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Abstract We introduce complex order fractional derivatives in models that describe vis-
coelastic materials. This cannot be carried out unrestrictedly, and therefore we derive, for
the first time, real valued compatibility constraints, as well as physical constraints that lead
to acceptable models. As a result, we introduce a new form of complex order fractional
derivative. Also, we consider a fractional differential equation with complex derivatives,
and study its solvability. Results obtained for stress relaxation and creep are illustrated by
several numerical examples.

Keywords Real and complex order fractional derivatives · Constitutive equations ·
The Laplace transform · The Fourier transform · Thermodynamical restrictions

1 Introduction

Fractional calculus is a powerful tool for modeling various phenomena in mechanics,
physics, biology, chemistry, medicine, economy, etc. Last few decades have brought a rapid
expansion of the non-integer order differential and integral calculus, from which both the
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atanackovic@uns.ac.rs

S. Pilipović
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theory and its applications benefit significantly. However, most of the work done in this field
so far has been based on the use of real order fractional derivatives and integrals. It is worth
to mention that there are several authors who also applied complex order fractional deriva-
tives to model various phenomena, see the work of Machado or Makris, (Machado 2013;
Makris 1994; Makris and Constantinou 1993). In all of these papers, restrictions on consti-
tutive parameters that follow from the Second Law of Thermodynamics were not examined.
In the analysis that follows, this issue will be addressed.

The main goal of this paper is to motivate and explain basic concepts of fractional cal-
culus with complex order fractional derivatives. Throughout the paper, we will investigate
constitutive equations in the dimensionless form, for all independent (t and x) and depen-
dent (σ and ε) variables. Thus, consider a constitutive equation given by (1), connecting the
stress σ(t, x) at the point x ∈R and time t ∈ R+ with the strain ε(t, x):

N∑

n=0

an 0D
αn
t σ (t, x) =

M∑

m=0

bm 0D
βm
t ε(t, x) (1)

that contains fractional derivatives of complex order α1, . . . , αN ,β1, . . . , βM . The precise
definition of the operator 0D

η
t of fractional differentiation with respect to t is given below. In

order to make a useful framework for the study of (1), we involve two types of conditions: (i)
real valued compatibility constraints, and (ii) thermodynamical constraints. Since this paper
deals only with the well-posedness of constitutive equations of type (1) and their solvability
for strain if stress is prescribed, we may, without loss of generality, assume that both σ and ε

are functions only of t . Also, equation (1) can be seen as a generalization of different models
considered in the literature so far (see, e.g., Atanacković et al. 2014; Caputo and Mainardi
1971a, 1971b; Gonsovski and Rossikhin 1973; Hanyga 2002a, 2002b; Mainardi et al. 2007;
Rossikhin and Shitikova 2001a), since by taking all αn and βm to be real numbers, the
problem is reduced to the real case studied in the mentioned papers.

Our results will show that constitutive equations of the form (1) may lead to creep and
stress relaxation curves that are not monotonic. We note that the conditions of complete
monotonicity required in, e.g., Amendola et al. (2012), Fabrizio and Morro (1992), Mainardi
(2010) turn out not to be necessary but rather sufficient to meet the thermodynamic restric-
tions. It seems that conditions of monotonicity are stronger than the conditions following
from the Second Law of Thermodynamics in the form of Bagley and Torvik (1986) anal-
ogously as in Fabrizio and Lazzari (2014) where it is shown that the asymptotic stability,
for a certain class of constitutive equations, requires more extensive conditions on the co-
efficients compared with the restrictions that the classical formulation of the Second Law
of Thermodynamics imposes. Non-monotonic creep curves were observed experimentally,
however, such a behavior was attributed to inertia either of the rod itself or of the rheometer.

The paper is organized as follows. In Sect. 2, we investigate conditions leading to con-
stitutive equations containing complex derivatives of stress and strain that can be used in
viscoelastic models of the wave equation. More precisely, we derive restrictions on parame-
ters in constitutive equation of the form (1) under which the Laplace and Fourier transforms,
as well as their inverses, of real-valued functions will remain real-valued. Also, in order to
impose the validity of the Second Law of Thermodynamics, we follow the procedure pre-
sented in Bagley and Torvik (1986), and obtain additional restrictions on model parameters
in constitutive equations. As a result, we shall introduce a new form of the fractional deriva-
tive of complex order. Then, in Sect. 3, we treat the fractional Kelvin–Voigt complex order
constitutive equation for viscoelastic body, find thermodynamical restrictions, and prove suf-
ficient conditions for its invertibility. Several numerical examples are presented in Sect. 4,
as an illustration of creep and stress relaxation in viscoelastic materials.
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To the end of this section, we recall basic definitions and results that will be used in
our work. Fractional operators of complex order are introduced as follows (see Love 1971;
Samko et al. 1993): For η ∈ C with 0 < Reη < 1, definition of the left Riemann–Liouville
fractional integral of an absolutely continuous function on [0, T ], T > 0 (y ∈ AC([0, T ]))
coincides with the case of real η, i.e., 0I

η
t y(t) := 1

Γ (η)

∫ t

0
y(τ)

(t−τ)1−η dτ , t ∈ [0, T ], where Γ is
the Euler gamma function. If η = iθ , θ ∈ R, then the latter integral diverges, and hence one
introduces the fractional integration of imaginary order as

0I
iθ
t y(t) := d

dt
0I

1+iθ
t y(t) = 1

Γ (1 + iθ)

d

dt

∫ t

0
(t − τ)iθy(τ ) dτ, t ∈ [0, T ].

However, in both cases the left Riemann–Liouville fractional derivative of order η ∈ C with
0 ≤ Reη < 1 is given by

0D
η
t y(t) := d

dt
0I

1−η
t y(t) = 1

Γ (1 − η)

d

dt

∫ t

0

y(τ)

(t − τ)η
dτ, t ∈ [0, T ].

The basic tool for our study will be the Laplace and Fourier transforms. In order to
have a good framework, we will perform these transforms in S ′(R), the space of tempered
distributions. It is the dual space for the Schwartz space of rapidly decreasing functions
S(R). In particular, we are interested in the space S ′+(R) whose elements are of the form y =
P (D)Y0, where Y0 is a locally integrable polynomial bounded function on R that vanishes
on (−∞,0), and P (D) denotes a partial differential operator.

