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Abstract The steady motion of a rotating sphere is analysed through two contrasting vis-
coelastic models, a constant viscosity (FENE-CR) model and a shear-thinning (LPTT)
model. Giesekus (Rheol. Acta 9:30–38, 1970) presented an intriguing rotating viscoelastic
flow, which to date has not been completely explained. In order to investigate this flow, sets
of parameters have been explored to analyse the significant differences introduced with the
proposed models, while the momentum-continuity-stress equations are solved through a hy-
brid finite-element/finite volume numerical scheme. Solutions are discussed for first, sphere
angular velocity increase (Ω), and second, through material velocity-scale increase (α).
Numerical predictions for different solvent-ratios (β) show significant differences as the
sphere angular velocity increases. It is demonstrated that an emerging equatorial anticlock-
wise vortex emerges in a specific range of Ω . As such, this solution matches closely with the
Giesekus experimental findings. Additionally, inside the emerging inertial vortex, a contrast-
ing positive second normal stress-difference (N2(γ̇ ) = τrr − τθθ ) region is found compared
against the negative N2-enveloping layer.

Keywords Rotating sphere · Secondary flow field · FENE-CR model · LPTT model

1 Introduction

Thomas and Walters (1964) theoretically studied the flow patterns produced by a rotat-
ing sphere immerse in a viscoelastic Boger fluid. Similarly, Walters and Savins (1965)
studied this same flow problem experimentally, as did Giesekus (1970) subsequently.
Giesekus exposed some intriguing results, based on those for two different types of flu-
ids, a Boger fluid (silicone oil) and a shear-thinning fluid (polyisobutylene/decalin so-
lution). Giesekus reported that the Boger fluid also captured the secondary flow cell,
typically shown previously in the second-order flow regime (Thomas and Walters 1964;
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Fig. 1 Giesekus (1970)
experimental evidence for 1.3 %
polyisobutylene-decalin solution,
Ω = 150 min−1; secondary flow
regions: right-hand image—three
different zones

Walters and Savins 1965). In order to investigate the effect of shear-thinning, Giesekus se-
lected a solution of 1.3 % polyisobutylene in decalin. At low rotational speeds, the shear-
thinning fluid created the same flow patterns as exhibited by a Boger fluid (second-order
regime). Notwithstanding this, at rotational speed of 150 min−1, a flow pattern is observed
that cannot be characterized by the second-order regime. A detailed analysis of Fig. 1 shows
clearly the coexistence of three different flow zones, as described by Boger and Walters
(1993) and Giesekus (1994): an outer inertial zone (not highlighted by the dye-injection
technique); a dominant viscoelastic zone (restricted to the central region as a polar vortex);
and an elusive inner inertial zone (an equator vortex). This scenario is presented in the cover
of the book: Fluid Mechanics of Viscoelasticity by Huilgol and Phan-Thien (1997) as an
illustration for the dye-injection technique.

In the past it has been suggested that some rheological properties of viscoelastic fluids
may be assessed using the rotating sphere flow, such as the zero-shear viscosity (Hermes
1966). For example, Walters and Savins (1965) showed that observations of the secondary
flow pattern around the rotating sphere could be related to measurement of the second nor-
mal stress-differences at very low shear rates. Using this method, Manero and Mena (1978)
acquired values of the second normal stress-difference; such findings lay in good agree-
ment with the values obtained through other methods. In addition, some authors, such as
Mashelkar et al. (1972), Kelkar et al. (1973), Acharya and Maaskant (1978), have used the
torque as a function of rotation-speed, to assess the elastic-viscous parameters of some flu-
ids. One of the most common difficulties in the effective use of torque measurements lies
in the elimination of wall-effects, which may also affect the development of diverse flow
patterns. According to Walters and Waters (1963), torque measurements should be limited
to a lower ratio between the sphere-radius to the vessel-radius (1:12) to effectively avoid
wall-effects. However, Mena et al. (1972) later proved that the influence of the retaining
vessel-wall could be overcome, by incorporating a wall-correction to the computation for
the resultant torque.

Theoretically, Thomas and Walters (1964) explored the problem of a rotating sphere
in an elastic medium through a second-order perturbation analysis. They characterized the
range for each flow-type encountered through a material parameter m (defined below) that
accounted for the effects of the first and second normal-stress coefficients. Subsequently,
Fosdick and Kao (1980) performed a perturbation analysis up to fourth-order expansions in
the angular velocity for a simple fluid; their findings could be qualitative compared with the
results obtained by Giesekus (1970). Fosdick and Kao (1980) illustrated polar cap regions
of secondary flow, but they could not detect any trace of an equatorial vortex. These authors
concluded that the inertial vortex could not be developed due to the restrictive choice on the
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value of the parameters used. For an Oldroyd-B fluid, Garduño et al. (2015) explored ad-
ditional flow regimes, beyond that of second-order. These numerical solutions exhibited an
emerging polar vortex within the range of 0.08 < m < 0.16 for more general flow solutions,
in transitional and general flow settings. Indeed, these findings have provided the insight and
guidance in the present study to adjust velocity-scaling parameters, in order to more closely
capture the experimental observations of Giesekus.

In the present study, a hybrid finite element/finite volume discretisation (fe/fv) (Belblidia
et al. 2007, 2008) has been used to compare and contrast numerical predictions for this ro-
tating sphere problem. In this direction, the constant-viscosity FENE-CR and shear-thinning
LPTT fluid models have been employed, under low Reynolds number settings. The main ob-
jective of this work has been to orchestrate matching of these solutions against the Giesekus
(1970) experimental findings, whilst also exploring the influence of alternative and wider
parameter ranges.

