the Newton–Raphson method.
Because the large time limit is known in advance from (43a), (43b), it is possible to directly
gauge the severity of any error accumulation.

3.2.1 Influence of different force ratios on the deformation

We now consider the evolution of the stretch ratios λ2(t) and λ3(t) in response to the step
forces P2 and P3 which are held fixed for t ≥ 0. The initial stretch ratios at the moment
of force application can be determined from (41a), (41b). It is convenient to introduce the
normalization

P ∗ = P2k1

γχc�2
. (44)

The initial values for the deformation λ20 and λ30 for P ∗ = 100, different force ratios P3/P2,
and k2 = 1 are illustrated in Fig. 7 on the range 0 ≤ μ∗ < 200, where

μ∗ = μk1

γχc

(45)

is the normalized shear modulus of the matrix. The initial values λ20 and λ30 do not depend
upon the choice of A.

The development of λ2 and λ3 with time t are computed numerically as described above.
Figure 8 shows the development of λ2(t) and λ3(t) with normalized time t∗ = k1t due to
the applied normalized force P ∗ = 100, different force ratios P2/P3, and k2 = 1 for both the
A = I treatment and the A(τ ) = F(τ ) treatment. The stiffness effect of the matrix component
is again neglected for the purpose of this figure, i.e., μ = 0. Although the force P2 in the E2

direction is the same in all panels, the elongation in this direction is influenced by the force
P3 in E3 direction. Specifically, an increasing force ratio P3/P2 leads to larger values of λ3

and to smaller values for λ2 in both cases A = I and A(τ ) = F(τ ).
The limiting values for λ2 and λ3 as t → ∞ are determined from Eqs. (43a), (43b):

– In the case of A(τ ) = F(τ ), the material undergoes a continuous process of fiber dis-
solution and creation of new undeformed fibers. This leads to increasing stretch under
constant force, as shown in Fig. 8. If the matrix component is neglected so that μ = 0,
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Fig. 8 Evolution of the displacements λ2(t) and λ3(t) as a function of normalized time t∗ = k1t for
P ∗ = 100, different force ratios P3/P2, and k2 = 1. The matrix component is regarded as negligible so
that μ = 0. The falling curves represent the A = I treatment, and the rising curves represent the A(τ ) = F(τ )

treatment

then λ2 → ∞ and λ3 → ∞ as t → ∞. If the matrix component is taken into consider-
ation so that μ > 0, then the limiting stress–deformation relation is solely governed by
the properties of the matrix. The limiting values λ2∞ and λ3∞ for P ∗ = 100, different
force ratios P3/P2, and k2 = 1 are illustrated in the upper panels of Fig. 9 on the range
0 ≤ μ∗ < 200.

– The choice of A = I results in a stiffening of the material in the load direction. This
stiffening leads to material contraction under constant force, as shown in Fig. 8. If matrix
component is taken into consideration, so that μ > 0, then the limiting stress–deformation
relation is governed by the properties of both the matrix and the fibers. The limiting values
λ2∞ and λ3∞ for P ∗ = 100 and different force ratios P3/P2 are illustrated in the bottom
panels of Fig. 9 for the range 0 ≤ μ∗ < 200.

3.2.2 Influence of the dissolution exponent on the deformations

Consider the step load with P ∗ = 100 and P3/P2 = 10. This example is also presented in
panel (d) of Fig. 8 for k2 = 1. Figure 10 shows how changing k2 influences the evolution of
the stretch ratios. Increasing k2 leads to a slower dissolution rate. In the case of A(τ ) = F(τ ),
the elongations becomes slower as k2 increases. In the case of A = I, the shortening becomes
faster, and the limiting values for λ2 and λ3 become smaller as t → ∞. Panel (a) clearly
shows an interaction between the biaxial loading: for A = I the function λ2(t) has a local
minimum, which does not occur in the uniaxial loading case (see Topol et al. 2015).
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Fig. 9 The limiting values λ2∞ and λ3∞ for P ∗ = 100, different force ratios P3/P2, and k2 = 1 on the
range 0 ≤ μ∗ < 200. The upper panels treat A(τ ) = F(τ ), the bottom panels treat A = I