The Fourier transform of y ∈ L1(R) (or y ∈ L2(R)) is defined as

Fy(ω) = ŷ(ω) =
∫ ∞

−∞
e−iωxy(x) dx, ω ∈R. (2)

In the distributional setting, one has 〈Fy,ϕ〉 = 〈y,Fϕ〉, y ∈ S ′(R), ϕ ∈ S(R), where Fϕ is
defined by (2). For y ∈ L1(R) with y(t) = 0, t < 0, and |y(t)| ≤ Aeat , a,A > 0, the Laplace
transform is given by

Ly(s) = ỹ(s) =
∫ ∞

0
e−st y(t) dt, Re s > a.

If y ∈ S ′+(R) then a = 0 (since y is bounded by a polynomial). Then Ly is a holomorphic
function in the half plane Re s > 0 (see, e.g., Vladimirov 1984).

Let Y (s), Re s > 0, be a holomorphic function bounded by a polynomial in that domain.
Then, for a suitable polynomial P , Y (s)/P (s) is integrable along the line Γ = (a − i∞,

a + i∞), and the inverse Laplace transform of Y is a tempered distribution y(t) =
P ( d

dt
)Y0(t), where Y0(t) = L−1[Y ](t) = 1

2πi

∫
Γ

Y(s)

P (s)
est ds.

Let y ∈ S ′+. Recall:

F
[

dn

dxn
y

]
(ω) = (iω)nFy(ω) (ω ∈R), L

[
dn

dtn
y

]
(s) = snLy(s) (Re s > 0), n ∈N,

F
[

0D
α
x y

]
(ω) = (iω)αFy(ω) (ω ∈ R), L

[
0D

α
t y

]
(s) = sαLy(s) (Re s > 0), α ∈C.
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2 Linear fractional constitutive equations with complex derivatives

In what follows, we shall denote by α and β the orders of fractional derivatives. α will
be assumed to be a real number, while β will be an element of C which is not real, i.e.,
β = A + iB , with B �= 0. Also, we shall assume that 0 < α, A < 1.

2.1 Real valued compatibility constraints

Similarly as in the real case (see Atanacković et al. 2011), it is quite difficult to begin with
a study of the most general case of (1). Therefore, in order to try to recognize the essence
of the problem and find possibilities for overcoming it, we shall first concentrate to simpler
forms of constitutive equations that contain complex derivatives. Consider the following
generalization of the Hooke law in the complex setting:

σ(t) = b 0D
β
t ε(t), (3)

where β ∈ C and b ∈ R. In order to find restrictions on parameters b and β in (3) which
yield a physically acceptable constitutive equation, we shall verify the next two conditions:
For real strain ε, the stress σ has to be real valued function of t . We call this a real-valued
compatibility requirement. Thermodynamical restrictions will result from the Second Law
of Thermodynamics, and will be studied in the next section. Note that in the case of con-
stitutive equations with only real-valued fractional derivatives, the real-valued compatibility
requirement always holds true, while the thermodynamical restrictions had to be investigated
(cf. Atanacković et al. 2011).

Theorem 2.1 Let ε ∈ AC([0, T ]) be real-valued, for all T > 0, 0 < A < 1 and b �= 0. Then
function σ defined by (3) is real valued if and only if β ∈R.

Proof It follows from (3), with β = A + iB , and 1/Γ (1 − β) = h + ir , that

Imσ(t) = b
d

dt

∫ t

0
ε(t − τ)τ−A

(
r cos(B ln τ) − h sin(B ln τ)

)
dτ, t ≥ 0.

Denoting by r
h

:= tgφ, for h �= 0, we obtain

Imσ(t) = bh

cosφ

d

dt

∫ t

0
ε(t − τ)τ−A sin(φ − B ln τ) dτ, t ≥ 0.

In the case h = 0, the imaginary part of σ reduces to br d
dt

∫ t

0 ε(t − τ)τ−A cos(B ln τ) dτ .
If B = 0 then r = 0 and φ = 0, hence Imσ = 0 and σ is a real-valued function.
Next, suppose that B �= 0. But then one can find a subinterval (t1, t2) of (0, T ) where

sin(φ − B ln τ) (resp., cos(B ln τ)) is positive (resp., negative), and choose ε ∈ AC([0, T ])
which is compactly supported in (t1, t2) and strictly positive. This leads to a contradiction of
the assumption Imσ = 0. �

The previous theorem implies that equations of form (3) with β ∈C\R cannot be consti-
tutive equations for a viscoelastic body.

Next, consider the equation

σ(t) = b1 0D
β1
t ε(t) + b2 0D

β2
t ε(t), t ≥ 0, (4)
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where b1, b2 ∈ R, and β1, β2 ∈ C\R, i.e., βk = Ak + iBk and Bk �= 0 (k = 1,2). Suppose
again that ε ∈ AC([0, T ]) is a real-valued function, for every T > 0.

Remark 2.2 Note that dimension [0D
β1
t ε] is T −β1 , where T is the time unit. Therefore,

(4) makes sense if [b1] = T β1 and [b2] = T β2 .

Theorem 2.3 Function σ given by (4) is real-valued for all real-valued positive ε ∈
AC([0, T ]) if and only if b1 = b2 and β2 = β̄1.

Proof We continue with the notation of Theorem 2.1. Let t ≥ 0. Then

σ(t) = b1

Γ (1 − β1)

d

dt

∫ t

0
ε(t − τ)τ−β1 dτ + b2

Γ (1 − β2)

d

dt

∫ t

0
ε(t − τ)τ−β2 dτ.

Denote by hk + irk := 1/Γ (1 −βk), k = 1,2. Then the imaginary part of the right-hand side
reads

Imσ(t) = d

dt

∫ t

0
ε(t − τ)τ−A1

(
b1r1 cos(B1 ln τ) − b1h1 sin(B1 ln τ)

)
dτ

+ d

dt

∫ t

0
ε(t − τ)τ−A2

(
b2r2 cos(B2 ln τ) − b2h2 sin(B2 ln τ)

)
dτ. (5)

Using the identity Γ (z̄) = Γ (z), it is straightforward to check that b1 = b2 and β2 = β̄1

imply that Imσ = 0, and hence σ is a real-valued function on [0, T ], for every T > 0.
Conversely, we want to find conditions on parameters which yield a real-valued func-

tion σ . Thus, we look at (5), with the change of variables p = ln τ , τ ∈ (0, t), t ≤ T , and
solutions of the equation

d

dt

∫ ln t

−∞
epε

(
t − ep

)(
b1r1e

−A1p cos(B1p) − b1h1e
−A1p sin(B1p)

+ b2r2e
−A2p cos(B2p) − b2h2e

−A2p sin(B2p)
)
dp = 0, t ∈ [0, T ]. (6)

Set rk
hk

:= tgφk , k = 1,2, for h1, h2 �= 0. (For hk = 0 set φk := π
2 , k = 1,2.) Then (6) gives

d

dt

∫ ln t

−∞
epε

(
t − ep

)( b1h1

cosφ1
e−A1p sin(φ1 − B1p) + b2h2

cosφ2
e−A2p sin(φ2 − B2p)

)
dp = 0.