The present paper is structured in the following manner. Firstly, the governing equations
are presented; next the specification of the numerical problem and the particular boundary
conditions are outlined. Followed by, the respective constitutive relationships for FENE-CR
and LPTT. This is pursued by the appropriated choice of materials functions for Oldroyd-B,
contrasted against FENE-CR and LPTT models. A brief summary of the in-house finite
element/finite volume algorithm employed is offered. In Sect. 4, the parametric analysis is
presented: firstly, for the flow-type descriptor m; then, using the LPTT model as a base-
case with m = 0.14, findings for the respective solvent fraction ratio (β) and second normal
stress-difference (N2(γ̇ ) = τrr − τθθ ) patterns are exposed. The parameters for the angular
velocity (out-of-plane, Ω) and material velocity scaling (in-plane, α) are shown over both
FENE-CR and LPTT model solutions.

Subsequently, this article proceeds to draw out diverse classes of vortex-solutions, dis-
covered through the various combinations of available parameters. Solutions for large-α are
explored for both FENE-CR and LPTT solutions, revealing some remarkable differences
over a limited range of Ω . Then, N2-values are exposed at two different sample-point loca-
tions over the sphere-surface, alongside the theoretical and computational torque estimation.
Finally, best matching is considered between present numerical predictions and the experi-
mental findings of Giesekus.

2 Governing equations

Appealing to incompressible viscoelastic flow and isothermal conditions, the governing
equations are those for mass balance (continuity),

∇ · u = 0, (1)

and linear momentum transfer:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · T , (2)

coupled with an equation of state for stress (T ). Here, the notation implies that u denotes the
fluid velocity (vector field), ρ is the fluid density, p the isotropic fluid pressure, ∇ is a spatial
differential operator (over spatial variable x) and t represents the independent variable time.
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The extra-stress T variable may be decomposed into two parts, viscous and polymeric
parts viz.

T = τ + 2η0βd, (3)

where η0β is a solvent viscosity (based on zero-shear rate viscosity η0 and solvent fraction β ,
see below) and the rate of deformation tensor is represented by d = (∇u + ∇u†)/2.

2.1 Viscoelastic constitutive models: LPTT and FENE-CR

2.1.1 Finite extendible nonlinear elasticity—Chilcott and Rallison

In addition to the use of the Oldroyd-B model (as in our prior study Garduño et al. 2015),
here and by way of contrast, PTT and so-called FENE-CR (Chilcott and Rallison 1988)
models have been introduced. Beneficially beyond Oldroyd-B approximation, both addi-
tional models manifest finite extensibility. The PTT model offers numerical solutions with
shear-thinning properties. In contrast, the FENE-CR model has been chosen for its constant
shear viscosity response. Hence, this FENE-CR form is an appropriate constitutive model
to use in representation of Boger fluids properties, additionally with a weaker first normal
stress-difference than the strong quadratic form displayed by the base-reference Oldroyd-B
model. The main point of disparity, between the Oldroyd-B and FENE-CR models, is such
that the FENE-CR model does not encounter a singularity in extensional viscosity (exhibit-
ing instead a finite extensional response). The maximum level of FENE-CR extensional
viscosity corresponds to the elevation of the Hookean-dumbbell chain-length extensibility
parameter (LFENE). This LFENE model-parameter measures the size of the polymer molecule
in relation to its equilibrium size.

This particular model has the following constitutive form, based on a stress conformation
tensor (A):

T = 2η0βd + (1 − β)η0f (Tr(A)(A − I ))

λ1
, λ1

∇
A−f

(
Tr(A)(A − I )

) = 0,

f
(
Tr(A)

) = 1

1 − Tr(A)/L2
FENE

. (4)

The corresponding rheometrical functions, of shear viscosity (η) extensional viscosity (ηe),
and first normal stress-difference (N1) and second normal stress-difference (N2), for this
particular model are then

ηs = η0, N1 = 2η0(1 − β)λ1γ̇
2

f 2
, N2 = 0,

ηe = 3βη0 + 3η0(1 − β)

[
f 2

f 2 − f λ1ε̇ − 2λ2
1ε̇

2

]
.

(5)

Here γ̇ is representing shear rate, ε̇ strain rate and λ1 as a relaxation time.

2.1.2 Linear Phan-Thien–Tanner model

Phan-Thien and Tanner (1977) introduced a generalized (PTT) model version, based on
ideas from rubber network theory, to investigate the effect of shear-thinning. From this work,
a restricted Linearized PTT version is often used (LPTT), where the exponential function
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is truncated in its Taylor series expansion. Such an LPTT form used here presents response
of a weakening in N1 and a finite extensional viscosity, which is controlled by the material
function (εLPTT). A second material parameter (ξLPTT) modifies the shear-viscosity and the
second normal stress-difference coefficient; note, often this parameter is taken as zero. As
such, these two model parameters, εLPTT and ξLPTT, may be deployed to control the pre-
scribed extensional and shear response of the model. The LPTT model recovers the original
Oldroyd-B form when εLPTT = 0 and ξLPTT = 0. In general, as εLPTT → 0, the limiting max-
imum plateau value of extensional viscosity grows larger (that of Oldroyd-B being infinite).
The LPTT constitutive form and rheometrical functions are given by

T (1) = 2η0βd,

f T (2) + λ1

∇
T (2) = 2η0(1 − β)d,

(6)

ηs = βη0 + η0(1 − β)

f
, N1 = 2η0(1 − β)λ1γ̇

2

f 2
, N2 = −η0(1 − β)λ1γ̇

2ξLPTT

f 2
,

ηe = 3βη0 + 3η0(1 − β)

[
f

f 2 − f λ1ε̇ − 2λ2
1ε̇

2

]
.

