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Abstract In this work, the thermoelastic damping of a nano-scale resonator is analyzed
by the generalized thermoelasticity theory based on two-temperature model (2TLS). The
effect of two-temperature parameter and relaxation time in nano-scale resonator are inves-
tigated for beams under clamped conditions. Analytical expressions for deflection, temper-
ature change, frequency shifts, and thermoelastic damping in the beam have been derived.
The theories of coupled termoelasticity and generalized thermoelasticity with one relaxation
time can extracted as limited and special cases of the present model. The numerical results
have been presented graphically in respect of thermoelastic damping and frequency shift.

Keywords Thermoelastic damping · Two-temperature model · Nano-scale resonator ·
Vibrations · Frequency shift

1 Introduction

Modeling and simulation of thermoelastic damping is a recurrent interest in the community
of nano-engineering and nano-mechanics, mainly motivated by the recent advancement of
nanoelectromechanical system (NEMS) technologies. In this size regime, it is possible to
attain extremely high fundamental frequencies while simultaneously preserving very high
mechanical responsivity (small force constants). Such high-frequency mechanical devices
have many important applications among which are ultrasensitive mass detection, mechani-
cal signal processing, scanning probe microscopes, etc. The most important parameter of a
nano-resonator is its thermoelastic damping factor, and it is closely related to the accuracy of
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measurement in many applications. The higher the quality factor, the less energy dissipated
during vibrations and the higher the resonator’s sensitivity.

The generalized theories of thermoelasticity, which admit the finite speed of thermal sig-
nal, have been the center of interest of active research during last three decades. Biot (1956)
introduced the classical theory of thermoelasticity suffer from the so-called “paradox of heat
conduction,” i.e., the heat equations for both theories of a mixed parabolic–hyperbolic type,
predicting infinite speeds of propagation for heat waves, contrary to physical observations.
The theory of couple thermoelasticity was extended by Lord and Shulman (1967) and Green
and Lindsay (1972) by including the thermal relaxation time in constitutive relations. The
counterparts of our problem in the contexts of the thermoelasticity theories have been con-
sidered by using numerical and analytical methods (Ezzat and Fayik 2012; Abbas 2014;
Ezzat et al. 2001; Abbas and Zenkour 2013; Sherief 1994; Abbas and Othman 2012a; Ezzat
et al. 2002; Abbas and Youssef 2012; Sherief and Megahed 1999; Abbas and Abd-Alla 2008;
Abbas 2012; Abbas and Othman 2012b)

Thermoelasticity with two temperatures is one of the non-classical theories of thermoe-
lasticity of elastic solids. The thermal dependence is the main difference of this theory with
respect to the classical one. Chen and Williams (1968), Chen and Gurtin (1968), Chen et al.
(1969) have formulated a theory of heat conduction in deformable bodies, which depend
on two distinct temperatures, the conductive temperature and thermodynamic temperature.
For time independent situations, the difference between these two temperatures is propor-
tional to the heat supply. For time dependent problems and for wave propagation problem
in particular, the two temperatures are in general different, regardless of the presence of
heat supply. El-Karamany and Ezzat (2011) introduced the two-temperature Green–Naghdi
thermoelasticity theories. Youssef (2006) introduced the generalized Fourier law to the field
equations of the two-temperature theory of thermoelasticity. Abbas and Zenkour (2014),
Abbas and Youssef (2009, 2013), Kumar and Abbas (2013) studied different problems un-
der two-temperature generalized thermoelastic theory by finite element method.