Assume first that |B1| �= |B2|, say |B1| > |B2|. Since the basic period of sin(φ1 − B1p)

(T0 = 2π/|B1|) is smaller than for sin(φ2 − B2p), it follows that for every k ∈ N, k > k0,
where k0 depends on ln t , the function sin(φ1 − B1p) changes its sign at least three times
in the interval (kπ, kπ + 2π/|B2|). Thus, on that interval, there exist at least two intervals
where sin(φ1 − B1p) and sin(φ2 − B2p) have the same sign, and two intervals where they
have opposite signs. We conclude that there exists an interval [a, b] ⊆ (kπ, kπ +2π/|B2|) ⊂
(−∞, ln t), so that

b1h1

cosφ1
e−A1p sin(φ1 − B1p) + b2h2

cosφ2
e−A2p sin(φ2 − B2p) > 0, p ∈ [a, b]. (7)

Choose δ > 0 and k ∈N so that
{
t − ep; t ∈ (T /2 − δ, T /2 + δ), p ∈ [a, b]} = (

T/2 − δ − eb, T /2 + δ − ea
) = I ⊂ (0, T ).
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Now, we choose a non-negative function ε ∈ AC([0, T ]) with the following properties:
supp ε ⊆ I , so that the function p �→ ε(t − ep), p ∈ [a, b], is strictly positive on some
[a1, b1] ⊆ (a, b). This implies that for t ∈ (T /2 − δ, T /2 + δ),

∫ b

a

epε
(
t − ep

)( b1h1

cosφ1
e−A1p sin(φ1 − B1p) + b2h2

cosφ2
e−A2p sin(φ2 − B2p)

)
dp

is not a constant function. This is in contradiction with (6).
Therefore, in order to have (6), one must have |B1| = |B2|. Moreover, arguing as above,

one concludes that |φ1 − B1p| = |φ2 − B2p| must hold, for all p ∈ (−∞, ln t), t ≥ 0. Then
we examine the equation

b1h1e
−A1p −b2h2e

−A2p = 0, or b1h1e
−A1p +b2h2e

−A2p = 0, p ∈ [kπ, kπ +2π/|B1|].

Now in both cases, b1b2 > 0 or b1b2 < 0, it is easy to conclude that A1 = A2, b1 = b2 and
B1 = −B2 have to be satisfied. This proves the theorem. �

Remark 2.4 (i) Theorem 2.3 states that a real-valued compatibility constraint for constitutive
equations of form (4) holds if they contain complex fractional derivatives of strain, whose
orders have to be complex conjugated numbers. Therefore, we may assume in the sequel,
without loss of generality, that B > 0.

(ii) According to the above analysis, one can take arbitrary linear combination of pairs of
complex conjugated fractional derivatives of strain. Moreover, one can also allow the same
type of fractional derivatives of stress. Thus, one can consider the most general stress–strain
constitutive equation with fractional derivatives of complex order:

σ(t) +
N∑

i=1

ci

(
0D

γi
t + 0D

γ̄i
t

)
σ(t) = ε(t) +

M∑

j=1

bj

(
0D

βj

t + 0D
β̄j

t

)
ε(t),

where ci, bj ∈R and γi, βj ∈ C, i = 1, . . . ,N , j = 1, . . . ,M .
(iii) As a consequence, one has that stress–strain relations can also contain arbitrary real

order fractional derivatives, without any additional restrictions. This fact has already been
known from previous work.

(iv) The same conclusions can also be obtained using a different approach. One can
apply the result from (Doetsch 1950, p. 293, Satz 2), which tells that a function F is real-
valued (almost everywhere), if its Laplace transform is real-valued, for all real s in the
half-plane of convergence right from some real x0, in order to show that an admissible
fractional constitutive equation (1) may be of complex order only if it contains pairs of
complex conjugated fractional derivatives of stress and strain.

2.2 Thermodynamical restrictions

In the analysis that follows, we shall consider the isothermal processes only. For such pro-
cesses the Second Law of Thermodynamics, i.e., the entropy of the system increases, is
equivalent to the dissipativity condition

∫ T

0
σ(t)ε̇(t) dt ≥ 0. (8)
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Equation (8) is a one-dimensional version of the Second Principle of Thermodynamics for
simple materials under isothermal conditions (see Amendola et al. 2012, p. 83). Also, in
writing (8) we observe the fact that for t ∈ (−∞,0) the system is in virginal state. Note that
T = ∞ in Day (1972, p. 113). Since we consider arbitrary T , condition (8) is stronger than
the condition in Day (1972).

In Amendola et al. (2012) stress is assumed as

σ(t) = G0ε(t) +
∫ ∞

0
G′(u)ε(t − u)du, (9)

where G0 is instantaneous elastic modulus, and G is relaxation function, while the stain is
taken in the form

ε(s) = ε0 cos(ωs) + ε0 sin(ωs), s ≤ t, ω > 0,

where ε0 is the amplitude of strain. These assumptions, along with (8) and T = 2nπ
ω

, lead to

∫ ∞

0
G′(u) sin(ωu)du < 0. (10)

Note that (10) is equivalent to

Fs

[
G′(t)

]
(ω) = Im

(
F

[
G′(t)

]
(ω)

)
> 0,

where Fs[f (t)](ω) = ∫ ∞
0 f (t) sin(ωt) dt .

Since constitutive equations containing fractional derivatives that we shall treat in this
work do not obey (9), we follow the approach of Bagley and Torvik (1986). Namely, in
Bagley and Torvik (1986) it was assumed that periodic strain ε results in periodic stress σ

at the end of a transient regime. Positivity of dissipation work (8) for a cycle and each time
instant within the cycle leads to

Re Ê(ω) ≥ 0 and Im Ê(ω) ≥ 0, ∀ω > 0,

where Ê = σ̂
ε̂

is the complex modulus obtained from the constitutive equation by applying

the Fourier transform (cf. Bagley and Torvik 1986, Eq. (20), (21)). Note that Re Ê and Im Ê

are referred to as storage and loss modulus, respectively.
We start with the constitutive equation

σ(t) = 2b 0D̄
β
t ε(t), 0D̄

β
t := 1

2

(
0D

β
t + 0D

β̄
t

)
, t ≥ 0, (11)

where we assume that b > 0 and β = A + iB , 0 < A < 1, B > 0. Note that (11) generalizes
the Hooke law in the complex fractional framework. In the case β ∈ R, this new complex
fractional operator 0D̄

β
t coincides with the usual left Riemann–Liouville fractional deriva-

tive.
We apply the Fourier transform to (11): σ̂ (ω) = b((iω)β + (iω)β̄)ε̂(ω), ω ∈ R. Then,

define the complex modulus Ê such that σ̂ (ω) = Ê(ω) · ε̂(ω), ω ∈R, i.e.,

Ê(ω) := b
(
(iω)β + (iω)β̄

) = bωA
(
e− Bπ

2 ei( Aπ
2 +B lnω) + e

Bπ
2 ei( Aπ

2 −B lnω)
)
, ω ∈R.



