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Abstract This paper presents a time domain method to determine viscoelastic properties of
open-cell foams on a wide frequency range. This method is based on the adjustment of the
stress–time relationship, obtained from relaxation tests on polymeric foams’ samples un-
der static compression, with the four fractional derivatives Zener model. The experimental
relaxation function, well described by the Mittag–Leffler function, allows for straightfor-
ward prediction of the frequency-dependence of complex modulus of polyurethane foams.
To show the feasibility of this approach, complex shear moduli of the same foams were
measured in the frequency range between 0.1 and 16 Hz and at different temperatures
between −20 °C and 20 °C. A curve was reconstructed on the reduced frequency range
(0.1 Hz–1 MHz) using the time–temperature superposition principle. Very good agreement
was obtained between experimental complex moduli values and the fractional Zener model
predictions. The proposed time domain method may constitute an improved alternative to
resonant and non-resonant techniques often used for dynamic characterization of polymers
for the determination of viscoelastic moduli on a broad frequency range.

Keywords Linear viscoelasticity · Shear complex modulus · Stress relaxation · Fractional
Zener model · Polymeric acoustic foam · Mittag–Leffler function

1 Introduction

The Biot theory of fluid-saturated porous media provides a description of the waves prop-
agating in soils (Biot 1956). Several authors have extended this theory to sound-absorbing
materials, such as glass wool and plastic foams, for noise control applications in engineer-
ing activities like aeronautics and the automotive industries (Allard 1993). When porous
material is bounded inside a vibrating structure or is excited at strong sound levels (Kuntz
and Blackstock 1987), the skeleton of the foam cannot be considered rigid anymore, and
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its acoustical behavior can be described by Biot’s theory where the elastic properties of the
solid phase are needed.

Several techniques exist for the experimental determination of the frequency dependence
of solids’ viscoelastic moduli (Corsaro and Sperling 1990; Oyadiji and Tomlimson 1985).
These techniques can be classified as resonant and non-resonant (Jaouen et al. 2008) and
consist generally in measuring the viscoelastic moduli on a narrow frequency range at differ-
ent temperatures (Sfaoui 1995). To extend the frequency range, the frequency–temperature
equivalence (known for polymeric viscoelastic materials) is used (Ferry 1961). The latter
was successfully applied for porous acoustic foams (Etchessahar et al. 2005; Sfaoui 1995;
Deverge et al. 2009).

Different approaches to analytically model the rheological behavior of a linear viscoelas-
tic solid are available in the literature. The classical approach is a linear combination of
springs and dashpots (Tschoegl 1989). For these systems, the stress–strain relationship in a
linear regime is commonly expressed in a differential form, and the time-domain material
functions derived from such models are expressed by a series of decaying exponentials with
characteristic times reflecting the distribution of the relaxation time of the material.

Another way to consider the distribution of the relaxation time in the material is to con-
sider fractional models that received increasing attention and found applications in engi-
neering, physical and even in biomedical sciences (Nonnenmacher and Metzler 1995; Sur-
guladze 2002). They were used to characterize the rheological behavior of linear viscoelas-
tic systems by a number of authors (Caputo and Mainardi 1971a; Bagley and Torvik 1983;
Soula et al. 1997; Pritz 1996; Sahraoui et al. 2015). Friedrich (1991) considered the four-
parameter Maxwell model. Nonnenmacher and Glockle (1991) solved the stress–strain re-
lationship of the fractional Zener model (FZM) by introducing a Fox function. Atanackovic
(2002) studied a modified Zener model of a viscoelastic body by using an internal variable
method. More recently Cuenca and Goransson (2012) applied the framework of an aug-
mented Hooke’s law (Dovstam 2000) to anisotropic open-cell foams.

The use of fractional derivative models is primary motivated by their ability to describe
the viscoelastic behavior of materials with a limited number of parameters. Moreover, ex-
perimental results of Bagley and Torvik (1983) suggested that the rheological properties that
give rise to viscoelasticity may have a fundamental behavior based on fractional rather than
integer calculus. The rate of creep (compliance) and the rate of relaxation (modulus) play the
role of memory functions in the constitutive equations. Linear viscoelasticity is certainly the
field of the most extensive applications of fractional calculus in view of its ability to model
hereditary phenomena with long memory (Caputo and Mainardi 1971b). More recently, the
modeling of memory mechanics by the fractional derivative approach was presented in other
fields (Du et al. 2013).