Nano-mechanical resonators have attracted considerable attention recently due to their
many important technological applications. Accurate analysis of various effects on the char-
acteristics of resonators, such as resonant frequencies and quality factors, is crucial for de-
signing high-performance components. Many authors have studied the vibration and heat
transfer process of beams. Houston et al. (2004) predicted that the internal friction in 50-nm
scale silicon-based MEMS structures is strong due to thermoelastic damping. Yasumura
et al. (1999) observed thermoelastic damping in single-crystal silicon and silicon nitride
micro-resonators at room temperature. Nayfeh and Younis (2004a), Nayfeh et al. (2005),
Nayfeh and Younis (2004b) derived analytical expressions for the quality factor of micro-
plates of general shapes due to thermoelastic damping. Sun et al. (2006) investigated the
thermoelastic damping in micro-beam resonators. Rezazadeh et al. (2012) investigated the
thermoelastic damping in a micro-beam resonator using modified couple stress theory. Sun
et al. (2013) studied the thermoelastic damping of the axisymmetric vibration of laminated
trilayered circular plate resonators. Sharma and Grover (2011, 2012) studied the thermoe-
lastic vibration analysis of Mems/Nems with voids with one relaxation time. Sharma (2011)
investigated the thermoelastic damping and frequency shift in micro/nanoscale anisotropic
beams. Experimentally, NEMS are expected to open up investigations of phonon medi-
ated mechanical processes and of the quantum behavior of mesoscopic mechanical systems
(Ekinci and Roukes 2005). Recently, Abbas (2015a) studied the exact solution of thermoe-
lastic damping and frequency shifts in a nano-beam resonator under Green and Naghdi the-
ory. Abbas (2015b) investigated a GN model for thermoelastic interaction in a microscale
beam subjected to a moving heat source. Rezazadeh et al. (2015) studied the variation of
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deflection, temperature change in a nonlocal nano-beam resonator as NEMS based on the
type III of Green–Naghdi theory (with energy dissipation). Youssef et al. (2014) studied the
vibration of gold nano beam in context of two-temperature generalized thermoelasticity sub-
jected to laser pulse. Khanchehgardan et al. (2013) investigated the thermo-elastic damping
in nano-beam resonators based on nonlocal theory.

This paper investigate the effect of two-temperature parameter and relaxation time in
thermoelastic damping and frequency shift in a nano-scale resonator into the context of the
two-temperature generalized thermoelasticity theory with one relaxation time.

2 Basic equation

Let us consider a thermally conducting, isotropic, homogeneous, thermoelastic solid initially
undeformed and at a uniform temperature T0. The basic governing equations of motion and
heat conduction in the context of by Lord and Shulman theory (1967) with two temper-
atures (Youssef 2006) in the absence of heat sources and body forces, can be formulated
mathematically as:

The equations of motion

σji,j = ρ
∂2ui

∂t2
, (1)

where σij are the components of stress tensor, ρ is the density of the medium, ui are the
components of displacement vector, and t is the time. The equation of heat conduction can
be written as

Kϕ,ii =
(

∂

∂t
+ τo

∂2

∂t2

)
(ρceT + γ T0ekk), (2)

where ϕ = ϕ∗ − T0 is the conductive deviation from the reference temperature T0, T =
T ∗ − T0 is the thermodynamic temperature deviation from the reference temperature T0, eij

are the components of strain tensor, K is the thermal conductivity, τo is the relaxation time,
γ = (2λ+ 3μ)αt , αt is the coefficient of linear thermal expansion, and ce is the specific heat
at constant strain. The constitutive equations are

σij = 2μeij + [λekk − γ T ]δij , (3)

ϕ − T = bϕ,ii . (4)

where λ, μ are the Lame’s constants, b > 0 is the two-temperature parameter.

3 Modeling of beam structures

Let us consider small flexural deflection of homogeneous isotropic thermally conduct-
ing, thermoelastic beam in Cartesian coordinate systems oxyz for the displacement vector
u(x, y, z, t) = (u, v,w) and temperature change T (x, y, z, t), which have dimension length
L (0 ≤ x ≤ L), width a (− a

2 ≤ y ≤ a
2 ), and thickness h (− h

2 ≤ z ≤ h
2 ). That is, any plane

cross-section initially perpendicular to axis of beam remains, plane and perpendicular to the
neutral surface during bending. Thus, the displacements are given by

u = −z
∂w

∂x
, v = 0, w(x, y, z, t) = w(x, t). (5)
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Then, the equation of transverse motion without the pressures on the upper and lower surface
of the beam is

∂2M

∂x2
+ ρA

∂2w

∂t2
= 0, (6)

where M is the flexural moment of cross-section of beam and A = ah is the area of cross-
section.