182 Mech Time-Depend Mater (2016) 20:175–195

Thermodynamical restrictions involve, for ω ∈ R+,

Re Ê(ω) = bωA

(
e− Bπ

2 cos

(
Aπ

2
+ B lnω

)
+ e

Bπ
2 cos

(
Aπ

2
− B lnω

))
≥ 0, (12)

Im Ê(ω) = bωA

(
e− Bπ

2 sin

(
Aπ

2
+ B lnω

)
+ e

Bπ
2 sin

(
Aπ

2
− B lnω

))
≥ 0. (13)

But this is in contradiction with B > 0, since for ω > 0, (12) and (13) imply B = 0.
In order not to confront the real-valued compatibility requirement and the Second Law of

Thermodynamics for (11), one may require that (12) and (13) hold for ω in some bounded
interval instead of in all of R. Alternatively, as we shall do in the sequel, one can modify
(11) by adding additional terms, in order to preserve the Second Law of Thermodynamics.

Thus, we proceed by proposing the following constitutive equation

σ(t) = a 0D
α
t ε(t) + 2b 0D̄

β
t ε(t), t ≥ 0, (14)

where we assume that a, b > 0, α ∈ R, 0 < α < 1, and β = A + iB , 0 < A < 1, B > 0.
Again we follow the procedure described above for deriving thermodynamical restrictions:
σ̂ (ω) = [a(iω)α + b((iω)β + (iω)β̄)]ε̂(ω), ω ∈R. Consider the complex module (ω ∈ R)

Ê(ω) = aωαei απ
2 + bωA

(
e− Bπ

2 ei( Aπ
2 +B lnω) + e

Bπ
2 ei( Aπ

2 −B lnω)
); (15)

Re Ê(ω) = aωα cos
απ

2
+ bωA

(
e− Bπ

2 cos

(
Aπ

2
+ B lnω

)

+ e
Bπ
2 cos

(
Aπ

2
− B lnω

))
, (16)

Im Ê(ω) = aωα sin
απ

2
+ bωA

(
e− Bπ

2 sin

(
Aπ

2
+ B lnω

)

+ e
Bπ
2 sin

(
Aπ

2
− B lnω

))
. (17)

We will investigate conditions Re Ê ≥ 0 and Im Ê ≥ 0 on R+. The assumption α > A leads
to a contradiction since for ω ↘ 0 the sign of the second term in (16) determines the sign
of Re Ê, and it can be negative. Thus, we must have α ≤ A. If α < A. then for ω → ∞,
the second term in (16) could be negative. This together yields that the only possibility is
A = α. (The same conclusion is obtained if one considers Im Ê ≥ 0, ω > 0.)

Therefore, with A = α, (16) and (17) become:

Re Ê(ω) = aωα cos
απ

2
+ 2bωαf (ω), ω > 0, (18)

Im Ê(ω) = aωα sin
απ

2
+ 2bωαg(ω), ω > 0, (19)

with

f (ω) := cos
απ

2
cos

(
lnωB

)
cosh

Bπ

2
+ sin

απ

2
sin

(
lnωB

)
sinh

Bπ

2
, ω > 0, (20)

g(ω) := sin
απ

2
cos

(
lnωB

)
cosh

Bπ

2
− cos

απ

2
sin

(
lnωB

)
sinh

Bπ

2
, ω > 0. (21)
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We further have that Re Ê(ω) ≥ aωα cos απ
2 + 2bωα minω∈R+ f (ω), ω > 0, and the similar

estimate for Im Ê, hence we now look for the minimums of functions f and g on R+. Using
the substitution x = lnωB we find that f ′(x) = 0 and g′(x) = 0 at xf and xg so that

tgxf = tg
απ

2
tgh

Bπ

2
and tgxg = − ctg

απ

2
tgh

Bπ

2
.

Solutions xf 1, xf 2, xg1 and xg2 satisfy: xf 1 ∈ (0, π
2 ), xf 2 ∈ (π, 3π

2 ), and xg1 ∈ ( π
2 ,π), xg2 ∈

( 3π
2 ,2π), since tg απ

2 , ctg απ
2 , tgh Bπ

2 > 0, and

f (xf ) = ± cos
απ

2
cosh

Bπ

2

√

1 +
(

tg
απ

2
tgh

Bπ

2

)2

,

g(xg) = ± sin
απ

2
cosh

Bπ

2

√

1 +
(

ctg
απ

2
tgh

Bπ

2

)2

.

Therefore, we have minx∈R f (x) = f (xf 2) and minx∈R g(x) = g(xg1), so that (18) and (19)
can be estimated as

Re Ê(ω) ≥ ωα cos
απ

2

(
a − 2b cosh

Bπ

2

√

1 +
(

tg
απ

2
tgh

Bπ

2

)2)
, ω > 0,

Im Ê(ω) ≥ ωα sin
απ

2

(
a − 2b cosh

Bπ

2

√

1 +
(

ctg
απ

2
tgh

Bπ

2

)2)
, ω > 0.

We obtain the thermodynamical restrictions for (14) by requiring Re Ê(ω) ≥ 0 and
Im Ê(ω) ≥ 0, for ω ∈R+:

a ≥ 2b cosh
Bπ

2

√

1 +
(

ctg
απ

2
tgh

Bπ

2

)2

, if α ∈
(

0,
1

2

]
, (22)

and

a ≥ 2b cosh
Bπ

2

√

1 +
(

tg
απ

2
tgh

Bπ

2

)2

, if α ∈
[

1

2
,1

)
. (23)

Notice that both restrictions further imply a ≥ 2b.

Remark 2.5 (i) Fix a and α. Inequalities (22) and (23) imply that as B increases, the constant
b has to decrease, i.e., the contribution of complex fractional derivative of strain in the
constitutive equation (14) is smaller if its imaginary part is larger.

