
Mech Time-Depend Mater (2016) 20:197–217
DOI 10.1007/s11043-016-9291-2

Fractional derivative and hereditary combined model
for memory effects on flexible polyurethane foam

Makram Elfarhani1 · Abdessalem Jarraya1 ·
Said Abid1 · Mohamed Haddar1

Received: 12 August 2015 / Accepted: 7 January 2016 / Published online: 27 January 2016
© Springer Science+Business Media Dordrecht 2016

Abstract In a quasi-static regime with cyclic loading, the force–displacement curve of flex-
ible polyurethane exhibits complicated behavior: nonlinearity, visco-elasticity, hysteresis,
residual force, etc. Beside nonlinearity and visco-elasticity, this material displays high de-
pendence on the displacement rate and past loading history. Its dependence on compression
rate helps to appropriately identify the force–displacement curve. Based on the new curve
identification, the overall foam response is assumed to be a composite of a nonlinear elastic
component and a visco-elastic component. The elastic component is expressed as a poly-
nomial function in displacement, while the visco-elastic one is formulated according to the
hereditary approach to represent the foam visco-elastic damping force during the loading
phase and according to the fractional derivative approach during unloading to represent the
visco-elastic residual force in the material. The focus of this study was to develop mathe-
matical formulations and identification parameters to faithfully characterize the visco-elastic
behavior of flexible polyurethane foam under multi-cycle compressive tests. A parameter
calibration methodology based on the separation of the measurement data of each compo-
nent force was established. This optimization process helps to avoid the parameter values
admixture problem during the phase of numeric calculations of the same component force.
The validity of the model results is checked according to the simulation accuracy, the phys-
ical significance of results and their agreement with the obtained force–displacement curve
identification.

Keywords Flexible polyurethane foam · Quasi-static behavior · Multiple cycle
compression test · Visco-elasticity · Memory effects · Fractional derivative approach ·
Hereditary approach

Nomenclature
x Displacement [mm]
ẋ Displacement rate [mm s−1]
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t Time [s]
T Total testing duration [s]
A Maximum displacement level [mm]
FL Total foam response during loading half-cycle [N]
FU Total foam response during unloading half-cycle [N]
EL Nonlinear elastic force during loading half-cycle [N]
EU Nonlinear elastic force during unloading half-cycle [N]
VD Visco-elastic damping component [N]
VR Visco-elastic residual force component [N]
Q Objective function [N2]
ai Visco-elastic damping coefficient of order i [N mm−1 s−1]
αi Visco-elastic damping parameter [Hz]
ki Elastic stiffness of order i [N mm−i]
ri Visco-elastic residual force coefficient of order i [N sβ m−1]
δx Displacement sampling [mm]
βi Fractional order
Γ Gamma function
M Order of fractional derivative terms
N Order of the visco-elastic kernel
P Order of elastic polynomial function
S Sampling number

1 Introduction

Flexible polyurethane foam is an important visco-elastic material widely used in various
engineering applications (Gibson and Ashby 1997). It has special mechanical characteris-
tics such as low density, high energy absorption capacity, low stiffness, and many others.
These prominent properties still stimulate car manufacturers to use soft polyurethane foam
as a major element in modern automotive seats. However, many of its mechanical behav-
ioral aspects are not yet completely understood. Beside nonlinearity and visco-elasticity,
soft foam displays a memory of past loading history and requires sufficient time to recover.
To characterize this complex mechanical behavior, a multi-cycle uniaxial compression test
in a quasi-static regime was considered in this study. This standard involves imposing three
consecutive cycles on a soft foam sample, each including a compression phase and decom-
pression one. The objectives of this test are to investigate the changes in foam response with
repetitive loading and to unveil an important part of the material’s behavioral potential (Puri
2004).

Among several analyses used in visco-elastic and cellular materials literature, the macro-
scopic analysis is particularly promising since it has yielded experimental and analytical
interpretations. It is based on the assumption that the foam specimen size is much greater
than that of the micro-structural units (cells) and that the behavior of foam is studied as a
continuum. Through this analysis, this work considered two main memory formulations:
the hereditary and the fractional derivative models. Both are derived from the differential
form models, where constitutive laws are given as a time differential equation of integer
orders (case of hereditary formulation, Ferry 1970) or of non-integer orders (case of frac-
tional derivative formulation, Bagley and Torvik 1983). The application of the Boltzmann
superposition principle in the integer order differential form models leads to the convolution
form models that include an integral term with a relaxation kernel. Del Piero and Pampolini
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(2012) proposed a rheological representation of the response of open-cell polymeric foams
and used the convolution formulation to model its dissipative elements. This model leads
to good numerical simulations for a series of experiments including the cyclic compression
tests. In hereditary models, the stress is assumed to be a convolution form of strain history
weighing by the relaxation kernel (Christensen 1982). Yu and Haddad (1994) showed that
the relaxation kernel is better defined as a sum of exponentials. Ippili et al. (2003) and White
et al. (2000) used a hereditary model with an exponential kernel to depict the visco-elastic
behavior of polyurethane foam in quasi-static and dynamic regimes, respectively. Jmal et al.
(2011) produced accurate predictions using this model for three types of polyurethane foam.