The equation of heat conduction is given by

K

(
∂2ϕ

∂x2
+ ∂2ϕ

∂z2

)
=

(
∂

∂t
+ τo

∂2

∂t2

)(
ρceT − γ T0z

∂2w

∂x2

)
. (7)

The constitutive relation can be written as

σ = −(λ + 2μ)z
∂2w

∂x2
− γ T , (8)

T = ϕ − b

(
∂2ϕ

∂x2
+ ∂2ϕ

∂z2

)
. (9)

The flexural moment of the cross-section of the beam is given by

M(x, t) = −
∫ h/2

−h/2
aσzdz = (λ + 2μ)I

∂2w

∂x2
+ γMT , (10)

where I = ah3

12 is moment of inertia of the cross-section and MT is the thermal moment of
beam which given by

MT =
∫ h/2

−h/2
a

[
ϕ − b

(
∂2ϕ

∂x2
+ ∂2ϕ

∂z2

)]
zdz. (11)

Using Eq. (10) in Eq. (6) yields

(λ + 2μ)I
∂4w

∂x4
+ γ

∂2MT

∂x2
+ ρA

∂2w

∂t2
= 0. (12)

The preceding equations can be changed into the dimensionless form using the parameters
defined as

(
x ′, y ′, z′,w′) = (x, y, z,w)

cχ
,

(
t ′, τ ′

o

) = (t, τo)

χ
, M ′

T = MT

T0c3χ3
,

(
T ′, ϕ′) = (T ,ϕ)

T0
, ω′ = ωχ, b = b

c2χ2
,

(13)

where c2 = λ+2μ

ρ
, χ = K

ρcec2 .
By substituting (13) into Eqs. (7) and (12) one may obtain (after dropping the superscript

′ for convenience)

I
∂4w

∂x4
+ γ T0

λ + 2μ

∂2MT

∂x2
+ A

∂2w

∂t2
= 0, (14)

∂2ϕ

∂x2
+ ∂2ϕ

∂z2
=

(
∂

∂t
+ τo

∂2

∂t2

)(
ϕ − b

(
∂2ϕ

∂x2
+ ∂2ϕ

∂z2

)
− γ

ρce

z
∂2w

∂x2

)
. (15)
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4 Initial and boundary conditions

In order to solve the problem, both initial and boundary conditions should be considered.
The initial conditions of the problem are taken as

w(x,0) = ∂w(x,0)

∂t
= 0, ϕ(x, z,0) = ∂ϕ(x, z,0)

∂t
= 0. (16)

These conditions are supplemented by considering the both ends of the nano-beam are
clamped, so that we have the following boundary conditions:

w(0, t) = w(L, t) = 0,
∂w(0, t)

∂x
= ∂w(L, t)

∂x
= 0. (17)

For the case, the heat flux between the lower and upper surfaces of the beam is sufficiently
small. So, zero heat flux conditions can be applied:

∂ϕ(x,−h/2,0)

∂z
= ∂ϕ(x,h/2,0)

∂z
= 0. (18)

5 Solution along thickness direction

In order to solve the system of Eqs. (12) and (13), the harmonic solutions can be assumed as[
w(x, t), ϕ(x, z, t)

] = [
w(x),ϕ(x, z)

]
eiωt . (19)

From Eq. (19) in (14) and (15), we get

I
∂4w

∂x4
+ γ T0

λ + 2μ

∂2MT

∂x2
− ω2Aw = 0, (20)

∂2ϕ

∂x2
+ ∂2ϕ

∂z2
= (iω − τoω

2)

1 + b(iω − τoω2)

(
ϕ − γ

ρce

z
∂2w

∂x2

)
. (21)