(ii) Also, inequalities (22) and (23) lead to the same restrictions on parameters a, b,α

and B , since for α ∈ (0, 1
2 ] one has 1 − α ∈ [ 1

2 ,1), and the values of (22) and (23) coincide.
(iii) Under the same conditions, constitutive equation (14) can be extended to σ(t) =

ε(t) + a 0D
α
t ε(t) + 2b 0D̄

β
t ε(t), t ≥ 0, which will be investigated in the next section.
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3 Complex order fractional Kelvin–Voigt model

Consider the constitutive equation involving the complex order fractional derivative

σ(t) = ε(t) + a 0D
α
t ε(t) + 2b 0D̄

β
t ε(t), t ≥ 0. (24)

We assume a, b,E > 0, 0 < α < 1, B > 0, β = α + iB , and σ and ε are real-valued func-
tions. Note that (24) is a generalization of the model proposed in Rossikhin and Shitikova
(2001b). Namely, (24) agrees with the latter when β is real and positive. The inverse relation,
i.e., ε as a function of σ is given in Theorem 3.2.

The Laplace transform of (24) is σ̃ (s) = E(1 + asα + b(sβ + sβ̄))ε̃(s), Re s > 0, and
hence

ε̃(s) = 1

1 + asα + b(sβ + sβ̄)
σ̃ (s), Re s > 0. (25)

In order to determine ε from (25) we need to analyze zeros of

ψ(s) = 1 + asα + b
(
sβ + sβ̄

)
, s ∈C. (26)

Note that if we put s = iω, ω ∈ R+, in (26), it becomes the complex modulus:

ψ(iω) = 1 + Ê(ω) = 1 + a (iω)α + b
(
(iω)β + (iω)β̄

)
, ω > 0, (27)

where Ê is given in (15).
Let s = reiϕ , r > 0, ϕ ∈ [0,2π ]. Then (with β = α + iB)

ψ(s) = 1 + arαeiαϕ + brα
(
e−Bϕei(ln rB+αϕ) + eBϕe−i(ln rB−αϕ)

)
,

and

Reψ(s) = 1 + arα cos(αϕ) + 2brα
(
cos

(
ln rB

)
cos(αϕ) cosh(Bϕ)

+ sin
(
ln rB

)
sin(αϕ) sinh(Bϕ)

)
, (28)

Imψ(s) = arα sin(αϕ) + 2brα
(
cos

(
ln rB

)
sin(αϕ) cosh(Bϕ)

− sin
(
ln rB

)
cos(αϕ) sinh(Bϕ)

)
. (29)

3.1 Thermodynamical restrictions

In the case of (27), using (28) and (29) we obtain:

Reψ(iω) = 1 + Re Ê(ω) ≥ 1 + aωα cos
απ

2
+ 2bωα min

x∈R
f (x), x = lnωB, ω > 0,

Imψ(iω) = Im Ê(ω) ≥ aωα sin
απ

2
+ 2bωα min

x∈R
g(x), x = lnωB, ω > 0,

where f and g are as in (20) and (21). This leads to the same thermodynamical restrictions
(22) and (23), as in Sect. 2.2.

Therefore, from now on, we shall assume (22) and (23) to hold true. Now we shall ex-
amine the zeros of ψ .
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3.2 Zeros of ψ and solutions of (24)

Theorem 3.1 Let ψ be the function given by (26). Then

(i) ψ has no zeros in the right complex half-plane Re s ≥ 0.
(ii) ψ has no zeros in C if the coefficients a, b,α and B satisfy

a ≥ 2b cosh(Bπ)

√
1 + (

tg(απ) tgh(Bπ)
)2

, for α ∈
[

1

4
,

3

4

]
\
{

1

2

}
,

a ≥ 2b cosh(Bπ)

√
1 + (

ctg(απ) tgh(Bπ)
)2

, for α ∈
(

0,
1

4

)
∪

{
1

2

}
∪

(
3

4
,1

)
.

(30)

Proof First, we notice that if s0 is a solution to ψ(s) = 0, then s̄0 (the complex conjugate
of s0) is also a solution, since ψ(s̄) = 1 + as̄α + b(s̄β + s̄ β̄ ) = ψ(s). Thus, we restrict our
attention to the upper complex half-plane Im s ≥ 0, i.e., ϕ ∈ [0,π].

Using (28) and (29) we have, with s = reiϕ , r > 0, ϕ ∈ [0,π], and x = ln rB ,

Reψ(s) ≥ 1 + arα cos(αϕ) + 2brα min
x∈R

f (x), (31)

Imψ(s) ≥ arα sin(αϕ) + 2brα min
x∈R

g(x), (32)

where

f (x) = cos(x) cos(αϕ) cosh(Bϕ) + sin(x) sin(αϕ) sinh(Bϕ), x ∈ R, (33)

g(x) = cos(x) sin(αϕ) cosh(Bϕ) − sin(x) cos(αϕ) sinh(Bϕ), x ∈ R. (34)

The critical points xf and xg of f and g, respectively, satisfy

tgxf = tg(αϕ) tgh(Bϕ) ≥ 0 and tgxg = − ctg(αϕ) tgh(Bϕ) ≤ 0, (35)

The proof of (i) and (ii) will be given by the argument principle.
(i) Consider ψ in the case Re s, Im s > 0. Choose a contour Γ = γR1 ∪ γR2 ∪ γR3 ∪ γR4,

as it is shown in Fig. 1.
γR1 is parametrized by s = x, x ∈ (ε,R) with ε → 0 and R → ∞, so that (28) and (29)

yield

Reψ(x) = 1 + xα
(
a + 2b cos

(
lnxβ

)) ≥ 1 + xα(a − 2b) ≥ 0,

Imψ(x) = 0,

Fig. 1 Contour Γ
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since both (22) and (23) imply a ≥ 2b. Moreover, we have limx→0 ψ(x) = 1 and
limx→∞ ψ(x) = ∞.

Along γR2 one has s = Reiϕ , ϕ ∈ [0, π
2 ], with R → ∞. By (35) we have tgxf ≥ 0, so

that

min
x∈R

f (x) = − cos(αϕ) cosh(Bϕ)

√
1 + (

tg(αϕ) tgh(Bϕ)
)2

,

and therefore (31) becomes

Reψ(s) ≥ 1 + Rα cos(αϕ)
(
a − 2b cosh(Bϕ)

√
1 + (

tg(αϕ) tgh(Bϕ)
)2) ≥ 0.