(7)

For this LPTT model, the f function is represented through the linear function of the
trace (T (2)),

f = 1 + εLPTTλ1

1 − β
Tr

(
T (2)

)
. (8)

In steady shear flow, the ratio between the normal stress-differences is N2/N1 = −ξLPTT/2.
Hence, the non-zero material parameter ξLPTT may be associated with stronger second nor-
mal stress-difference affects (non-zero in shear). Typically, Phan-Thien and Tanner (1977)
suggested using ξLPTT = 0.2 for LDPE; nonetheless, the material parameter is mathemati-
cally defined and valid for 0 ≤ ξLPTT ≤ 2.

The difference between LPTT and FENE-CR forms is, basically, the addition of shear-
thinning through the LPTT option. One may note, however, these two constitutive models
are somewhat different in their background derivations. Both model forms can be associ-
ated with the same extensional response by adjusting their material functions, which can
be organised by fitting and matching with the appropriate selection of εLPTT and L-values,
accordingly.

In Figs. 2 and 3, material functions for Oldroyd-B, FENE-CR and LPTT are presented. In
this form, the comparative model response, in steady shear and extension, can be gathered
on shear viscosity, extensional viscosity, N1 and N2 (latter, only for LPTT (ξLPTT �= 0)).
Note, from this information and parameter fitting, suitable parameters of solvent fraction
β = {0.9,1/9}, FENE-CR (LFENE = 5) and LPTT (εLPTT = 0.042) are selected for use in
solution extraction for this rotating sphere flow. The LFENE = 5 and εLPTT = 0.042 parameter
choices provide the desired matching on extensional viscosity behaviour.

2.1.3 Material functions: Oldroyd-B, FENE-CR and LPTT models

The associated rheometrical functions for the Oldroyd-B, FENE-CR and LPTT models
are displayed in Figs. 2 and 3. Then, Oldroyd-B predicts a constant shear viscosity η0,
a quadratic first normal stress-difference N1, vanishing second normal stress-difference N2,
and an unbounded extensional viscosity ηe at finite rates in steady uniaxial extension (see
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Fig. 2 Material functions for Oldroyd-B, FENE-CR (LFENE = 3,5,100), LPTT (εLPTT = 0.042, 4 × 10−4,
ξLPTT = 0.0), β = 0.9. (a) shear viscosity, (b) extensional viscosity, (c) first normal stress-difference

Fig. 2(a)). In contrast, the FENE-CR model captures finite extensibility, predicts a constant
shear viscosity, whilst expressing a first normal stress-difference (N1) that is weaker than the
strong quadratic form of Oldroyd-B. As illustrated in Fig. 2(b), the extensional viscosity for
the FENE-CR model is capped, at a limiting level of extensional viscosity plateau, which it-
self depends on the elevation of the FENE-CR extensibility parameter LFENE ≥ 3. One notes,
however, predictions for large values of extensibility parameter (LFENE > 100) asymptote
towards Oldroyd-B behaviour in N1 and ηe . For small choices of LFENE (LFENE = 3), signif-
icant departure in N1 is observed from Oldroyd-B response. Moreover, monotonic decline
in N1 is apparent with falling LFENE.

Finally, and specifically to explore the effects of shear-thinning on the size and posi-
tion of vortices in the rotating-sphere flows of present interest, a Linear Phan-Thien/Tanner
(LPTT) model has been introduced. Then LPTT, as with FENE-CR, also possesses a finite
extensional viscosity and a weakening of N1. Here, the choice and selection of εLPTT may be
made to effectively match LPTT and FENE-CR extensional viscosity response (ηe), elim-
inating this aspect from the comparison (see Figs. 2 and 3). The FENE-CR (LFENE = 5)
and LPTT (εLPTT = 0.042) parameter choices provide this desired matching on exten-
sional viscosity behaviour. In addition, suitable parameter selection on solvent fraction is
β = {0.9,1/9} = {high-solvent,high-solute}. Note, that such a network-based LPTT repre-
sentation is purely strain-hardening, to a limiting finite plateau (unlike Oldroyd), and hence,
does not support strain-softening (Fig. 3). In Fig. 3 and with the LPTT approximation, the
viscosity solvent-fraction ratio β-parameter is used to control the degree of departure from
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Fig. 3 Material functions for Oldroyd-B, LPTT (εLPTT = 0.042, ξLPTT = 0.0,0.2), β = 0.9,0.1. (a) shear
viscosity, (b) extensional viscosity, (c) first normal stress-difference, (d) second normal stress-difference

the Newtonian zero-rate base-reference to its second-plateau viscosity value. As such, the
approximation to constant shear-viscosity for these shear-thinning fluids, is within 10 %
for β = 0.9 (close), and for β = 0.1, represents 90 % departure (more distant). In addi-
tion, the LPTT (ξLPTT �= 0) model introduces some non-zero second normal stress-difference
(N2) in shear, since N2/N1 = −ξ/2. Increasing the parameter ξLPTT, for constant values of
εLPTT and β , provides a decrease in shear viscosity (Fig. 3(a)). The elongational viscosity
is barely affected by such ξLPTT-adjustment (Fig. 3(b)). Furthermore, note that both N1 and
N2 for LPTT (ξLPTT = 0.2) adopt a monotonically declining trend in contrast to the LPTT
(ξLPTT = 0) option, with N2 showing universally reduced values in comparison to N1 (see
Fig. 3(d)). Therefore and with a view to N2-stimulation in more complex flow, one may
anticipate that such adjustment in ξLPTT-parameter may have some influence on the size,
structure and positioning of vortices in the current rotating sphere problem. To verify this
hypothesis, two different levels of ξLPTT-values (ξLPTT = {0.1,0.2}) have been considered
and corresponding complex flow solution patterns have been generated.