Fig. 10 Evolution of the displacements λ2(t) and λ3(t) as a function of normalized time t∗ = k1t due to
the applied normalized force P ∗ = 100 and the force ratio P3/P2 = 10. The matrix stiffness is regarded as
negligible so that μ = 0. The upper curve in a certain line style represents A(τ ) = F(τ ), the lower curve
A = I. Panel (a) is for λ2(t), and panel (b) for λ3(t)

4 Inflation of a spherical membrane

We now turn to consider a spherical membrane that is composed of the same fiber reinforced
material discussed in the previous sections. For t < 0 the membrane is unpressurized with
respect to the ambient external pressure. It is presumed to have been kept in this unpressur-
ized state sufficiently long so that the fiber remodeling process is in homeostasis at t = 0−.
At t = 0+, the membrane is subjected to a uniform time-dependent pressure P (t) over its
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Fig. 11 Inflation of a spherical
membrane due to an inner
pressure P

inner surface,

Pi =
{

0, for t < 0,

P (t), for t > 0.
(46)

This results in its time-dependent inflation, which is assumed to be spherically symmetric.
The reference configuration κ0 and later configurations κ(t) are described with respect

to the spherical coordinate system defined by the unit vectors {Er ,Eθ ,Eφ}. In its reference
configuration κ0, the mid-surface radius is R and the membrane thickness is H . The usual
membrane assumption H/R � 1 implies that the values of the stretch and stress at any
point through the thickness of the membrane equals their values on the mid-surface to within
O(H/R) (Wineman 2009).

Each material particle moves radially during inflation and undergoes an equal biaxial
stretch history in the directions {Eθ ,Eφ} tangent to the membrane mid-surface. Let r(t)

be the mid-surface radius, and h(t) be the membrane thickness for t > 0 (see Fig. 11). Its
deformation gradient tensor F = F(t) has the form

F = λrEr ⊗ Er + λθ Eθ ⊗ Eθ + λφEφ ⊗ Eφ, (47)

where

λr = λr(t) = h(t)

H
, λθ = λθ (t) = r(t)

R
, and λφ = λφ(t) = r(t)

R
≡ λ(t) (48)

are the principal stretches in radial, circumferential, and azimuthal directions, respectively.
Observe that we have let λ(t) = λ = λθ = λφ ; the incompressibility condition λrλθλφ = 1
now results in

λr = 1/λ2. (49)

The development in Sect. 3 applies locally with respect to the directions {Er ,Eθ ,Eφ}. These
directions also give a principal frame for both stress and stretch in the problem under con-
sideration here. Hence

T = T [Eθ ⊗ Eθ + Eφ ⊗ Eφ], (50a)

F = 1

λ2
Er ⊗ Er + λ[Eθ ⊗ Eθ + Eφ ⊗ Eφ], (50b)

A = 1

a2
Er ⊗ Er + a[Eθ ⊗ Eθ + Eφ ⊗ Eφ], (50c)

where a = 1 in the case of A = I, and a(τ) = λ(τ) in the case of A(τ ) = F(τ ).
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Echoing our previous considerations, each location within the spherical membrane con-
tains a distribution of fibers with respect to all directions. Representations (16) and (17)
for R and T continue to hold upon taking the local representation of N in the form

N = cos θEr + sin θ cosφEθ + sin θ sinφEφ. (51)

The invariant I4 = I4(C,N,A) defined in (7) and the dissolution rate η = η(I4) defined
in (11) now give

Î4

(
λ(t), a(τ ), θ

) = λ−4(t) cos2 θ + λ2(t) sin2 θ

a−4(τ ) cos2 θ + a2(τ ) sin2 θ
(52)

and

η̂
(
λ(t), a(τ ), θ

) = k1

[
Î4

(
λ(t), a(τ ), θ

)]−k2
, (53)

making use of the notation introduced in (27) and (29).
Assuming the motion to be quasistatic, force balance implies (Wineman 2009) that the