The previous inequality holds true, since for ϕ ∈ [0, π
2 ] we have that

p(ϕ) = cosh(Bϕ)

√
1 + (

tg(αϕ) tgh(Bϕ)
)2 ≤ cosh

Bπ

2

√

1 +
(

tg
απ

2
tgh

Bπ

2

)2

,

because of the fact that the function p monotonically increases on [0, π
2 ]. Moreover, by (28)

and (29), we have

Reψ(s) → ∞ and Imψ(s) = 0, for ϕ = 0, R → ∞,

Reψ(s) → ∞, for ϕ = π

2
, R → ∞.

The next segment is γR3, which is parametrized by s = iω, ω ∈ [R,ε], with ε → 0 and
R → ∞. Then (28) and (29) yield

Reψ(iω) = 1 + Re Ê(ω) ≥ 0 and Imψ(iω) = Im Ê(ω) ≥ 0, ω ∈ (ε,R),

due to the thermodynamical requirements. Moreover, by (28) and (29), we have

Reψ(ω) → 1 and Imψ(ω) → 0, as ω → 0,

Reψ(ω) → ∞ and Imψ(ω) → ∞, as ω → ∞.

The last part of the contour Γ is the arc γR4, with s = εeiϕ , ϕ ∈ [0, π
2 ], with ε → 0. Using

the same arguments as for the contour γR2, we have

Reψ(s) ≥ 1 + εα cos(αϕ)
(
a − 2b cosh(Bϕ)

√
1 + (

tg(αϕ) tgh(Bϕ)
)2) ≥ 1. (36)

Also, by (29) and (36), we have

Reψ(s) → 1 and Imψ(s) → 0, as ε → 0.

We conclude that � argψ(s) = 0 so that, by the argument principle, there are no zeroes
of ψ in the right complex half-plane Re s ≥ 0.

(ii) In order to discuss the zeros of ψ in the left complex half-plane, we use the contour
ΓL = γL1 ∪ γL2 ∪ γL3 ∪ γL4, shown in Fig. 1. The contour γL1 has the same parametrization
as the contour γR3, so the same conclusions as for γR3 hold true.

The parametrization of the contour γL2 is s = Reiϕ , ϕ ∈ [ π
2 ,π], with R → ∞. Let us

distinguish two cases.
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Case a1. αϕ ∈ (0, π
2 )

Then sin(αϕ) > 0, cos(αϕ) > 0, so the critical points of f and g, see (33) and
(34), given by (35), satisfy tgxf > 0 and tgxg < 0. For the minimums of f and g

in (31) and (32) we have

min
x∈R

f (x) = − cos(αϕ) cosh(Bϕ)

√
1 + (

tg(αϕ) tgh(Bϕ)
)2

,

min
x∈R

g(x) = − sin(αϕ) cosh(Bϕ)

√
1 + (

ctg(αϕ) tgh(Bϕ)
)2

,

respectively, so that (31) and (32) become

Reψ(s) ≥ 1 + Rα cos(αϕ)
(
a − 2b cosh(Bϕ)

√
1 + (

tg(αϕ) tgh(Bϕ)
)2)

, (37)

Imψ(s) ≥ Rα sin(αϕ)
(
a − 2b cosh(Bϕ)

√
1 + (

ctg(αϕ) tgh(Bϕ)
)2)

. (38)

Function Hf (ϕ) = cosh(Bϕ)
√

1 + (tg(αϕ) tgh(Bϕ))2 is monotonically increas-
ing for ϕ ∈ [ π

2 ,π ], since αϕ ∈ (0, π
2 ), thus

Reψ(s) ≥ 1 + Rα cos(αϕ)
(
a − 2b cosh(Bπ)

√
1 + (

tg(απ) tgh(Bπ)
)2) ≥ 0,

if (30) is satisfied. Note that Reψ(s) → ∞ and Imψ(s) → ∞, for ϕ = π ,
R → ∞.

Case b1. αϕ ∈ [ π
2 ,π)

Then sin(αϕ) > 0, cos(αϕ) ≤ 0, so the critical points of g, see (34), given by (35),
satisfy tgxg ≥ 0. For the minimum of g in (34) we have

min
x∈R

g(x) = − sin(αϕ) cosh(Bϕ)

√
1 + (

ctg(αϕ) tgh(Bϕ)
)2

,

so that (32) becomes

Imψ(s) ≥ Rα sin(αϕ)
(
a − 2b cosh(Bϕ)

√
1 + (

ctg(αϕ) tgh(Bϕ)
)2)

.

Function Hg(ϕ) = cosh(Bϕ)
√

1 + (ctg(αϕ) tgh(Bϕ))2 is monotonically increas-
ing for ϕ ∈ [ π

2 ,π ], since αϕ ∈ [ π
2 ,π), and (30) implies

Imψ(s) ≥ Rα sin(αϕ)
(
a − 2b cosh(Bπ)

√
1 + (

ctg(απ) tgh(Bπ)
)2) ≥ 0.

Note that Imψ(s) → ∞, for ϕ = π , R → ∞.

Now we discuss possible situations for α ∈ (0,1) and ϕ ∈ [ π
2 ,π].

If α ∈ (0, 1
2 ) then Case a1 holds so that Reψ(s) ≥ 0.

If α ∈ [ 1
2 ,1) then we distinguish two cases. For ϕ ∈ [ π

2 , π
2α

) Case a1 holds, so
Reψ(s) ≥ 0. For ϕ ∈ [ π

2α
,π) Case b1 holds, and Imψ(s) ≥ 0.

Parametrization of the contour γL3 is s = xeiπ , x ∈ (ε,R), with ε → 0 and R → ∞.
Again, we have two cases.
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Case a2. α ∈ (0, 1
2 )

Then, for x ∈ (ε,R), using the same argumentation as in Case a1, we have, by (37) and
(38) (with R = x), Reψ(s) ≥ 1 and Imψ(s) ≥ 0, due to (30). Thus, looking at (37) and
(38) (with R = x), we conclude

Reψ(s) → ∞ and Imψ(s) → ∞, for x → ∞,

Reψ(s) → 1 and Imψ(s) → 0, for x → 0.

Case b2. α ∈ [ 1
2 ,1)

Then, for x ∈ (ε,R), using the same argumentation as in Case b1, we have (by (38)) that
Imψ(s) ≥ 0, and

Imψ(s) → ∞, for x → ∞ and Imψ(s) → 0, for x → 0.