3 Flow problem specification and numerical algorithm

Let us consider a rotating sphere of radius (a) immersed in a bath of viscoelastic fluid of
zero shear-rate viscosity η0 and density ρ, defining the kinematic viscosity ν = η0/ρ. The
rotation is achieved through a constant angular velocity Ωsphere, about an axis of rotation into
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the vertical plane. The coordinate system is chosen in such a way that its origin is located at
the centre of the sphere. In this analysis, as also considered elsewhere theoretically (Thomas
and Walters 1964), the motion of the fluid is due solely to the rotational movement of the
sphere, and is sufficiently small in order to neglect inertia. Hence, any suspending upper-rod
intrusion of the experiments (Giesekus 1970) is ignored, to focus on the lower half-sphere
flow patterns.

The symmetric nature of the problem allows representation in a single lower quadrant of
the (r, θ )-polar plane. The boundary conditions are established over the four different bound-
aries. Firstly, no-slip is established over the sphere surface; here, only rotational velocity
(Ωspherea sin θ ) is non-zero, imposed as anti-clockwise into the plane (viewed from above);
whilst symmetry conditions are applied on the polar-equatorial axes (vanishing shear stress).
Additionally, it is assumed that the vessel is of relatively infinite outer dimensions, implying
that at larger distance away from the sphere, the fluid is to all intent and purposes relatively
at rest.

The quadrant boundary conditions for this problem are defined through the velocities on
the sphere itself, the two axes, polar and equatorial, and the far-field boundary. These are
given as standard (see Thomas and Walters 1964), in the lower spherical quadrant of interest
that satisfy the boundary conditions at the sphere (r = a) and in the field. Corresponding
velocity components in the spherical quadrant of interest (Uρ,V θ ,Wφ), must satisfy the
stream function of equation (Eq. (35) of Thomas and Walters 1964) and the boundary con-
ditions at the sphere surface, so that with r1 = r/a:

Uρ = ν

a
u

ρ

1 = ν

a

(r1 − 1)2

8r5
1

[
(1 − 4m)r1 − 8m

](
3 sin2 θ − 2

)
,

V θ = ν

a
uθ

2 = ν

a

(r1 − 1)

4r5
1

(r1 − 12m) sin θ cos θ,

(9)

and on the sphere,

Wφ = Ωsphereau
φ

3 = Ωspherea sin θ, (10)

from which appropriate non-dimensional velocity components (uρ

1 , uθ
2, u

φ

3 ) may be ex-
tracted. These expressions are linked to a specific value of the parameter m (see on to
Sect. 4), which implies that the initial conditions proceed from these computations. Then,
Ωsphere is defined as a base-reference angular velocity of the sphere, αbase-ref = ν/a as a
base-reference viscous material velocity scale, and θ is the angle measured from the ver-
tical axis of rotation, with orientation taken on the vertical polar-axis as (θ = 0◦) and on
the equatorial-axis (θ = 90◦). Note in particular, the use of the dual scales on velocity com-
ponents of Thomas and Walters (1964), who used (Usphere = Ωspherea) for (uφ) as a sphere
rotational velocity scale, and Umaterial = (ν/a)base-ref for (uρ,uθ ) as a viscous material veloc-
ity scale. These scales imply that two different controlling influences apply in this problem,
where the (ν/a)base-ref-scale has bearing over the in-plane velocity (viscoelastic), and the
other (Ωspherea)-scale exerts control over the out-of-plane velocity (inertial).

Hybrid finite element/finite volume scheme Here, the numerical method used solves
for stress, velocity and pressure variables in the plane of interest, and is an extension of
that previously cited in Belblidia et al. (2007, 2008), Wapperom and Webster (1998, 1999),
Webster et al. (2005). In essence, the numerical solution procedure adopts a time-stepping
fractional-staged approach to steady-state, specifically developed and advanced for vis-
coelastic flow problems. It assumes a Taylor series time expansion and a time-incremental
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pressure-correction method, to derive a semi-implicit scheme implemented over three sub-
staged equations per time-step. Spatial discretisation is accomplished via: first, velocity-
pressure finite element approximation, on the parent-level quadratic-linear interpolation over
the meshed-domain triangulation. This is followed by a cell-vertex stress finite volume ap-
proximation on each triangular sub-cell of an individual parent-triangular cell. Thus, the
momentum-continuity equations are discretized and solved through this hybrid combination
of: semi-implicit Taylor–Galerkin/incremental pressure-correction algorithm (see, for exam-
ple, Donea 1984; Zienkiewicz et al. 1985; Matallah et al. 1998), together with that of a cell-
vertex finite volume sub-cell technique for stress (see, for example, Wapperom and Webster
1998, 1999). Over the sub-staged equations per time-step, the first and third stages are solved
through Jacobi iteration, whilst the second stage invokes a direct Choleski decomposition
method. Time-stepping convergence to a steady-state is ensured, from appropriate initial and
boundary conditions, through selection of a suitable time-step (here chosen as 10−4) and
time-stepping termination criteria. The former must satisfy standard semi-implicit stability
criteria, whilst the latter is taken with respect to a relative temporal increment norm over
the evolving solution (with a threshold value of 10−6). Fuller details on these procedures are
provided in the references cited above, so that only a brief outline on the stress discretisation
is included below, together with Aboubacar and Webster (2001) and Garduño et al. (2015).

Sub-cell finite volume stress discretisation The stress discretisation comprises a novel
implementation of a finite volume scheme over triangles, of cell-vertex variable location.
This scheme has emerged from and lies as an extension to the homogeneous zero-source
context for first-order hyperbolic conservation law equations. In the present context, the
constitutive laws are inhomogeneous and multidimensional, hence calling upon counterpart
flux and source term temporal resolution, to maintain consistency, accuracy (linearity pre-
serving) and stability (positivity preserving) properties. The triangular subcell cell-vertex
technique derived for the extra-stress temporal-increment calculation is centred upon a sin-
gle parent-triangular finite element cell that is sub-divided into four finite volume child-
triangular subcells. In order to calculate the individual components of the stress tensor, a
series of equivalent linear shape functions is applied over each subcell area of the triangular
finite volume (fv), thus constituting the integral flux and source term evaluation.