Cauchy stress T and inflating pressure P (t) are related via

T (t) = 1

2

r(t)

h(t)
P (t), (54)

which with (48), (49), causes Eq. (54) to become

T (t) = λ3(t)

2

R

H
P(t). (55)

The relation between the inflating pressure P (t) and the stretch λ(t) for t ≥ 0 is obtained
from (13) and (18) with the help of (50a)–(52), and (55) as

P (t)

2

R

H
= μ

[
1

λ(t)
− 1

λ7(t)

]
+ 2πχcγ

∫ π

0

{[
Î4

(
λ(t),1, θ

) − 1
] 1

η0

× exp

(
−

∫ t

0
η̂
(
λ(s),1, θ

)
ds

)
+

∫ t

0

η̂(λ(t), a(τ ), θ) − 1

Î4(a(τ ),1, θ)

× exp

(
−

∫ t

0
η̂
(
λ(s), a(τ ), θ

)
ds

)
dτ

}[
sin3 θ

λ(t)
− 2 sin θ cos2 θ

λ7(t)

]
dθ, (56)

where η0 = η(I4(I,N, I)) = k1. Note that in (56) the integrations with respect to φ are al-
ready carried out, so that the presented equation is independent of φ.

4.1 Inflation due to a constant pressure

Consider a constant and suddenly applied inflation pressure P (t) = P > 0. The following
examples investigate the inflation process represented by λ(t), and show how the constitutive
stipulation of the tensor A and the parameter k2 influence both the deformation path and the
limiting relations as t → ∞. Note that λ(t) = r(t)/R can be interpreted as a normalized
radius in the deformed configuration at time t .
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Fig. 12 Relation between the
initial displacements λ0 and the
applied normalized inner
pressure P̄ (see Eq. (58)) for
different values of μ∗ (see
Eq. (45)). This relation is
independent of A and k2

Initial response The relation between P and the initial response inflation λ0 = λ(0+)

at t = 0+ can be determined from (56) by setting t = 0 and λ(t) = λ0. Evaluation of the
resulting integrals then gives

PR

2H
= μ

[
1

λ0
− 1

λ7
0

]
+ 8π

15

χcγ

k1

[
4λ0 − 5

λ0
− 1

λ5
0

+ 5

λ7
0

− 3

λ11
0

]
, (57)

which is independent from A as in the initial response in the previously discussed biaxial
cases. Applying the normalization

P̄ = PR

2H

k1

χcγ
, (58)

Figure 12 illustrates the relation between the initial displacements λ0 and the applied nor-
malized inner pressure P̄ for different values of μ∗, which continues to be given by (45).
With larger values for μ∗, the matrix properties dominate in the overall material response,
and the relation between P̄ and λ0 shows a local maximum. Depending on the values of
P̄ and μ∗ there may be one, two, or three associated values of λ0. For example, when
μ∗ = 200, the value P̄ = 100 yields three possible initial displacement values for λ0; these
are λ0 = 1.149, 2.235, and 12.663. The non-monotone dependence of inflation pressure on
the deformed radius is a well-known feature of neo-Hookean material response (Müller and
Strehlow 2004) and thus is retained here provided μ∗ is sufficiently large. Conversely, the
formation of a local extremum is not observed when only the fiber component is considered.

Asymptotic large time response When t → ∞ the material approaches a limiting defor-
mation so that

lim
t→∞λ(t) = λ∞, lim

τ→∞a(τ) = a∞ (59)

with a∞ = 1 if A = I and a∞ = λ∞ if A(τ ) = F(τ ). The limiting relation between λ∞, a∞,
and P follows from (56) by taking t → ∞ using (59). This gives

PR

2H
= μ

[
1

λ∞
− 1

λ7∞

]
+ 2πγχc

∫ π

0

Î4(λ∞, a∞, θ) − 1

Î4(a∞,1, θ)η̂(λ∞, a∞, θ)