The fractional derivative approach is also widely used to characterize memory effects
in visco-elastic materials since it has theoretical and experimental reasons. In studies by
Nutting (1921), relaxation effects were found to be expressed by fractional powers of time,
and the stress–strain relationship in the molecular theory of Rouse (1953) was expressed in
fractional derivative terms. Deng et al. (2006) obtained accurate predictions of polyurethane
foam response undergoing multi-cycle compressive tests with a five-parameter fractional
derivative model. The aim of this paper is to develop mathematical formulations to faithfully
characterize the visco-elastic behavior of flexible polyurethane foam under uniaxial cyclic
compression tests in a quasi-static regime. The model formulations consider hereditary and
fractional derivative approaches. Each formulation is applied in its appropriate testing phase
according to a new interpretation of the force–displacement. An identification methodology
of parameters is developed based on separation of the measurement data of the elastic and
visco-elastic parts of the total foam response. The fitting accuracy and the model’s potential
to yield good and reasonable simulations are discussed.

2 Force–displacement curve of flexible polyurethane foam

2.1 Experimental setup

To study foam visco-elastic behavior in a quasi-static regime, uniaxial compressive tests
were conducted on polyurethane foam open cell samples obtained by cutting a virgin mat-
tress in cubic blocks. The mean properties of the material specimens are shown in Table 1.

The experimental setup representation for compression tests on foam specimens is shown
in Fig. 1. Experiments were executed in a universal testing machine useful for uniaxial
loading tests. During a single compression test, the foam sample was placed between two
parallel plates. The bottom plate which supports the material specimen was kept fixed, while
the top plate which is related to the load cell was programmed to displace down up to 80 %
of the foam initial height, and returned to zero position at the same cross-head speed. The
sampling rate was set to 16 s−1.

The material response and the compression displacement were measured by using, re-
spectively, a load cell that had a 500 N capacity and a displacement sensor. The testing ma-
chine provided a displacement resolution of 0.001 mm, and an accuracy of the testing force
less than 0.5 % of indicative value, and it had a speed range between 0.005 to 500 mm/min.
Once the first cycle of compression was completed, we observed a residual strain in the foam
sample, and contact between the top plate and the material was lost. For multiple compres-
sion cycles, the upper plate was programmed to rerun the loading and the unloading paths
after reaching the zero position. In this experimental study, three consecutive cycles were
considered.
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Table 1 Characteristics of tested foam samples

Foam type Flexible polyurethane foam

Designation Type A

Cell type Open

Density 28 kg/m3

Porosity 95 %

Pores size 200–250 μm

Specimen shape Cubic

Initial dimensions (L0) 75 mm

Fig. 1 Experimental setup of uniaxial compressive tests

2.2 Force–displacement curve of multiple consecutive cycles

In this investigation, we assumed a zero Poisson’s ratio for the material specimen. This as-
sumption is based on experimental observations of the tested foam specimen where it was
found that the material has a Poisson’s ratio very near to zero at 80 % compressions. Fur-
thermore, this hypothesis is adopted in several investigations including the study by Mills
and Gilchrist (2000), and Deng et al. (2004, 2006). As known, force–displacement curves
of flexible foam undergoing a cyclic loading include two visco-elastic manifestations: the
hysteretic and the memory effects. In Fig. 2, we show the typical response of a polyurethane
foam sample subjected to three consecutive cycles. The green lines denote the loading paths
and the red ones the unloading paths. In the cellular solids literature, the complex behavior
of soft polyurethane foam is assigned to visco-elasticity of polymer solid and to the matrix
structure of the material as well. According to the micro-mechanical analysis, Gibson and
Ashby (1997) suggested an identification of the loading part of the foam force–displacement
curve according to the deformation mechanisms that the material microstructure units (cells)
undergo. Through this identification, the curve can be subdivided into three compression re-
gions: linear, buckling, and densification. Each corresponds to a specific compression mech-
anism of cells struts.

In this paper, we propose a new identification of the force–displacement curve based
on experimental observations of visco-elastic manifestations in the macro-level behavior of
polyurethane foam.