The integrated flux evaluation is extracted through a fluctuation distribution scheme
(LDB-method upwinding), which allocates such contributions over each triangular fv-subcell
to its three vertices. Hence, this procedure distributes the flux control-volume residuals to
their respective nodes of the subcell, to provide the associated nodal solution updates. Simi-
larly, concerning inhomogeneous source term evaluation, computations are performed over
the so-called Median-Dual-Cell (MDC) zone of each fv-subcell. There are three such unique
non-overlapping MDC-zones per fv-subcell-triangle, each providing its contribution to its
nearest nodal MDC-neighbour. A complete solution nodal update is then obtained by sum-
ming all such flux and source term contributions, from each (and all) fv-subcell-triangle
control-volume surrounding a typical node (Aboubacar and Webster 2001).

4 Results and discussion

4.1 m-parameter variation {flow type descriptor}

The regions for the different flow patterns are specified through the m-parameter, as reported
by Walters and Waters (1964) analysis, which takes the form

m = (αT − 2βT )/2ρa2, (11)
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Fig. 4 Second-order regime: types of flow patterns and ranges of m-parameter

where αT = N1/γ̇
2 and βT = N2/γ̇

2 are the respective first and second normal stress-
difference coefficients.

The standard and base flow problem is one assumed to be specified in boundary condi-
tions by the second-order theory, but solved over the flow-field domain in a general manner;
hence, the adoption of a constant base-form definition for m-parameter, as one possible
choice. This option permits the comparison with second-order regime solutions (universal
to all constitutive models), flow regime solutions beyond second-order, and across consti-
tutive models more generally (as necessary here). An alternative variable classification of
m-parameter, over the field and constitutive model, would invalidate any such comparison.

Accordingly, the m-parameter can be reinterpreted through non-dimensional numbers,
viz.

m = Wi

Re
(1 − β), (12)

where the two non-dimensional group numbers are defined as

Re = ρaU/η0 = Ωa2/ν = (Ωa)(a/ν) = Usphere/Umaterial,

Wi = λ1U/Lsphere = λ1Ωsphere.
(13)

Taking the characteristic length scale (Lsphere) in terms of the sphere radius (a), and the char-
acteristic velocity scale (U ), based on the sphere angular velocity (Ωsphere), thus in Fig. 4 the
different flow types are depicted, highlighting the respective directions of the flow. Type 1
(inertial), 0 ≤ m ≤ 1/12 represents a classical Stokes flow, where the flow moves from the
poles to the equator. Type 3 (viscoelastic), m ≥ 1/4 flow is mainly directed from the equator
towards the poles; in this pattern the flow field is dominated by fluid elasticity. This study
is focused around the dynamically active m-range covering flow type 2, classified as inter-
mediate, which manifests many interesting flow phenomena through the interaction of both
inertial and elastic effects.

Within the parametric variation of flow type 2 (intermediate), the numerical solution
may display rich and varying forms of flow patterns, according to precise parameter selec-
tion. For instance in the second-order regime, a secondary flow region bounding the rotating
sphere, as demonstrated by Thomas and Walters (1964), is produced when m lies inside
the interval 1/12 < m < 1/4. In Garduño et al. (2015) for Oldroyd-B solutions, the con-
cept of shifting, outside the second-order regime flow was addressed. Such a study demon-
strated more general flow solutions in transitional and general flow settings beyond those of
perturbation-analysis. In accordance with the solutions provided, for relatively low values of
m (0.08 < m < 0.16), the scenario arises where two vortices (polar and equatorial) co-exist
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Fig. 5 Flow field position and
classification of vortex patterns

Fig. 6 Second normal
stress-difference, LPTT
solutions; high-solute (β = 1/9)
and high-solvent (β = 0.9);
base case
{m = 0.14, αbase-ref,Ωsphere}

in the flow field, close to the sphere. Here and below, we focus entirely on the general flow
scenario for further exploration.

As such and to this point, a number of independent parameters are known to influence
vortex structure and arrangement. Hence, it is necessary to adopt a suitable reference state
against which to take comparisons. For example, in order to test the independent influences
of α-increase and Ω-increase on flow structure and patterns, and to observe the respec-
tive changes thus initiated, a specific m-setting must be chosen that manifests well-defined
vortices. Essentially, this provides a cross-check on the influence over the in-plane and out-
of-plane velocity scaling used. For this purpose, m = 0.14 is selected as the base reference,
since it represents the double vortex-pattern (P , E1), from which the birth, growth and in-
fluence of vortex (E2) may be traced. In Fig. 5, the respective vortex identification scheme
is represented: with the dominant upper polar vortex (P , in green), the emerging lower equa-
torial vortex (E1, in yellow), and lastly, the twin equatorial vortex (E2, in blue).

4.2 Solvent fraction (β) effects and N2 patterns: base-case
{m = 0.14,αbase-ref,Ωsphere}

At the outset and across each model solution, one finds that Oldroyd-B, FENE-CR and
LPTT produce visually identical results at each solvent fraction level (high or low), for the
base-case {m = 0.14, αbase-ref,Ωsphere}. Hence, and unambiguously below, only flow patterns
for the LPTT instance are provided.

As such in streamlines of Fig. 6, the LPTT high-solvent solution (rhs) is compared against
its high-solute counterpart (lhs). For the high-solute case, the polar vortex suffers consider-
able constriction towards the polar axis (horizontally, by about one half times), in contrast to
its high-solvent counterpart. Similarly and in the equatorial zone, the high-solute equatorial
vortex is distorted away from that of the high-solvent vortex (more circular): this high-solute
equatorial vortex shows a tendency to be both elongated vertically (widening), whilst being
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Fig. 7 Flow patterns: out-of-plane velocity (Ωsphere) scaling, LPTT {m = 0.14, β = 0.9,Wi = 0.021}; two
different solvent ratio fractions

dragged further around the sphere surface in a clockwise direction (lhs-upper quartile), ac-
quiring a slightly more elliptical shape.