×
[

sin3 θ

λ∞
− 2 sin θ cos2 θ

λ7∞

]
dθ, (60)

which depends upon the stipulation for A.
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Fig. 13 Relation between the large time displacements λ∞ and the applied pressure P̄ (see Eq. (58)) using
A = I for different values of μ∗ (see Eq. (45)) and different values of k2

– In the case of A = I, the relation between P̄ and λ∞ depends both on the choice of μ∗ and
on the choice of k2. Some results are presented in Fig. 13. If k2 = 0.0, then (60) coincides
with (57). This is why panel (a) in Fig. 13 coincides with Fig. 12. Depending on the values
of k2, μ∗, and P̄ , there may be one, two, or three values of λ∞. For example, if P̄ = 180
and μ∗ = 300, then there are three such values when k2 = 0.5 (λ∞ = 1.25, 1.7, and 4.4).
However, for the same P̄ and μ∗ there is only such value if k2 = 1.5 (λ∞ = 1.24). For
sufficiently large λ∞, the P̄ vs. λ∞ curves all increase monotonically and without bound
as λ∞ increases. Thus, for all values of P̄ , there is at least one finite positive value of λ∞
for which the fiber remodeling is in homeostasis. While the choice of μ∗ has a stronger
influence for smaller values of λ∞, the choice of k2 has a stronger influence in the relation
between P̄ and λ∞ as these values become larger.

– In the case of A(τ ) = F(τ ), the invariant Î4 takes the form Î4(λ∞, a∞, θ) =
Î4(λ∞, λ∞, θ) = 1, and the second term in (60) becomes zero. Consequently, the fibers
do not contribute to the limiting relation between P̄ and λ∞, i.e., this limiting relation is
solely governed by the properties of the neo-Hookean model. The relation between P̄ and
λ∞ for different values of μ∗ is presented in Fig. 14. For each value of μ∗ �= 0 when P̄

is sufficiently small a deformation state λ∞ with fiber remodeling in homeostasis can be
found. If P̄ exceeds the local maximum of the P̄ vs. λ∞ curve, then a deformation limit
λ∞ with fiber remodeling in homeostasis does not exist.

Intermediate time response The intermediate values for λ are computed numerically
from (56) in a similar fashion as that described in Sect. 3.2. As a simple example consider
μ∗ = 100 and k2 = 0.1. Figure 15 shows the initial time curve of P̄ vs. λ0 for the imme-
diate inflation response after the application of the positive internal pressure. As already
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Fig. 14 Relation between the
limiting displacements λ∞ and
the applied normalized inner
pressure P̄ (see Eq. (58)) for
different values of μ∗ (see
Eq. (45)) using A(τ ) = F(τ ). In
this case the fibers have no effect
upon this relation. Consequently,
the large-time behavior is that of
the base neo-Hookean matrix
material

Fig. 15 Initial time curve of P̄

vs. λ0 at time t = 0+ and large
time curves P̄ vs. λ∞ curves for
both the stipulation A = I and the
stipulation A(τ ) = F(τ ). All
curves are for μ∗ = 100, and
k2 = 0.1. The horizontal lines
define the interval
49.5 < P̄ < 65.7 for which three
values for λ0 are possible

emphasized, this initial inflation response curve is common for all the different possibilities
of specifying A and k2. Figure 15 also shows the large time P̄ vs. λ∞ curves for both the
stipulation A = I and the stipulation A(τ ) = F(τ ). The former is above the initial inflation
response curve, the latter is below the initial inflation response curve. The initial inflation
response curve has a local maximum at (λ0, P̄ ) = (1.43,65.7) and a local minimum at
(λ0, P̄ ) = (3.69,49.5). Thus if 49.5 < P̄ < 65.7, then there are three possible values for λ0.
On the other hand, if either P̄ < 49.5 or P̄ > 65.7, then there is only one possible value
for λ0.