We follow the same procedures as in Lifshitz and Roukes (2000). Noting that temperature
gradients in the plane of the cross-section along the x direction are much smaller than those
along the z direction and that no gradients exist in the y direction, we can replace Eq. (21)
by

∂2ϕ

∂z2
= (iω − τoω

2)

1 + b(iω − τoω2)

(
ϕ − γ

ρce

z
∂2w

∂x2

)
(22)

because the heat flux between the lower and upper surfaces of the beam is sufficiently small.
So, zero heat flux conditions can be applied. When ∂ϕ

∂z
= 0, z = ±h/2, the solution of the

Eq. (22) is

ϕ(x, z) = γ

ρce

(
z − sin(pz)

p cos(ph/2)

)
∂2w

∂x2
, (23)

where p =
√

τoω2−iω

1+b(iω−τoω2)
. Substituting Eq. (21) and Eq. (9) into Eq. (18), we get

Dω

d4w

dx4
− ω2w = 0, (24)

where
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Dω = I

A

(
1 + εT

[(
1 + (

1 + bp2
)
f (ω)

)])
, εT = γ 2T0

ρce(λ + 2μ)
and

f (ω) = 24

p3h3

(
ph

2
− tan

ph

2

)
.

As w = w(x), Eq. (24) provides us(
d4

dx4
− η4

)
w = 0, η4 = ω2

Dω

. (25)

The solution of Eq. (25) can be written as

w(x) = B1 sin(ηx) + B2 cos(ηx) + B3 sinh(ηx) + B4 cosh(ηx). (26)

Substituting the solution (26) into (23), we get

ϕ(x, z) = η2γ

ρce

(
z − sin(pz)

p cos(ph/2)

)

× (−B1 sin(ηx) − B2 cos(ηx) + B3 sinh(ηx) + B4 cosh(ηx)
)
. (27)

Thus, the solutions of all variables in physical space–time domain are given by

w(x, t) = [
B1 sin(ηx) + B2 cos(ηx) + B3 sinh(ηx) + B4 cosh(ηx)

]
eiωt , (28)

ϕ(x, z, t) = η2γ

ρce

(
z − sin(pz)

p cos(ph/2)

)(−B1 sin(ηx) − B2 cos(ηx)+
+B3 sinh(ηx) + B4 cosh(ηx)

)
eiωt , (29)

T (x, z, t) = η2γ

ρce

(
z − (1 + bp2) sin(pz)

p cos(ph/2)

)(−B1 sin(ηx) − B2 cos(ηx)+
+B3 sinh(ηx) + B4 cosh(ηx)

)
eiωt (30)

where B1, B2, B3 and B4 are constants to be determined from the boundary condition of the
problem.

6 Frequency shift and thermoelastic damping

Using the boundary conditions (17) in the solutions, we obtain the following characteristic
equation which governs the vibrations of the beam:

cos(ηL) cosh(ηL) − 1 = 0. (31)

Thus, the corresponding characteristic roots of Eq. (31) are given by

η = 2mπ

L
, where m is an integer. (32)

Now the vibration frequency of the thermoelastic beam in the presence of thermoelastic
coupling εT , two-temperature parameter b and thermal relaxation time τo is given by

ωm = 4m2π2

L2

√
Dω = ωo

√
1 + εT

[
1 + (

1 + bp2
)
f (ω)

]
, (33)

where ωo = 4hm2π2

L2
√

12
. For most of the material εT � 1, so we can replace ω by ωo and f (ω)

by f (ωo) to get

ωm = ωo

√
1 + εT

[
1 + (

1 + bp2
)
f (ωo)

]
, (34)



Mech Time-Depend Mater (2016) 20:511–522 517

Fig. 1 Thermoelastic damping Q−1 versus thickness h for 2TLS theory and the first four modes having
fixed length

Owing to the presence of dissipation term in the heat conduction equation and thermal
stresses, the frequency equation in the general complex transcendental equation provides
us a complex value of frequency ωm = ωm

R + iωm
I , where m is the mode number, which cor-

responds to the roots of the transcendental equation (31), and ωm
R and ωm

I are the real part
and imaginary parts of frequency ωm, respectively.