Larger values of second normal stress-difference (colour background contours) are at-
tendant for the high-solute case (β = 1/9, Fig. 6, left), conspicuous in the region close to
the equator and travelling away from the sphere. Negative values are predominately found
around the line through the centre of the equatorial vortex linking up with the sphere-equator
intersection. Regarding the high-solvent case (β = 0.9, Fig. 6, right), the larger field N2 val-
ues are found around the equatorial axis, close to the sphere; and also, over the small polar
region over the sphere. These N2 (β = 0.9) values are an order of magnitude smaller than
under N2 (β = 1/9). In Fig. 6, a common contour scale for comparison is employed, based
on the range of values for the high-solute case.

4.3 Sphere speed effects {Ω-increase}

For this comparison, out-of-plane velocity scaling was assessed, through angular velocity
increase in the range of Ωsphere ≤ Ω ≤ 5Ωsphere (implemented through the boundary condi-
tions Eq. (10)), as can be gathered from Fig. 7. Noticeably, a suppressive effect is observed
over both polar and equatorial vortices as rotational speed increases, regardless of solvent
ratio.

On close inspection and first for the particular case of high-solvent, though the incre-
ments in angular velocity (Ω) affect the development of both vortices, a diminishing effect
is mainly evident over the polar vortex, being less prominent over the equatorial vortex.
Ultimately, the polar vortex is constricted so much, that finally it practically disappears.

In the highly-polymeric case, the polar vortex is initially smaller (more compressed to-
wards the polar axis) than in the high-solvent case. So then, the polar vortex completely
disappears, at even earlier stages of Ω-development than apparent with high-solvent solu-
tions. Likewise with Ω-rise, the highly-polymeric equatorial vortex decreases in overall size,
and its shape becomes more deformed close to the sphere-equator intersection.
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Fig. 8 Flow patterns: in-plane velocity αbase-ref-scaling, LPTT {m = 0.14, β = 0.9,Wi = 0.021}; two dif-
ferent solvent ratio fractions: (a) αbase-ref ≤ α ≤ 10αbase-ref, (b) 50αbase-ref ≤ α ≤ 100αbase-ref

4.4 Material velocity scaling: {α-increase}

Trends over the scaling of the in-plane viscous material velocity scale (α) are presented in
Fig. 8 with the following considerations. In general terms, in-plane velocity (α) scaling is
implemented through the boundary conditions Eq. (9) and has impact over the entire flow
field. This has a major enhancing influence on the polar vortex, in particular. As a con-
sequence and for the high-solvent case, the polar-vortex becomes much broader as α is
elevated from unity through to three, then ten. The polar-vortex practically doubles its width
from the polar axis with each such α-increment. This widening effect, over the main polar-
viscoelastic vortex, also provokes the equatorial vortex. The equatorial vortex becomes more
elliptical, grows and shifts closer towards the polar vortex. Finally, these two vortices collide
and begin to merge together, with two central vortex-eyes being apparent at 10αbase-ref. Here,
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Table 1 Flow class and
respective stimuli Class No. Vortices Position Stimulus

m Ω α k

A 1 P yes yes

B 2 P, E1 yes yes

C 3 P, E1, E2 yes yes

D 2 P, E2 yes

Fig. 9 Vortex-class obtained
through the combination of
different stimulus, Wi = 0.021,
1000αbase-ref

with further α increment, the trend is for the polar vortex to gradually grow and dominate,
whilst the equatorial vortex gradually declines (10αbase-ref ≤ α ≤ 50αbase-ref). This interme-
diate development state occurs prior to the formation of a single solitary secondary flow
region (observed at or around, 100αbase-ref). Such a single zone then encloses the rotating
sphere quartile-surface in its entirety.

For the high-solute counterpart and for the same levels of α-scaling and increments,
the polar-vortex is observed again to widen with α-elevation, but now with less than half
the width increases observed for the high-solvent case, discussed above. For α ≤ 10αbase-ref,
these width increases prove insufficient away from the polar axis, to cause disturbance to
the counterpart evolving equatorial-vortex structure. Thus, for this α-parameter range, there
is no polar-equatorial vortex interaction to report (no early vortex merging, as with high-
solvent); this is observed to be delayed to around 100αbase-ref. Pursuing this line of attack
with further increment in α-value, the equatorial vortex is seen to recede by 200αbase-ref;
eventually forming the single vortex structure at ∼500αbase-ref, somewhat later than for the
high-solvent instance above.

4.5 Various classes of solution structure—alternative vortex patterns

At this stage, it is useful to summarise findings thus far on vortex structure and patterns.
Through the analysis of different stimuli applied over the base-case, it is possible to identify
various flow classes; each of which is stimulated by the blend of different factors. A more
detailed description of the different solution sets is exposed in Table 1, alongside a represen-
tative image for each particular flow class A and B in Fig. 9 (see Appendix also for classes C

and D).
Class A corresponds to the situation when a secondary flow cell completely encloses the

sphere, as in our previous paper in the subject, Garduño et al. (2015). Here, the secondary
flow cell Oldroyd-B solutions within the second-order regime are symmetrical; in further al-
ternative regimes, the extracted solutions provide an asymmetrical cell shape. In this work,
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for this class of flow solutions, the generated cell is asymmetric due to external flow in-
fluence. These kinds of solutions can be reached via two parametric directions: one with
m ≥ 0.16; or another, as demonstrated above by promoting the α-parameter. With the quest
to match the Giesekus experiments (Fig. 1) in mind, now the particular case of 1000αbase-ref

becomes the newly refreshed base-case for subsequent comparison.
Class B of flow pattern is promoted via the angular velocity (Ω) and in-plane velocity-

scaling factor (α), and is represented by two vortices over the field. One vortex emerges in
the equatorial region (E1) of the sphere, whilst a major vortex is over the polar region (P ). It
is important to highlight here that the equatorial vortex indicates an anticlockwise rotation,
while the main polar vortex rotates in a clockwise direction (front-view perspective, rhs
upper quartile of sphere). Around 60° from vertical, it is noticeable that a constriction exists
over the secondary flow cell, which promotes the evolution of the anticlockwise vortex and
the subsequent appearance of a third vortex over the equator (E2).