The parametrization of the contour γL4 is s = εeiϕ , ϕ ∈ [ π
2 ,π], with ε → 0. From (28)

and (29), for sufficiently small ε, we have

Reψ(s) → 1 and Imψ(s) → 0, for ε → 0, ϕ ∈
[

π

2
,π

]
.

Summing up all results from Cases a1, a2, b1, and b2, we obtain the following:

• For α ∈ (0, 1
2 ), Reψ(s) ≥ 0, for s ∈ ΓL, which implies that � argψ(s) = 0. Therefore,

using the argument principle, we conclude that in this case ψ has no zeros in the left
complex half-plane.

• If α ∈ [ 1
2 ,1), then for s ∈ γL1 and s ∈ {z ∈ γL2 | arg z ≤ π

2α
}, we have Reψ(s) ≥ 0, while

for s ∈ {z ∈ γL2 | arg z > π
2α

} and s ∈ γL3, we have Imψ(s) ≥ 0. For s ∈ γL4 we again have
Reψ(s) ≥ 0. Hence, we conclude that � argψ(s) = 0, and therefore, using the argument
principle, neither in case α ∈ [ 1

2 ,1) function ψ has zeros in the left complex half-plane.

This completes the proof. �

Rewrite (25) as

ε̃(s) = K̃(s)σ̃ (s), K̃(s) = 1

1 + asα + b(sβ + sβ̄)
, Re s > 0. (39)

Theorem 3.2 Let ε̃ be given by (39). Then

ε(t) = K(t) ∗ σ(t), t ≥ 0. (40)

Moreover, if (30) holds, then

K(t) = KI(t) = 1

2πi

∫ ∞

0

(
e−qt

1 + qαeiαπ [a + b(ei lnqB
e−Bπ + e−i lnqB

eBπ )]

− e−qt

1 + qαe−iαπ [a + b(ei lnqB
eBπ + e−i lnqB

e−Bπ)]
)

dq. (41)

If condition (30) is violated, then ψ has at most a finite number of zeros in the left complex
half-plane, and

K = KI or K = KI + KR,
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Fig. 2 Contour Γ̃

where

KR(t) =
∑

ψ(si )=0
i=1,2,...,n

(
Res

(
K̃(s)est , si

) + Res
(
K̃(s)est , s̄i

))
, (42)

with K̃ given by (39).

Proof The first part is clear. We invert now K̃ , given in (39), by the use of the Cauchy
residues theorem

∮

Γ̃

K̃(s)est ds = 2πi
∑

ψ(s̃)=0

Res
(
K̃(s)est , s̃

)
(43)

and the contour Γ̃ = Γ1 ∪ Γ2 ∪ Γr ∪ Γ3 ∪ Γ4 ∪ γ0 shown in Fig. 2.
If condition (30) is satisfied, then, by Theorem 3.1, the residues equal zero. One can show

that the integrals over the contours Γ1, Γr and Γ4 tend to zero when R → ∞ and r → 0.
The remaining integrals give:

lim
R→∞,
r→0

∫

Γ2

K̃(s)est ds = −
∫ ∞

0

e−qt

1 + qαeiαπ [a + b(ei lnqB
e−Bπ + e−i lnqB

eBπ )] dq,

lim
R→∞,
r→0

∫

Γ3

K̃(s)est ds =
∫ ∞

0

e−qt

1 + qαe−iαπ [a + b(ei lnqB
eBπ + e−i lnqB

e−Bπ)] dq,

lim
R→∞,
r→0

∫

γ0

K̃(s)est ds = 2πiKI (t),

which, by the Cauchy residues theorem (43), leads to (41).
If condition (30) is violated, then, by Theorem 3.1, the denominator of K̃ either has

no zeros in the complex plane, and so K = KI , or it has zeros in the left complex half-
plane, which comes in pairs with complex conjugates. We show now that ψ (which is the
dominator of K̃) can have at most a finite number of zeros for Im s ≤ 0. Rewrite ψ(s) = 0
as a + b(siB + s−iB) = s−α . If s = reiϕ , ϕ ∈ [ π

2 ,π ], then we have

a + b
(
riBe−ϕB + r−iBeϕB

) = r−αe−αϕi .
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When r → ∞ the right-hand side tends to zero, while the left-hand side tends to a. As r → 0
we see that the left-hand side is bounded, while the right-hand side is not bounded. Thus,
the zeros in the left half-plane of function ψ , if exist, have to be bounded both from above
and below. In that case we have K = KI + KR , where KR is given by (42). �

Remark 3.3 In the cases of standard and fractional linear solid model creep compliance
and relaxation modulus are exponential functions and derivative of a one-parameter Mittag–
Leffler function. Also, these models have different relaxation and retardation times as well
as the limiting values of the material functions. For more complicated models, as our is,
functions representing creep compliance and relaxation modulus are possibly not so well
known special functions. We note that other generalizations of standard linear viscoelastic
solids, e.g., the one presented in Rossikhin and Shitikova (2001b), also do not tackle this
question.

4 Numerical verifications

Here we present several examples of the proposed constitutive equation. We shall treat stress
relaxation, creep and periodic loading cases.

4.1 Stress relaxation experiment

We take (24) with ε(t) = H(t), H is the Heaviside function, and regularize it as Hε(t) =
1 − exp(−t/k), k → 0. In order to determine σ , we calculate

σ(t) = Hε(t) + a 0D
α
t Hε(t) + b 0D̄

β
t Hε(t), t ≥ 0, (44)

with σ(0) = 0, using the expansion formula (see Atanacković and Stanković 2004, 2008),

0D
γ
t y(t) ≈ y(t)

tγ
A(N,γ ) −

N∑

p=1

Cp−1(γ )
Vp−1(y)(t)

tp+γ
, (45)

where

A(N,γ ) = Γ (N + 1 + γ )

γΓ (1 − γ )Γ (γ )N ! , Cp−1(γ ) = Γ (p + γ )

Γ (1 − γ )Γ (γ )(p − 1)! ,

and

V
(1)

p−1(y)(t) = tp−1y(t), Vp−1(y)(0) = 0, p = 1,2,3, . . . (46)

Inserting (45) into (44), we obtain

σ(t) ≈
{

1 +
[

a A(N,α)

tα
+ b

(
A(N,α + iB)

tα+iB
+ A(N,α − iB)

tα−iB

)]}
Hε(t)

−
N∑

p=1

{
Cp−1(α)

tp+α
+

[
Cp−1(α + iB)

tp+α+iB
+ Cp−1(α − iB)

tp+α−iB

]}
Vp−1(Hε)(t), (47)

where

V
(1)

p−1(Hε)(t) = tp−1Hε(t), p = 1,2,3, . . . (48)
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Fig. 3 Stress relaxation curves
for α = 0.4 and
B ∈ {0.4,0.6,0.8,0.99}, a = 0.8,
b = 0.1, t ∈ [0,0.25]