2.3 Phenomenological identification of the force–displacement curve

According to several authors (Bagley and Torvik 1983; Singh 2000; Ippili et al. 2003; Del
Piero and Pampolini 2012), the total foam response to uniaxial compression is assumed to
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Fig. 2 Typical response of polyurethane foam after three consecutive cycles

Fig. 3 Compressive force–displacement curves obtained with different cross-head speeds

be a sum of a linear visco-elastic component and a nonlinear elastic component. However,
most of the behavioral characteristics of these components are not completely understood.
It is commonly known that the visco-elastic force which, contrary to the elastic force, is
affected by the variation of the displacement rates. Therefore, comparing the shapes and
the magnitudes of different parts of force–displacement curves produced by different time
durations tests helps to clearly identify the regions where each component lies. In Fig. 3,
we plotted the experimental results of uniaxial compressive tests performed with different
loading cross-head speeds. Each plot represents the mean curve of test results executed on
four foam specimens. According to Gauch (2006), four repeats of each test guarantee a
70.5 % probability that the mean curves are reproducible.

From Fig. 3, we observe that all curves have almost the same shape. Yet, some parts of
the curves show a significantly high dependence on the loading cross-head speed, while it is
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completely or partially absent in others. Hence, we identify four regions in the loading and
unloading curves: (i) linear elastic, (ii) visco-elastic damping, (iii) elastic spring back, and
(iv) recovery.

The linear elastic region does not at all depend on the loading cross-head speed which
makes the foam response completely elastic. This is because the air contained within the
cells remains motionless. This region fades starting from the second cycle in multi-cycle
tests. The visco-elastic damping region is highly dependent on the displacement rate. The
higher the displacement rate, the more elevated the material response magnitude. Hence, the
visco-elastic component exists in this region with the elastic one. Here, the dependence on
the loading cross-head speed is linked to the damping of the foam by the air exhaust through
the material pores.

The displacement rate is not very important to the elastic spring back region. The elastic
return does not change noticeably in all loading cross-head speeds. Here, the weak depen-
dence is caused by the residual strain at the loading phase. This phenomenon shows the
visco-elasticity of the polyurethane matrix.

In the recovery region, the machine top plate loses contact with the foam sample. Thus,
the material response is entirely absent. Here, the material takes many hours, or even days, to
recuperate its initial dimensions. Since the response is not instantaneous and residual effects
keep decreasing with time, the recovery region seems to have only a purely visco-elastic
component.

Figure 3 shows that the four regions are clear-cut in the monocycle’s curve. However,
the linear elastic and the recovery regions appear only in the first cycle and fade in the
subsequent cycles of a multi-cycle test.

In the next section, the formulations of the model that refer to this new curve identifica-
tion are established to characterize the visco-elastic behavior of polyurethane foam.

3 Modeling the foam response under multiple-cycle tests

According to the curve identification described above, the elastic component is present in
all cycles and during both the loading and the unloading phases since it does not depend
either on the displacement rate or the number of cycles; while the visco-elastic component is
manifested during the loading phase of the first cycle by a visco-elastic damping component
and during the unloading phase by a visco-elastic residual force component. Hence, the total
force exerted by the foam specimen during the loading and the unloading phases of the first
cycle is respectively expressed as:
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EL1 and EU1 are the elastic components whereas VD1 and VR1 are the visco-elastic compo-
nents.

For subsequent cycles, the foam block is obviously not fully recovered. Thus the visco-
elastic residual force component exists in the total foam response during the unloading as
well as the loading phases for the second and third cycles. Hence, the total foam response
during both phases of the second cycle is respectively expressed as:
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Fig. 4 Imposed and measured displacement of cyclic compressive uniaxial test

In the same way, the visco-elastic residual force component of the second cycle exists in
the total foam response of the third loading phase. Thus, its expression is given as:
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With reference to phenomenological identification of the force–displacement curve,
visco-elasticity is manifested by various aspects and origins. Hence, the visco-elastic com-
ponents during loading and unloading must be modeled using different visco-elastic ap-
proaches, and then different mathematical formulations.

3.1 Displacement expressions

For a quasi-static and multi-cycle compression test with a constant loading cross-head speed,
the displacement x(t) is a linear function of time in each half cycle. Figure 4 shows the
imposed and the measured displacement of three consecutive compressive cycles of the
foam specimen.

For the first cycle, the path of the loading phase extends from 0 to T I/2 seconds, whereas
the path of the unloading phase extends from T I/2 to (T I − θ ) seconds. Thus, during
the last θ seconds, the top plate loses contact with the foam specimen due to visco-elastic
behavior of the material (Puri 2004). For the second and third cycles, the path of the loading
phase extends from θ seconds to (T I − θ ) seconds. Thus, the upper plate takes nearly the
same delay (θ seconds) to regain contact with the material specimen. As shown in Fig. 4,
there is a time lag between the zero positions of the measured displacement history and
the imposed displacement. This time lag engenders a gap between the force–displacement
curves of the first cycle and subsequent cycles, and it is graphically illustrated in Fig. 2
through the recovery regions. From the experimental point of view, this gap reflects the no
data phase. In this study, we suggest to cure this gap by omitting the recovery regions as
detailed in assumption (a) of Sect. 4.1.
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According to Fig. 4, the expression of the measured displacement is deduced as:

x(t) =
{

ẋ · t 0 ≤ t ≤ T
2 ,

ẋ · (T − t) T
2 ≤ t ≤ T .