As has been demonstrated, the role of the variation for the parameters (particularly α

and Ω) expose different solutions. With this in mind, it is necessary to opt for a single
base-case in order to capture the significant and elusive vortex structure described in the
Giesekus (1970) experimental results. From this stage onwards, the α-parameter level of
interest switches to O(103). Therefore, the parameter of interest becomes the angular veloc-
ity Ω .

4.6 Flow patterns and vortices: large-α, FENE-CR and LPTT, shear-thinning

High-solvent In both models, FENE-CR (Fig. 10(a)) and LPTT (Fig. 10(b)) high-solvent
(β = 0.9) solutions; the first equatorial-zone vortex (E1) has anticlockwise rotational ori-
entation, and appears over the sphere surface (lower portion of the quartile). Then, as the
rotational speed increases, a pinching effect arises in the lower extremities of the main polar-
vortex (P ). This pinching effect gradually becomes so significant that it is responsible for
the birth of a further unique second equatorial-zone vortex (E2), now of clockwise rotation,
opposite to that of vortex (E1). This vortex (E2) is located further away from the sphere
than vortex (E1), lying above the equator, yet still within the equatorial region.

Across model comparison and as Ω increases, the vortex (E1) is more developed for
FENE-CR than for LPTT solutions. The stronger flow produced by the polar-vortex (clock-
wise direction) is itself responsible for driving the first equatorial-zone vortex (E1) in an an-
ticlockwise direction. Within FENE-CR solutions and between sphere speeds of 8.2Ωsphere

and 8.3Ωsphere, the pinching effect from the polar-vortex is now sufficiently large to stimulate
the appearance of the second equatorial-vortex (third vortex, E2).

In contrast to FENE-CR findings, the LPTT solution is more sensitive to the rotational
speed increase. The shear-thinning influences that are introduced in this phase of Ω-increase
are apparently through the lack of significant size change (delay in development) of the
first equatorial-vortex (E1), as well as the earlier development of the additional second
equatorial-vortex (E2) (third vortex, around 7.8Ωsphere) and the association of this third
vortex appearance with the polar-vortex pinching. Hence, this scenario of third vortex ap-
pearance occurs at earlier stages in Ω-increase with shear-thinning LPTT solutions, when
compared against constant-viscosity FENE-CR solutions.

Looking at both FENE-CR and LPTT model solutions in greater detail, and to their
respective final stages for sphere-speed 8.5Ωsphere, it is noted that the third vortex (E2)
has comparable size in both predictions. Conspicuously, the third vortex (E2) under LPTT
solution has a more rounded-shape than that for FENE-CR, which appears more triangular.
Regarding the characteristics of vortex (E1) for FENE-CR, it is about one-third larger than
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Fig. 10 (a) Development of equatorial vortices, (β = 0.9) solutions, FENE-CR {m = 0.14,Wi = 0.021,

1000αbase-ref}. (b) Development of equatorial vortices, (β = 0.9) solutions, LPTT {m = 0.14,Wi = 0.021,

1000αbase-ref}

that for LPTT, both in size and intensity. The LPTT vortex (E1) at 8.5Ωsphere, would appear
to be more comparable to that of FENE-CR at 8.2Ωsphere. Evidently, this is a localised shear-
thinning effect (and would require still further speed stimulus in the LPTT instance to match
the E1-vortex size of the FENE-CR (8.5Ωsphere) with better matching to Giesekus results).

As a counterpart to these high-solvent vortex solutions, for both models, second normal
stress-difference fields (N2) (Fig. 11) also reflect some interesting findings. Here, there are
practically no substantial differences noted about the polar vortex and zone in N2; whilst
there are substantial differences in the equatorial zone. The region occupied by the first
equatorial-vortex (E1) shows also a growing spatial occupation of larger N2-values as ro-
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Fig. 11 Contours of N2, FENE-CR and LPTT; high-solvent (β = 0.9); {m = 0.14,Wi = 0.021,

1000αbase-ref,Ω variable}

tational speed increases. Significantly, such E1-vortex trends are more exaggerated in the
FENE-CR case above the shear-thinning LPTT case. Comparably, the second equatorial-
vortex (E2) region is rather insensitive to such changes, and with respect to quantification
of N2-influence. Interestingly, when non-zero ξLPTT-parameter values are attempted with
LPTT (0 ≤ ξLPTT ≤ 0.2), this has inconsequential impact on these N2-fields.

High-solute Figure 12 includes the corresponding vortex flow patterns for LPTT (β =
1/9), with high-solute fraction. Here, the more dominant polymeric content completely dic-
tates a common flow structure at this level of rotational speed. So, the rich equatorial vortex
evolution of the high-solvent instance is now completely suppressed, leaving only a vestige
equatorial-axis thin vortex. The polar vortex remains substantial and undisturbed, so that
this does not show any indications of widening away from the polar axis either. For this
particular instance, N2 fields are invariant and are therefore not shown.