To characterize the mechanical behavior of viscoelastic materials, experiments can be
carried out either in the frequency or in the time domain. In the linear regime, the two re-
sults are connected to each other. For example, the relaxation or retardation time function is
extracted from experimental curves of complex moduli versus frequency (Soula et al. 1997;
Bechir and Idjeri 2011). To avoid the long and sometimes difficult series of measurements
at several temperatures or in a wide frequency range in vacuum (Sfaoui 1995; Etchessahar
et al. 2005; Cuenca et al. 2014), this paper is focused on the experimental determination of
the relaxation function R(t) and the computation of the complex modulus in the frequency
domain through a single relaxation test. The originality of the present method lies in the fit-
ting of the relaxation function R(t) and the resolution of the stress–strain relationship in the
time domain. In addition, it has been shown that the use of Mittag–Leffler function, more
appropriate for the fitting process, allows for straightforward prediction of the frequency-
dependence of the complex modulus.
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The analysis of the fractional Zener model in the frequency domain (Pritz 1996) high-
lights its mathematical and physical background and its ability to describe the viscoelastic
behavior of materials in a wide frequency range. Thus, the frequency dependence of the
viscoelastic moduli was calculated on a very broad range of frequency and compared to
the experimental value obtained by the time–temperature superposition (TTS) method from
isotherm dynamic measurements in narrow frequency and temperature domains. The results
have shown a very good agreement between the experimental values and the prediction of
the FZM.

The manuscript is organized as follows. Section 2 is devoted to a brief overview of vis-
coelastic models and a theoretical presentation of the four-parameter FZM in the frequency
domain as well as in the time domain. In Sect. 3, relaxation tests and dynamic modulus
measurements on acoustic foams are presented. The obtained results are compared for the
validation of the presented method.

2 Fractional calculus for the stress–strain relationship

We denote by σ(t) the stress response to the applied strain ε(t), the relaxation function R(t)

and the strain rate ε̇(t), and assume that the stress satisfies the relationship (Ferry 1961):

σ(t) =
∫ t

−∞
R(t − τ)ε̇(τ )dτ, (1)

where τ is an integration variable.
Using the Laplace transform for a function f (t),

L
{
f (t);p} = f̃ (p) =

∫ ∞

0
f (t)e−pt dt, (2)

relation (1) becomes

σ̃ (p) = R̃(p) ˜̇ε(p). (3)

2.1 Classical mechanical models

Viscoelasticity behavior was similarly modeled by ideal springs and dashpots, respectively
representing the elasticity and the dissipation phenomenon during material deformation.

To introduce a single dissipation in a solid viscoelastic material, Zener (1948) added a
spring in parallel to a Maxwell model (Fig. 1),

The stress–strain relationship for a linear viscoelastic system represented by a spring–
dashpot mechanical model is commonly expressed in the differential form (Tschoegl 1989)
as

σ(t) +
N∑

i=1

ai

diσ (t)

dt i
= mε(t) +

M∑
i=1

bi

diε(t)

dt i
, (4)

where t is the time, i is an integer, and m, ai and bi are parameters depending on the material.
The order of derivation of stress and of strain should satisfy M = N or M = N + 1 (Pritz
1996).

For the Zener model (Fig. 1), the well-known stress–strain relationship
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Fig. 1 Zener model. E1 and E2
are the spring constants, η is the
dashpot viscosity

σ(t) + η

E2

dσ(t)

dt
= E1ε(t) + η

(
1 + E1

E2

)
dε(t)

dt
(5)

can be written (Mainardi 2010) as

σ(t) + a
dσ(t)

dt
= mε(t) + b

dε(t)

dt
, (6)

where a, b, and m will be used below in the fractional models.

2.2 Fractional derivatives’ models

A model with fractional derivatives is a sort of interpolation between viscous and elastic
behavior. Indeed, the spring element connects the stress with the zero-order derivative of
the strain, while for a viscous element the stress is proportional to the first time derivative
of the strain. Extending the stress–strain relation (Eq. (4)) which is based on integer order
derivatives to fractional order of derivation, the fractional derivative models can be described
by

σ(t) +
N∑

i=1

ai

dβi σ (t)

dtβi
= mε(t) +

M∑
i=1

bi

dαi ε(t)

dtαi
, (7)

where ai , m and bi are parameters depending on the material, and 0 < αi < 1, 0 < βi < 1.
The αth order fractional derivative of the function ε(t) is defined with the gamma func-

tion as

dα

dtα
ε = 1

Γ (1 − α)

d

dt

∫ t

0

ε(τ )

(t − τ)α
dτ, (8)

where τ is an integration variable (Ross 1975).
The complex modulus for a fractional derivative model can be obtained by using the

Fourier transformation. We denote by f̂ (ω) the Fourier transform of the function f (t). In
the frequency domain, relation (7) reads:

[
1 +

N∑
i=1

ai(jω)βi

]
σ̂ (ω) =

[
m +

M∑
i=1

bi(jω)αi

]
ε̂(ω). (9)
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So, the complex modulus G∗(ω) of the fractional derivative models is in the form

G∗(ω) = m + ∑M

i=1 bi(jω)αi

1 + ∑N

i=1 ai(jω)βi

. (10)

2.3 FZM in the frequency and time domains

For the special case of FZM, the stress–strain relation is written as

[
1 + a

da

dta

]
σ(t) =

[
m + b

da

dta

]
ε(t). (11)

In the frequency domain, we have

[
1 + a(jω)α

]
σ̂ (ω) = [

m + b(jω)α
]
ε̂(ω). (12)

The complex modulus G∗(ω) = σ̂ (ω)/ε̂(ω) is in the form

G∗ = m + b(jω)α

1 + a(jω)α
= G′ + jG′′, (13)

where the storage modulus G′(ω) and loss modulus G′′(ω) are respectively

G′(ω) = m + (b + am)ωα cos(πα/2) + abω2α

1 + 2aωα cos(πα/2) + a2ω2α
(14)

and

G′′(ω) = (b − am)ωα sin(πα/2)

1 + 2aωα cos(πα/2) + a2ω2α
. (15)

From relation (13), the parameter m corresponds to the value of the storage modulus at
zero frequency; it is also called the static modulus of elasticity. However, we notice that the
dimensions of the parameters a and b depend on the value of α: the dimension of a is sα ,
and the ratio b/a describes the limit of the storage modulus at high frequency.

In the time domain, the Laplace transform is applied for the determination of the relax-
ation function. By using the sign ↔ to denote the transformation between the function f (t)

and its Laplace transform f̃ (p), a Laplace transform pair reads

f̃ (p) ↔ f (t). (16)

The Laplace transform of Eq. (11) leads to

R̃(p) = σ̃ (p)

˜̇ε(p)
= 1

p

m + bpα

1 + apα

= m

p
+

(
b

a
− m

)
pα−1

pα + 1/a
, (17)

which yields

R(t) = m +
(

b

a
− m

)
Eα

[−tα/a
]
, (18)
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Fig. 2 Classical Mittag–Leffler
function Eα(−tα) for some
values of α

where Eα is the classical Mittag–Leffler function (Kilbas et al. 2006) defined as

Eα

[−tα/a
] = 1

π

∫ ∞

0
e−τ t τ α−1 sin(απ)/a

1/a2 + 2τα cos(απ)/a + τ 2α
dτ (19)

and corresponding to its Laplace transform (Mainardi and Gorenflo 2007) pα−1

pα+1/a
(Eq. (17)).

For α close to 1, Eα(−tα/a) ≈ et/τσ with the relaxation time τα = a1/α . But for α close
to 0, the Mittag–Leffler function (Fig. 2) exhibit a high slope at small values of t followed
by a slight decrease at large times. This graphic representation (Podlubny 2006) highlights
the effectiveness of Mittag–Leffler function in the solution of the fractional Zener model
(Eq. (19)) at various values of α between 0 and 1.

The relaxation function, Eq. (18), is a generalization of relaxation behavior for any α;
for α = 1 we obtain the function corresponding to the standard linear solid model (Tschoegl
1989).

3 Experiments and results

Polyurethane (PU) foam, kindly provided by Tramico Company, is considered for relaxation
tests in the time domain and for dynamic measurements in the frequency domain. The foam
samples were cylinders of 20 mm radius, and 40 mm or 20 mm length for the relaxation
experiments or dynamic measurements, respectively.

3.1 Relaxation tests

In relaxation tests, a constant strain (ε0 = 5 %) was applied to the foam sample which is in
the linear regime.

Compression tests were performed at room temperature (20 °C) by means of a tensile
machine from Zwick/Roell (Z010) equipped with a 500 N load cell. The sample was com-
pressed between two parallel plates covered with sand paper to avoid any slippage at the
interface of the plates. The crosshead speed, fixed at 100 cm min−1, corresponds to the strain
rate ε̇ = 2.5 mm−1. At this speed, the loading time necessary to reach a constant speed is
about 0.12 s and the imposed strain can be written as

ε(t) = ε0H(t) (20)
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Fig. 3 Stress relaxation
(experimental and FZM fitted
curves). The insert is a zoom of
the first 10 minutes

for relatively long relaxation durations (more than 10 min), where H is the Heaviside func-
tion.