(7)

Here ẋ = 2A/T is the displacement rate, A the considered maximum displacement, and T

the considered period of one cycle test.

3.2 Visco-elastic damping component

The hereditary model is the most appropriate approach to describe the pneumatic damping
of foam during the loading half-cycle. Its formulations are drawn from the general differ-
ential consecutive law that relies on certain combinations of springs and dashpots (Ottosen
and Ristinmaa 2005). In this modeling approach, the force, at a given time, is explicitly
dependent on the integrated effect of previous displacement states, appropriately weighted
by the relaxation kernel (Christensen 1982). Many authors including Yu and Haddad (1994)
and Muravyov and Hutton (1997) assumed the kernel to be of exponential terms. Hence, the
expression of the visco-elastic damping component is given by:

VD(t) =
∫ t

0

N∑

i=1

aie
−αi (t−τ) · ẋ(τ ) dτ (8)

where ai and αi are the visco-elastic parameters and N is the visco-elastic kernel order. The
developed expression is deduced by the combination of Eqs. (7) and (8). Thus, we obtain
the visco-elastic damping expression in displacement as follows:
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− 1
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i

· (1 − e−αi · x(t)
ẋ
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3.3 Visco-elastic residual force component

Physically, the presence of the remaining strain after loading indicates that a residual force is
created within the foam block, and it prevents the material from instantaneous full recovery.
In fact, this residual force is generated by the quantity of energy stored in the material matrix
during the loading half-cycles and released progressively after loading. Although this behav-
ior resembles plasticity, it manifests the foam’s visco-elastic properties that can be seen in
static conditions, evidently its relaxation and creep behavior. However, during the recovery
phase, the residual force decreases gradually over time and the material specimen regains
its initial undeformed state. This behavior of recovery is physically more related to the phe-
nomenon of relaxation rather than that of creep. For a multi-cycle test, the stored energy
accumulates in microstructure elements of foam until it becomes full. Thus, in each cycle,
a new residual force component is produced in the foam block but with lower magnitude
compared with that of the previous cycle.

Mathematically, the fractional derivative approach is particularly favorable to model this
visco-elastic effect because it has significant mathematical interpretations (Koeller 1984).
Bagley and Torvik (1983) proposed a general form expressed as a sum of an elastic term
and a fractional derivative term. In this work, we assume that the visco-elastic residual force
component is an additive sum of only fractional derivative terms since the elastic term is
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already contained in the elastic component. Thus, the expression of the residual force com-
ponent is given as:

VR(t) =
M∑

i=1

ri · Dβi x(t) =
M∑

i=1

ri · d

dt

[
1

Γ (1 − βi)

∫ t

0
(t − τ)−βi · x(τ) dτ

]
. (10)

Here Γ (x) is the complete gamma function; M is the order of the summation; βi and ri are
respectively orders and coefficients of fractional derivative terms.

It can be observed that the fractional derivative operator (as used in Eq. (10)), may de-
scribe the memory effects of loading history since its mathematical formulation contains
three needed tools to characterize the visco-elastic behavior: (i) the time derivative that
specifies the changes of the material response over time, (ii) the convolution integral which
signifies that the weight of residual effects in the present state depends on the location of
previous disturbance in the time scale, and (iii) the fractional derivative order that involves
an intermediate behavior between purely viscous and purely elastic properties. The devel-
oped expression is deduced by the combination of Eqs. (7) and (10). Therefore, we obtain
the residual force expression in displacement as follows:
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·
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1 − x(t)

2A

)(1−βi )

− 2 ·
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1

2
− x(t)

2A

)(1−βi )
}
. (11)

We note that mathematically both hereditary and fractional derivative approaches take
a convolution form with different relaxation kernels since the hereditary model is derived
from a differential equation with integer order while the fractional model is derived from
the same constitutive law but with a non-integer order. This mathematical dissimilarity in
relaxation kernels allows characterizing two different aspects of viscoelasticity in foam be-
havior: the viscoelastic damping effects and the viscoelastic residual effects. Thus, it appears
that the hereditary approach is, through its exponential relaxation kernel, more appropriate
to describe the short memory effects displayed on viscoelastic damping response of flex-
ible polyurethane foam during loading phases, whereas the fractional derivative approach
is, through its relaxation kernel, well suited to characterize the long memory and historical
effects of the material especially during the unloading phases.