For simplicity of explanation, take P̄ = 48 so that there is one possible value for λ0,
namely λ0 = 1.13268. For the A = I stipulation there is only one value for λ∞ associated
with this P̄ , namely λ∞ = 1.13262 < 1.13268. For the A(τ ) = F(τ ) stipulation there are
two values for λ∞ associated with this P̄ , namely λ∞ = 1.1415 > λ0 and λ∞ = 2.055 > λ0.
The first of these two values is on the ascending branch of the P̄ vs. λ∞ curve for the
A(τ ) = F(τ ) treatment, and the second value is on the descending branch of this curve.
On the basis of a standard stability argument, one anticipates that the first is indeed a large
time attractor but the second value is not (Müller and Strehlow 2004). Figure 16 provides
a magnified view of Fig. 15 focusing on the first ascending branch of the P̄ vs. λ curves.
This figure shows the development of the inflation λ for a constant pressure P̄ = 48. The
orientations of the arrows illustrates the direction of this development with time. The left
panel treats A = I, and the right panels treats A(τ ) = F(τ ).

An interesting aspect of this development concerns the effect of the non-monotone na-
ture of the P̄ versus λ curves. The consequences of such non-monotone curves, with two
ascending branches and one descending branch, have been studied extensively in the clas-
sical theory of hyperelasticity. Sudden transitions at fixed P̄ between these branches are
associated with an abrupt increase or decrease in the inflation of the sphere. The example
given for illustration here in Fig. 16 is specifically chosen in both the A = I and A(τ ) = F(τ )



26 Mech Time-Depend Mater (2017) 21:1–29

Fig. 16 Development of the inflation λ for a constant pressure P̄ = 48, μ∗ = 100, and k2 = 0.1. Panel (a)
treats A = I, the panel (b) treats A(τ ) = F(τ ). Panel (b) specifically identifies the inflation at λi = λ|t∗=i for
i = 1 and 2 where again t∗ = k1t

cases so as to avoid any such branch transitions. However, it is a relatively simple matter to
obtain examples in which such branch transitions occur, either because a particular branch
can no longer sustain the given value of P̄ or for more involved reasons associated with
branch stability. For example, there may be a particular value of time at which the most sta-
ble branch for the given value of P̄ switches from the current branch to the other ascending
branch. The specific value of such a time could then be determined by a systematic analysis
that combines the stability criterion under consideration with the type of analysis developed
in this paper. Such considerations, while very interesting, are not in the scope of the present
work.

5 Summary and discussion

This article has investigated the time-dependent mechanical response of a nonlinear elastic
fiber reinforced composite material that is a result of a time-dependent fiber remodeling
process. This is a chemomechanical process in which the chemical kinetics of remodeling
are regulated by fiber stretch. The constitutive framework connecting stress, deformation
and fiber remodeling was presented by Demirkoparan et al. (2013) and recapped here in
Sect. 2.

An important aspect of this theory is the role played by the notion of a reference con-
figuration. The natural configuration of the matrix κ0 acts as the reference configuration
for the initial state of the matrix/fiber system. The theory allows for the possibility that a
newly created fiber may have a different natural configuration κf (τ ). This configuration is
defined relative to configuration κ0 by tensor A. In this work, two choices for the fiber natu-
ral configuration are considered. Specification of the fiber natural configuration will depend
on an understanding of the actual physiological process of fiber reforming. The mechanical
response results presented here may be useful in guiding the choice.

As in any constitutive theory, there are a collection of constants and functions that must
be specified in order to completely characterize the model. In the present modeling, there
are five such specifications: the stored energy density of the matrix constituent Wm(I1, I2)

in which I1 and I2 are measured from the fixed reference configuration, the stored energy of
a single protofiber entity ψ(I4) where I4 is measured from the natural configuration of the
fiber (which is in general different from the fixed reference configuration), the constant rate
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of fiber creation χc , the stretch dependent rate of fiber dissolution η(I4), and, finally, the rule
that determines the natural state for a newly deposited fiber.