Fig. 4 Stress relaxation curves
for α = 0.4 and
B ∈ {0.4,0.6,0.8,0.99}, a = 0.8,
b = 0.1, t ∈ [0,10]

We will compare (47) with the stress σ obtained by (44) and by the definition of fractional
derivative (11):

σ(t) = Hε(t) + a
d

dt

1

Γ (1 − α)

∫ t

0

Hε(τ) dτ

(t − τ)α

+ b
d

dt

[
1

Γ (1 − α − iB)

∫ t

0

Hε(τ) dτ

(t − τ)α+iB

+ 1

Γ (1 − α + iB)

∫ t

0

Hε(τ) dτ

(t − τ)α−iB

]
. (49)

In Fig. 3, we show results obtained by determining σ from (49) for small times and
different values of B . In the same figure, we show, by dots, the values of σ , at several
points, obtained by using (47), (48) for k = 0.01, N = 100. As could be seen from Fig. 3,
the results obtained from (49) and (47), (48) agree well. The stress relaxation curves are
shown in Fig. 4, for the same set of parameters and for larger times. As could be seen,
regardless of the values of B , we have limt→∞ σ(t) = 1. Note that in all cases of B , the
restriction which follows from the dissipation inequality is satisfied.
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Fig. 5 Creep curve for α = 0.4
and B = 0.4, a = 0.8, b = 0.1,
t ∈ [0,100]

4.2 Creep experiment

Suppose that σ(t) = H(t), i.e.,

H(t) = (
1 + a 0D

α
t + 2b 0D̄

β
t

)
ε(t), t ≥ 0. (50)

By (45), we obtain

ε(t) ≈ H(t) + ∑N

p=1{Cp−1(α)

tp+α + Cp−1(α+iB)

tp+α+iB + Cp−1(α−iB)

tp+α−iB }Vp−1(ε)(t)

1 + aA(N,α)

tα
+ 2b(A(N,α+iB)

tα+iB + A(N,α−iB)

tα−iB )
,

or

ε(t) ≈ H(t)tα + ∑N

p=1{Cp−1(α)

tp
+ Cp−1(α+iB)

tp+iB + Cp−1(α−iB)

tp−iB }Vp−1(ε)(t)

tα + aA(N,α) + 2b(A(N,α+iB)

tiB
+ A(N,α−iB)

t−iB )
. (51)

By using (51) in (46), we obtain

V
(1)

p−1(ε)(t) ≈ tp−1
H(t)tα + ∑N

p=1{Cp−1(α)

tp
+ Cp−1(α+iB)

tp+iB + Cp−1(α−iB)

tp−iB }Vp−1(ε)(t)

tα + aA(N,α) + 2b(A(N,α+iB)

tiB
+ A(N,α−iB)

t−iB )
,

Vp−1(ε)(0) = 0, p = 1,2,3, . . . .

Equation (50) may also be solved by contour integration

ε(t) = K(t) ∗ H(t), t ≥ 0, (52)

where K is given by (41), see (40). Finally, the values of ε, at discrete points, could be
determined directly from ε̃(s) = 1

s
K̃(s), Re s > 0, see (39), by the use of Post inversion

formula, see Cohen (2010). Thus,

ε(t) = lim
n→∞

(−1)n

n!
[
sn+1 dn

dsn

1

s(1 + asα + b(sβ + sβ̄))

]

s= n
t

, t ≥ 0. (53)

In Figs. 5, 6 and 7, we show ε for several values of parameters determined from (52). In
Fig. 5, for specified values of t we present values of ε determined from (51), with N = 7,
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Fig. 6 Creep curves for α = 0.4
and B ∈ {0.2,0.4,0.6}, a = 0.8,
b = 0.1, t ∈ [0,200]

Fig. 7 Creep curves for α = 0.4
and B ∈ {0.7,0.8,0.9,0.99},
a = 0.8, b = 0.1, t ∈ [0,200]

denoted by dots, as well as the values of ε determined by (53), with n = 25, denoted by
squares. As could be seen, the agreement of results determined by different methods is
significant.

From Figs. 6 and 7 one sees that, regardless of the value of B , creep curves tend to
ε = 1. In Fig. 6, the creep curves are monotonically increasing, while in Fig. 7 the creep
curves have oscillatory character, characteristic for the case when the mass of the rod is not
neglected. Note that in all cases of B , the restriction determined by the dissipation inequality
is satisfied.

5 Conclusion

In this work, we proposed a new constitutive equation with fractional derivatives of com-
plex order for viscoelastic body of the Kelvin–Voigt type. The use of fractional derivatives
of complex order, together with restrictions following from the Second Law of Thermody-
namics, represent the main novelty of our work. Our results can be summarized as follows.

1. In order to obtain real stress for given real strain, we used two fractional derivatives of
complex order that are complex conjugated numbers, see Theorem 2.3.

2. The restrictions that follow from the Second Law of Thermodynamics for isothermal pro-
cess implied that the constitutive equation must additionally contain a fractional deriva-
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tive of real order. Thus, the simplest constitutive equation that gives real stress for real
strain and satisfies the dissipativity condition is given by (24).

3. We provided a complete analysis of solvability of the complex order fractional Kelvin–
Voigt model given by (24) (see Theorems 3.1 and 3.2).

4. We studied stress relaxation and creep problems through equation (24). An increase of B

implied that the stress relaxation decreases more rapidly to the limiting value of stress,
i.e., limt→∞ σ(t) = 1.

5. We presented numerical experiments when the dissipation inequality is satisfied. The
creep experiment showed that the increase in the imaginary part of the complex derivative
B changes the character of creep curve from monotonic to oscillatory form, see Figs. 6
and 7. However, the creep curves never cross the value equal to 1. The creep curve re-
sembles the form of a creep curve when either the mass of the rod, see Atanacković et al.
(2014, p. 124), or inertia of the rheometer, see Jaishankar and McKinley (2012), is taken
into account. Recently, Zingales (2015) presented experimental results of creep curves
for some biological materials that exhibit non-monotonic creep curve. Thus, our model
(24) is applicable to such a case.

6. The parameters in the proposed model (24) could be determined from experimental data
using, for instance, the least squares method.

7. Our further study will be directed to the problems of vibration and wave propagation
of a rod with finite mass and constitutive equation (24), along the lines presented in
Atanacković et al. (2014), see also Hanyga (2007).
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