3.4 Elastic component

In the nonlinear elasticity literature, soft polyurethane foams have often been considered as
rubber-like materials. This has stimulated many authors to use hyper-elastic models based on
the use of the strain-energy function in the constitutive formulation to characterize nonlin-
ear elasticity in flexible foam behavior. Among these models are the Ogden model (1972),
the Yeoh model (1993), the Blatz–Ko model (1962), and many others. Yet, these models
have generally been applied in numeric calculations and the finite element method. Pam-
polini and Del Piero (2008) proposed a model in which the open cell polyurethane foam
is represented as a chain of elastic springs in order to identify the strain localization in the
material. In this study, the nonlinear elastic component may well be expressed in terms
of a polynomial function since it gives accurate results in the fitting process. Joshi et al.
(2010) introduced a ninth order polynomial model to predict the nonlinear elastic stress in
polyurethane foam response. In this modeling work, polynomial function with order P is
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adopted to formulate the analytical expression of the nonlinear elastic component force as
follows:

E
(
x(t)

) =
P∑

i=0

ki · (x(t)
)i

. (12)

Here ki , i = 0, . . . ,P , are the elastic stiffness parameters.
Indeed, the nonlinear elastic component of Eq. (12) is no more than a manifestation of the

hyper-elastic response of foam in one dimension since its formulation allows describing the
nonlinear elastic behavior of the material undergoing uniaxial large deformation reasonably
well. Despite the fact that in energetic representations a single model allows representing
various loading cases (Mills and Gilchrist 2000), these models do not actually account for
visco-elastic effects. For this reason, the principle of modeling each effect apart is mainly
adopted in this study.

4 Identification process

The cyclic force–displacement curves with the displacement cross-head speed of
23.6 mm/min are shown in Fig. 5. After setting to zero (as indicated in Figs. 4 and 5)
the considered maximum displacement was 58 mm, and the test duration was 295 seconds.

4.1 Adopted assumptions for the identification method

In the present study, the identification process is based on three main assumptions:

(a) The linear elastic and the recovery regions are omitted from the identification algorithm
for many reasons. First, the linear elastic region is present only in the first loading half-
cycle while it disappears in subsequent loading phases. Second, the recovery region
(which indicates in itself the loss of contact between the material specimen and the
top plate of the testing machine) is, by the same way, present in the first unloading half-
cycle, while it fades from the second unloading phase. Third, the end of the linear elastic
region of the first cycle corresponds, graphically, to the beginning of the subsequent
cycles loading phase and at the same time to the beginning of recovery regions during
the unloading half-cycles. This confirms that the nonlinear elastic component, already
existing in both loading and unloading phases of the second and third cycles, does not
exist in the linear elastic region of the first cycle.

(b) The visco-elastic damping component depends only on the displacement rate and the
maximum compression level. It is here not influenced by the number of cycles since
we have the same displacement stroke in each loading phase (according to the first
assumption and Fig. 5). Hence, the damping component is assumed to be the same in all
loading half-cycles, and we have

VD1
(
x(t)

) = VD2
(
x(t)

) = VD3
(
x(t)

) = VD

(
x(t)

)
. (13)

(c) The nonlinear elastic component is dependent neither on the compression cross-head
speed nor the number of cycles, and it has no hysteretic effects during unloading half-
cycles. Thus, this component is the same whatever the testing phase, and we have

EL1
(
x(t)

) = EU3
(
x(t)

) = E
(
x(t)

)
. (14)
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Fig. 5 Experimental data for a three-cycle uniaxial compressive test with the loading cross-head speed of
23.2 mm/min (curves are settled to zero after the elimination of the linear elastic and recovery regions)

The third assumption allows removing the elastic effects E by subtracting the response
of the second loading half-cycle from that of the first unloading half-cycle. Then, we obtain
the measurement data of the damping component force as follows:

VD

(
x(t)

) = FL2

(
x(t)

) − FU1

(
x(t)

)
. (15)

The second hypothesis helps to remove the damping effects VD by subtracting the re-
sponse of the second loading half-cycle from that of the first loading half-cycle. This allows
determining the measurement data of the visco-elastic residual force component of the first
unloading phase VR1 as follows:

VR1
(
x(t)

) = FL2
(
x(t)

) − FL1
(
x(t)

)
. (16)

The second and the third visco-elastic residual force components are calculated by es-
tablishing the difference force respectively between the second and the first and the third
and the second unloading phases. Thus, the expressions of these components are given
as:

VR2
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)
, (17)

VR3

(
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) = FU3

(
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) − FU2

(
x(t)

)
. (18)

Respecting the nonlinear elastic component force, it can be deduced by establishing the
difference between the response of the first loading half cycle and the damping component
measurement data as follows:

E
(
x(t)

) = FL1

(
x(t)

) − VD

(
x(t)

)
. (19)

Therefore, the rheological equations giving the expressions of the total force exerted by
the foam sample and its components during the six half-cycles are assumed to be:
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The subsequent stage contains a validation of the model formulation by simulating the
total foam force of the three consecutive cycles.