In this case, the stress is related to the relaxation function as

σ(t) = ε0R(t). (21)

3.2 Extraction of FZM parameters

The inverse estimation of fractional derivatives’ parameters (a, b, m and α) consists in
numerically fitting the model (Eq. (18)) to experimental stress relaxation.

The vector

x = (m,a, b,α)T (22)

defines a 4-dimensional space in which the model evolves. The properties of a given material
are then defined as the set x0 that minimizes the distance in such space between the model
and the experiment.

Assuming that the stress function is extracted from the measurement and replicated using
the model with a certain set of parameters, x, the objective function is defined as

f (x) =
N∑

n=1

∣∣∣∣σ(tn,x) − σ exp(tn)

σ exp(tn)

∣∣∣∣
2

, (23)

where N is the number of time points of stress, and σ exp and σ respectively denote the exper-
imental and simulated stress. The optimization problem is implemented using the globally
convergent method of moving asymptotes (Cuenca and Goransson 2012; Svanberg 2002).

The experimental stress σ(t) is compared to the fitted FZM curve in Fig. 3. By using
the estimated parameters (a = 0.001 SI, b = 29.7 kSI, m = 36 kPa, α = 0.2), the complex
modulus can be predicted over a wide frequency range (Fig. 5). We have already mentioned
that the units of the fractional parameters a and b depend on the value of α, for this reason
the SI notation (International system of units) is used. Furthermore, the chosen relaxation
duration was determined by some tests in the time range (1 min–8 h); the relaxation function
obtained in just 10 min and the FZM are able to predict the measured stress at a long time
as shown by Fig. 3. The relative error of the fitted curve is less than 2 %.

In order to validate the time domain method, the predicted complex modulus is compared
to the experimental results obtained in the frequency domain in the next section.
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Fig. 4 Storage modulus:
(a) isotherm curves, (b) master
curve at 20 °C as a reference
temperature. The shift factors are
1, 6, 60, 1800, 250 000 for 20, 10,
0, −10 and −20 °C, respectively

3.3 Dynamic moduli measurements

The purpose of this experiment was to determine the complex shear modulus of the foam
over a wide frequency range. To do so, the sample was tested in torsion by means of a stan-
dard torsional rheometer ARES G2 from TA Instruments equipped with a parallel plate/plate
geometry with 40 mm of diameter. The frequency sweep was fixed between 0.16 and 16 Hz;
and the strain at 0.1 % is in the linear response of the foam. The temperatures of the exper-
iment were fixed at 20, 10, 0, −10, and −20 °C. The TTS is used to compute the complex
shear modulus at a reference temperature (20 °C) over a broader frequency range (Williams
et al. 1955; Sfaoui 1995; Etchessahar et al. 2005; Deverge et al. 2009). This method consists
in translating horizontally and vertically the curves of G′ and G′′ versus frequency obtained
on a reduced frequency range at different temperatures, in order to superimpose them at a
given temperature. The storage modulus of the foam is presented in Fig. 4 and is discussed
in the next section.

3.4 Validation of the time approach method

As shown in Sect. 3.2, the fractional parameters a, b, m and α were extracted from the
experimental relaxation. These parameters were used for the prediction of the storage and
loss moduli (Eqs. (13) and (14)) at every frequency. By using the TTS principle, the complex
shear modulus is experimentally determined in a wide frequency range.
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Fig. 5 A comparison of storage
and loss moduli

By using the assumption that the Poisson ratio of PU foam is real and frequency inde-
pendent (Etchessahar et al. 2005; Sahraoui et al. 2001), the viscoelastic constants obtained
in compression and in torsion have the same frequency dependence. Therefore, the data ob-
tained from static compression and dynamic torsion tests are adjusted only vertically and
used below to highlight the performance of the procedure.

A comparison between experimental measurements and the prediction of the viscoelastic
moduli over a wide range of frequency using FZM is presented in Fig. 5. For the studied
foam, the agreement is very good both for G′ and G′′ even though the prediction of the
storage modulus is better than that for the loss.

4 Conclusions

In this work, by adjusting the FZM on the stress relaxation experiments of acoustic foams,
we were able to extract the four parameters of the model. It has been shown that the relax-
ation function obtained in just 10 min in a single static compression test was sufficient to
calculate the complex modulus at any frequency. This model was analyzed and its math-
ematical and physical backgrounds have been outlined. To verify the applicability and the
accuracy of the present procedure, the complex modulus was obtained on a wide frequency
range using the TTS principle. A comparison between the experimental results and the pre-
dicted values of the FZM has shown good agreement in a frequency range between 0.1 and
106 Hz. The proposed method may be considered as an improved alternative to characterize
the frequency dependence of polymeric foams especially at high frequencies and could be
generalized for other materials.
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