New results are obtained that illustrate the influence of the biaxial deformation. The time-
dependent response does not arise from the mechanical properties of the matrix or the fibers,
i.e., the viscoelasticity of the individual constituents, as these constituents are assumed to be
elastic. The time-dependent response arises from two distinct modeling features. The first is
a first order chemical kinetics process in which there is continuous dissolution and creation
of the reinforcing fibers. The second is an assumption about the state in which the fibers are
created. Two different ways for stipulating such states are examined in detail: A = I which
corresponds to a process where fibers are in the same deformed state as the surrounding
matrix when created, and A(τ ) = F(τ ) which corresponds to a process where fibers are
undeformed when created. As the chemical kinetics process is affected by the stretch of
the fiber relative to the state in which it is created, the different modeling choices for the
as-deposited fiber states generate different mechanical outcomes. Another significant factor
that influences the stress and deformation response is the fiber dissolution rate. As one would
expect, lower dissolution rates confer a higher stiffness.

An important feature of the constitutive framework occurs when the material is main-
tained at a fixed deformation for a long period of time. The material then approaches a state
of homeostasis, in which the stress and stretch do not vary with time although the under-
lying processes of fiber dissolution and creation are ongoing but are in balance. This result
is analogous to the long time limiting state observed in viscoelasticity when the relaxation
process has reached completion.

This constitutive framework is formulated so as to be able to model diverse possibili-
ties for both the fiber creation mechanics and the fiber resorption mechanics. Within this
general framework the specific constitutive choices (5), (8), (11), and both A(τ ) = I and
A(τ ) = F(τ ) are motivated by the current state of understanding on the basis of soft tissue
experimental findings. As a deeper understanding is developed, the constitutive framework
is sufficiently general so as to be able to accommodate a variety of modeling refinements.
Some of these are: (i) alternative chemical processes and their modification by multiaxial
deformation; (ii) alternative choices for stipulating the fiber natural configuration; (iii) di-
rect fiber/matrix interactions; and (iv) influence of fiber dissolution and reassembly on the
viscoelastic characteristics of either the fiber or matrix constituent.
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Appendix A: Numerical treatment of the integrals in (40a), (40b)

Consider the integration of the continuous function f (s) with respect to s over the interval
[t0, tm]. Dividing this interval into sufficiently small subintervals and applying the trape-
zoidal rule gives

∫ tm

t0

f (s)ds =
m−1∑

i=0

∫ ti+1

ti

f (s)ds ≈ �ti

2

[
f (ti+1) + f (ti)

]
(61)
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where �ti = ti+1 − ti . If the integral with respect to s occurs in the argument of an exponen-
tial function, then (61) leads to

exp

(
−

∫ tm

t0

f (s)ds

)
≈

m−1∏

i=0

exp

(
−�ti

2

[
f (ti+1) + f (ti)

])
. (62)

In the framework of this paper, integrals in the form

∫ tm

t0

fI (tm, τ ) exp

[
−

∫ tm

τ

fII (s, τ )ds

]
dτ, (63)

are treated. If (61) is applied to approximate the integration with respect to τ , then (63)
becomes

∫ tm

t0

fI (tm, τ ) exp

(
−

∫ tm

τ

fII (s, τ )ds

)
dτ

≈
m−1∑

i=0

�ti

2

{
fI (tm, ti) exp

(
−

∫ tm

ti

fII (s, ti)ds

)

+ fI (tm, ti+1) exp

(
−

∫ tm

ti+1

fII (s, ti+1)ds

)}
. (64)

Additionally, if now the integration with respect to s is approximated by (62), then (64)
becomes

∫ tm

t0

fI (tm, τ ) exp

(
−

∫ tm

τ

fII (s, τ )ds

)
dτ

≈
m−1∑

i=0

�ti

2

{

fI (tm, ti)

m−1∏

j=i

exp

(
−�tj

2

[
fII (tj , ti) + fII (tj+1, ti)

])

+ fI (tm, ti+1)

m−1∏

j=i+1

exp

(
−�tj

2

[
fII (tj , ti+1) + fII (tj+1, ti+1)

]
)}

. (65)
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