4.2 Optimization algorithm and methods

The flowchart of the parameter identification process is described in Fig. 6. In each stage,
the optimization system of parameters consists of the fitting of the mathematical model
with measurement data. Numeric calculations involve minimizing a cost function which
represents the least mean square error between measurement data and analytical formula-
tions of the model. These numeric calculations were executed in Matlab, by exploiting the
optimization toolbox and the curve fitting toolbox. The ‘lsqnonlin’ function provides two
deterministic methods to find minimums of nonlinear least squares problems: Trust region
reflective and Levenberg–Marquardt. Both methods were used to estimate the model pa-
rameters. Curve fitting toolbox was also exploited to predict the stiffness parameters of the
elastic component force as well as giving the starting point values. The major advantage of
the identification methodology, presented in the flowchart of Fig. 7, is that it helps to extract
the measurement data of each component force one by one, and then to calibrate its param-
eters separately. This advantage allows avoiding the admixture problem that occurs often
in the difference force method, and that requires selecting among the found minimums the
one which gives a physical meaning and verifies the thermodynamic consistency. In the case
of this study, the deterministic methods are well suited to solve the optimization problems,
since we have a known prior shape of the curve of each component force. Furthermore,
these methods take relatively short calculation time compared with random methods (e.g.,
genetic algorithm, Monte Carlo, and Nelder–Mead algorithm). In general, the calculation
time depends on both the initial guess (provided by the curve fitting toolbox) and the stop-
ping criterion (which was set as 10−20 in our cases).

4.3 Thermodynamic consistency of the model parameters

The thermodynamic consistency requires that the established model give simulations that
satisfy causality and stability conditions. This implies that the dissipated energy in deform-
ing the foam block should be non-negative. According to the approach proposed by Bagley
and Torvik (1986), the real and imaginary parts of the frequency response of the linear part
of the model (Deng et al. 2004) must be non-negative. For the first cycle, the respective
Fourier transforms GL1(jω) and GU2(jω) of the linear parts of the pulse model responses
of the loading and the unloading phases are:
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Fig. 6 Algorithm of the parameter identification process

GL1(jω) = k1 +
3∑

n=1

an

jω − αn

, (21)

GU1(jω) = k1 +
3∑

m=1

rm(jω)βm. (22)

As indicated above, the causality and stability conditions involve that the real and imag-
inary parts of GL1(jω) and GU2(jω) must be positive. As the material is compressed
in quasi-static regime and then with low frequency, the thermodynamic constraints of the
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Fig. 7 Experimental data and estimated visco-elastic damping force

model parameters can be obtained by limiting the study to the case of ω → 0. Therefore, in
the case of low frequency, we obtain the following thermodynamic constraints of the model
parameters:

k1 − a1 · Re(α1)

α1ᾱ1
− a2 · Re(α2)

α2ᾱ2
− a3 · Re(α3)

α3ᾱ3
≥ 0 (23)

a1 · Im(α1)

α1ᾱ1
+ a2 · Im(α2)

α2ᾱ2
+ a3 · Im(α3)

α3ᾱ3
≥ 0 (24)

k1 ≥ 0 (25)

We should note that exactly the same equations could be found if the cases of the second
or the third cycles were addressed. Finally, the mathematical constraints of Eqs. (23), (24),
and (25) should be proven by the obtained parameters to ensure that the proposed model
meets the thermodynamic constancy.

4.4 Prediction of the visco-elastic damping component

In this step, removing elastic and residual effects from the second loading response results in
an expression depending only on the damping parameters. The measurement data is acquired
by subtracting the first unloading response from the second total loading force at the same
compression level.

Equations (9) and (15) were utilized in the optimization algorithm. The visco-elastic
damping parameters are identified by minimizing the cost function QI expressed as

QI(a1, α1, . . . , aN ,αN) =
S∑

i=1

(
VDdata(i · δx) − VD(i · δx)

)2
. (26)

Here S is the sampling number (A = S · δx). The measurement and the predicted data of the
visco-elastic damping force are plotted in Fig. 7.
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Fig. 8 Measurement and predicted data of the visco-elastic residual force of the first unloading half-cycle

The values of optimized parameters are contained in Table 2. It is found that a good
simulation is obtained by the third order hereditary model. The fitting results of the second
order model were not satisfactory. In fact, the model prediction accuracy is obtained by
considering the parameters a1, a2, and a3 to be real, while the parameters α1, α2, and α3

chosen to be complex.