The frequency shift due to thermal variations is defined as

ωs =
∣∣∣∣ω

m
R − ωo

ωo

∣∣∣∣.
The thermoelastic damping is expressed in terms of the inverse of quality factor as

Q−1 = 2

∣∣∣∣ω
m
I

ωm
R

∣∣∣∣.

7 Numerical results and discussion

This section is devoted to numerically presenting the theoretical results derived in the previ-
ous sections. The two-temperature model with one relaxation time is analyzed by consider-
ing a nanoscale resonator. We assume that the nanoscale resonator is made isotropic and the
silicon material has been chosen. The physical constants are listed below (Grover 2013):

λ = 2.17 × 1011 N m−2, μ = 1.08 × 1011 N m−2, T0 = 296 K, ρ = 3200 kg m−3,

K = 43.5 W m−1 K−1, ce = 630 J kg−1 K−1, γ = 2.71 × 106 N m−2 K−1, τ0 = 0.2.

From the dimensionless parameters, it is clear that the scale of thickness and length for
a nano-beam is equal to 1.85 × 10−9 m and the relaxation time is equal to 1.6 × 10−13 s.
Figures 1–3 show the variation of thermoelastic damping in a clamped beam of the fixed
of length for different modes with different values of two-temperature parameter and re-
laxation time. Figure 1 exhibits the thermoelastic damping Q−1 versus thickness h for
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Fig. 2 Thermoelastic damping Q−1 versus the thickness h for different value of b in cases the first and
second modes with the fixed of length

Fig. 3 Thermoelastic damping Q−1 versus thickness h for different values of τo when the first and second
modes are of fixed length

the first four modes when the two-temperature parameter (b = 0.2) and the thermal re-
laxation time (τo = 0.25) remain constant. Figure 2 shows the variation of thermoelastic
damping Q−1 versus thickness h for different values of the two-temperature parameter
(b = 0.0,0.2,0.4,0.6) for the first and second modes when the thermal relaxation time
(τo = 0.25) remains constant. Figure 3 illustrates the variation of thermoelastic damping
Q−1 versus thickness h for different values of thermal relaxation time (τo = 0.0,0.25,0.5)

for the first and second modes when the two-temperature parameter (b = 0.2) remains con-
stant. From Figs. 1–3, it is observed that the thermoelastic damping Q−1 increases initially
to attain its maximum peak value before it decreases in order to become ultimately asymp-
totic with increasing h. The maximum peak value of thermoelastic damping increases with
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Fig. 4 Frequency shift ωs versus the thickness h for 2TLS theory and first four modes with the fixed of
length

Fig. 5 Frequency shift ωs versus thickness h for different values of b when the first and second modes have
fixed length

increasing modes of vibration. The two-temperature parameter and relaxation times play a
significant role on the thermoelastic damping Q−1.

Figures 4, 5 and 6 show the variation of frequency shift ωs versus h for the first four
modes of vibrations. Figure 4 shows the behavior of the frequency shift ωs versus thickness
h for the first four modes when the two-temperature parameter and the thermal relaxation
time remain constants. Figures 5 and 6 show the effects of the two-temperature parameter
and relaxation time on the first and second modes. It can be inferred that the frequency
shift ωs increases rapidly with increasing thickness to attain its maximum peak value, and
it becomes stable for large values of the thickness. Also, it has been observed that the two-
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Fig. 6 Frequency shift ωs versus thickness h for different values of τo when the first and second modes have
fixed length

temperature parameter and thermal relaxation time play a significant role on the frequency
shift ωs .

8 Conclusions

The thermoelastic damping of a nano-beam resonator is analyzed by the two-temperature
Lord and Shulman theory (2TLS). Analytical expressions for deflection, temperature
change, thermoelastic damping and frequency shifts in the beam have been derived. The
closed form solution obtained here opens the scope of further studies in mathematics, sci-
ence, and engineering disciplines.
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