4.5 Prediction of the visco-elastic residual force component

The visco-elastic residual force component data is calculated by using Eqs. (16), (17) and
(18). The analytical formulation is given by Eq. (11). The visco-elastic residual force pa-
rameters are identified by minimizing the cost function QII expressed as

QII(R1, β1, . . . ,RL,βL) =
S∑

i=1

(
VRdata(i · δx) − VR(i · δx)

)2
. (27)

The measurement and the predicted data of the visco-elastic residual force are illustrated
in Figs. 8 and 9.

The values of optimized parameters are grouped in Table 3. It is found that the third order
fractional derivative model provides acceptable simulations while the second order model
did not produce accurate calibration results.

4.6 Prediction of the nonlinear elastic component

Estimation calculations were executed by minimizing the cost function QIII expressed as

QIII(k1, . . . , k7) =
S∑

i=1

(
Edata(i · δx) − E(i · δx)

)2
. (28)

Edata is the reference data of the elastic component generated from Eq. (19), and E is the
analytical expression given by Eq. (12). The plots of the measurement and the estimated
data of the nonlinear elastic force are shown in Fig. 10.
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Fig. 9 Measurement and predicted data of the visco-elastic residual force of the second and third unloading
half-cycles

Fig. 10 Elastic component data and calibrated curves with different polynomials orders

Parameter optimization is performed by exploiting the “lsqcurvefit” tool of Matlab. We
mention here that different polynomial orders were considered in the optimization process.
As shown in Fig. 10, it is found that the polynomial model with order P = 7 yields an
optimal simulation. The estimated stiffness parameters are illustrated in Table 4.

5 Validation results and discussion

The following Tables 2–4 show the resulting values of the model identified parameters.
In Fig. 11, we show the experimental data and the predicted results of total foam re-

sponse under a cyclic uniaxial compressive test. From Tables 2 and 4, it is clear that the
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Table 2 Values of estimated damping parameters

Parameters Units Values

a1 (N m s−1) −2.656 × 10−12

a2 (N m s−1) −0.207

a3 (N m s−1) 5.576

Re(α1) (s−1) −0.192

Im(α1) (s−1) 0.177

Re(α2) (s−1) 0.055

Im(α2) (s−1) 0.046

Re(α3) (s−1) 0.319

Im(α3) (s−1) 0.810

Table 3 Values of estimated residual force parameters

Parameters Units First cycle Second cycle Third cycle

r1 (N sβ1 m−1) 2876.676 522.936 229.6489

r2 (N sβ2 m−1) 7.962 1.306 0.6214

r3 (N sβ3 m−1) 8.624 × 10−4 1.106 × 10−4 6.264 × 10−5

β1 – 0.9926 0.9917 0.9939

β2 – −0.1528 −0.1774 −0.1585

β3 – −1.9594 −2.0282 −1.9771

Table 4 Values of estimated elastic stiffness parameters

Parameters Units Values

k0 (N) 14.910

k1 (N m−1) 2.987

k2 (N m−2) −0.598

k3 (N m−3) 0.0557

k4 (N m−4) −0.0027

k5 (N m−5) 7.0733 × 10−5

k6 (N m−6) −9.410 × 10−7

k7 (N m−7) 5.0053 × 10−9

thermodynamic conditions of Eqs. (23), (24), and (25) are verified by the parameter val-
ues.

However, the approach of Sect. 4.3 conduces to mathematical constraints that do not
include all parameters. For further discussion of the model results validity, we propose ex-
amining three efficiency requirements: (i) accuracy of predicted simulations with experi-
mental data, (ii) capacity to reproduce visco-elastic phenomena engendered in the response
of flexible polyurethane foam undergoing a cyclic uniaxial compressive test, and (iii) phys-
ical significance of results and accordance with the phenomenological identification of the
force–displacement curve.
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Fig. 11 Experimental and predicted total response of foam

Table 5 Fit statistics

Optimization process SSE R-square Adj. R-square RMSE

Step 1 326.204 0.958 0.9553 0.4758

Step 2 127.754 0.9886 0.9884 0.2975

Step 3 657.685 0.996 0.996 0.6754

5.1 Accuracy of the model fit

As shown in Figs. 7–10, it is clear that the model formulations and the optimization process
lead to accurate simulation results with little bias. The fit statistics relative to each identifi-
cation algorithm step are illustrated in Table 5.

As shown in Table 5, we note that the R-square values of the optimization process steps
are very close to 1. This indicates that the major proportions of variance of each of the three
measurement data are considered by the model. Moreover, the adjusted R-square values af-
firm that prediction results have good quality, since fits explain at least 95 % of the total
variation in experimental data about the average values. From Fig. 11, it should be men-
tioned that the bound point between the loading and the unloading phases is slightly shifted
in the simulated curves. This is due to a weak failure at this point induced from the identifi-
cation process of the elastic component as it appears in Fig. 10. In fact, this does not affect
the global simulated response as it takes a local point. To sum up, the model simulations of
the three cycles display good accuracy.

5.2 Capacity of reproducing visco-elastic phenomena

The major important manifestation of soft foam visco-elastic behavior during multi-cycle
tests is the drop in the material reacting force between the first and the second cycle; how-
ever, this change recurs slightly from the second to third cycle (Rehkopf et al. 1994). This
phenomenon is perfectly reproduced by the model as visco-elastic residual effects are ac-
counted for by its formulations. Moreover, the identification process allows calibrating the
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Fig. 12 Schematic representation of overall foam response components directions

magnitude of the residual force in each testing phase. Modeling this component force makes
it possible to understand and characterize another visco-elastic manifestation which is the
remaining strain effects when the loading force is removed. Concerning the hysteretic ef-
fect, it is explained by the damping component force that considers the two mechanisms of
energy dissipation in flexible foams: the flow of the air in the material cells and the friction
within the cellular matrix.

5.3 Physical significance of results

For modeling purposes, analytical formulations were founded on the phenomenological
force–displacement curve identification (explained in the first section). Agreement between
prediction results and the hypothesis of the phenomenological curve identification is a strong
indicator of the model validity.

Concerning the residual force components, it can be clearly seen in Fig. 9 that the second
and the third residual force components curves have identical shapes and close magnitudes.
This repeatability affirms the good agreement between experiments and model formulations.
In addition, the difference of magnitude between the first residual force component and sub-
sequent components is a visco-elastic manifestation that we seek to characterize. Moreover,
it can be observed from Figs. 7–9 that the residual force component force has a relatively
low magnitude compared to damping and elastic components. This result is reasonable and
in good agreement with phenomenological assumptions as the elastic component is strongly
dominant during the unloading phase in soft foam response. Otherwise, the magnitude of
the first residual force is very faithful to experimental observations since the material re-
stores immediately up to 96 % of its initial height. Yet, the remaining strain corresponds
to the length of recovery region. The residual force can also be graphically determined by
finding the force in the linear elastic region corresponding to the beginning of the second cy-
cle. Moreover, it was shown in Figs. 8 and 9 that residual forces have negative values. This
indicates that residual forces are opposed to elastic force during unloading phases. From
an experimental viewpoint, this opposition can be explained likewise by the existence of
remaining strain effects just after each unloading half-cycle. Hence, the visco-elastic resid-
ual force is the physical origin of the loading history dependence of polyurethane foam. In
Fig. 12, we illustrate a schematic representation accounting for the directions of existing
forces in overall foam response during compression and decompression half-cycles.

Therefore, the memory effects in soft polyurethane foams correspond to the visco-elastic
nature of the polymer matrix and its capacity to store energy during the loading phase and
to liberate this energy logarithmically when the material is completely unloaded.

If we address the changes of the residual force parameters with the number of cycles, we
can clearly see that parameters r1, r2, and r3 decrease from the first to the second cycle and
afterwards from the second to the third cycle. This decrease in values of these parameters
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may be attributed to the stress softening behavior in flexible polyurethane foam caused by
repetitive loading. However, the values of parameters β1, β2, and β3 decrease slightly from
the first to the second cycle, and increase again a bit from second to third cycle. These
small fluctuations (around 0.2 % for parameter β1, 10 % for parameter β2, and 3 % for
parameter β3) indicate that the parameter βi can be considered almost independent of the
number of cycles.

Respecting the damping force curve, it can be clearly seen from Fig. 7 that three regions
can be distinguished: region of the first peak, plateau region, and region of the second peak.
The first region indicates that the air within the material microstructure is still motionless,
and visco-elasticity is exhibited by the polymer matrix response. It can be considered as
the yield point since it comes next to linear zone. In the plateau region, the damping force
is governed by the air flow rate through the polymer matrix and the polyurethane foam
structure (closed cell or open cell). At the second peak, the foam sample is compacted; it
manifests as a rubber-like solid.

6 Conclusion

A combined model with two visco-elastic components and an elastic component was estab-
lished to predict a multi-cycle behavior of soft polyurethane foam undergoing quasi-static
uniaxial compressive tests. The elastic component was modeled as a seventh order polyno-
mial function. The visco-elastic components were modeled with two different approaches:
the hereditary approach was used to formulate visco-elastic damping component, while the
fractional derivative approach was utilized to formulate the visco-elastic residual force com-
ponent. A parameter optimization process based on the isolation of each component mea-
surement data was developed to calibrate its parameters. This identification methodology
helps to avoid the admixture problem which occurs in the difference force method. The
obtained results were accurate when compared with experiments, and the estimated compo-
nent forces have reasonable physical significances and were in agreement with new force–
displacement curve identification presented in the first section. However, a generalization of
this model requires checking its ability to cover a wide range of loading rates in a quasi-static
regime.
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