112 Mech Time-Depend Mater (2016) 20:95–122

Fig. 12 Development of equatorial vortices, (β = 1/9) solutions, LPTT {m = 0.14,Wi = 0.021,

1000αbase-ref}

4.7 Second normal stress-difference

Thomas and Walters (1964) proposed the material parameter m (Eq. (11)), which can be
used to estimate N2 theoretical values using the corresponding N1 values (experimentally,
Manero and Mena (1978), or theoretically, assuming steady simple shear flow). In this man-
ner, N1 theoretical values with Oldroyd-B, FENE-CR and LPTT solutions may be used to
estimate corresponding N2 theoretical values. These values are displayed in Fig. 13, where
N1 is depicted with solid-lines and N2 by dashed-lines. As discussed above, introducing
ξLPTT �= 0 within the LPTT formulation is plausible to stimulate enhanced N2-production.

Theoretical predictions for N1 and N2 Oldroyd-B adopt the same quadratic trend, as
anticipated. FENE-CR and LPTT at low-Wi both shows good agreement with these Oldroyd-
B predictions, but as Wi ∼ 1 is approached there is departure from quadratic response, with
the predicted N2 values now being greater than those for Oldroyd-B. With LPTT (ξLPTT =
0.2) solutions, a quadratic trend is realised prior to assuming a capped value around Wi ∼ 3.

Here, one may propose a generalisation to the rotating sphere flow m-equation of Thomas
and Walters (11). This is achieved in the following fashion. From the J -model (see Walters
et al. 2009, for the J -Model as a generalisation of Oldroyd-B),

N1 = 2η0(1 − β)λ1γ̇
2

1 + J γ̇ 2
. (14)

Then, comparing Eq. (14) with that for the LPTT (or FENE-CR) model, one may recognize
the duality of the approximation, 1 + J γ̇ 2 ≈ f 2.

Taking this into account, it is possible to establish wider applicability than for the
Oldroyd-B model alone, to include also LPTT (ξLPTT �= 0), FENE-CR and J -Models. So
then, one may define a generalised N2 equation, which essentially involves rescaling N2,
viz.,

N∗
2 = N2

αG

1 + J γ̇ n
. (15)
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Fig. 13 Second normal stress-difference (N2) values for LPTT (ξLPTT = 0.2) and from Eq. (11), Thomas
and Walters (1964)

Table 2 Model parameter values
Model αG J n

Thomas & Walters Present work

Oldroyd-B

1/2 ξLPTT

0 0

FENE-CR >0 1

LPTT >0 2

J -model >0 2

This form appeals to three fitting parameters of J , n and αG, variables in choice across flow
deformation type (rotating sphere flow and steady simple shear flow) and model selection
(LPTT(ξLPTT �= 0), FENE-CR, Oldroyd-B and J-Models).

Accordingly, a generalised m-equation can be expressed in the form

m = αGN1 − N∗
2 (1 + J γ̇ n)

2ρa2γ̇ 2αG

, (16)

from which a corresponding generalised form for N2 may also be extracted:

N∗
2 = (

N1 − 2mρa2γ̇ 2
)( αG

1 + J γ̇ n

)
. (17)

Hence, and for the present purpose of comparison against Eq. (11) evaluation (as of
Thomas and Walters), it is necessary to use parameter sets as listed in Table 2. Firstly
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Fig. 14 Second normal stress-difference (N2) values with generalised N2-equation

(see Fig. 14(a)), the new formulated Eq. (17) for the studied models is compared against
Oldroyd-B N2-theoretical values. Following Fig. 14(b), this new N∗

2 -equation is fitted to the
LPTT (ξLPTT = 0.2) theory.
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Fig. 15 Second normal stress-difference against Wi, theoretical (dashed) vs numerical (symbols) values,
β = 0.9

Concerning the comparison between these numerical predictions against theory, two al-
ternative sample-point positions over the surface of the sphere have been selected. One
sample-point is located at the equatorial axis, π/2 from the vertical polar axis, and other
is taken at π/4.

With {J = 1, n = 1, αG = ξ} N2-theoretic data gathered in this manner, whilst using
this newly-formulated m-equation for LPTT (ξLPTT = 0.2), agree more closely with the
π/4 sample-point simulated predictions for LPTT (ξLPTT = 0.2) than with the original m-
equation theory. This realises a slight shift in fitting predictions against m-equation theory,
from a match to Oldroyd-B theory to that of the more generalised LPTT (ξLPTT = 0.2) the-
ory.

Now, considering the usual scaling (−N2/η0Ω), this may be adjusted by the same factor
introduced in the generalized m-equation

− N2

η0Ω

(
αG

1 + J γ̇ n

)
, (18)

where, for the sake of simplicity, one defines κ = αG/(η0Ω(1 + J γ̇ n)).
In Fig. 15, the numerical solutions extracted at π/4 sample-point for FENE-CR reveal

quadratic form, which closely follows the theoretical computation. It should be noted here
that only LPTT (ξLPTT = 0.2) solutions are presented amongst those available for LPTT.
The data extracted at π/2 sample-point (not shown) is rather less reliable than that sampled
at π/4. This data is strongly influenced by axial effects and shows significant departure
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from the theory, whilst at the same time, not showing major differences in N2-values for the
alternative fluid models.

4.8 Torque calculation

The torque is defined as the force to maintain the steady rotation of a sphere of radius
(a), with an angular velocity (Ω), a fluid of viscosity η0 and density ρ. This force can be
expressed around the base Stokesian approximation that leads towards other expansions,
defined as follows:

Stokes (a) Ts = 8πa3Ωη0,

Mena et al. (1972) (b) Tm = 8πa3Ωη0

[
1 +

Re2

1200

1 + Re2

1200 (1.086) + O(Re)6

]
,

Thomas and Walters (1964) (c) Ttw = 8πa3Ωη0

[
1 + Re2

(
1

1200
+ m

140
− 2m2

15

)]
.

(19)
Appealing to the expression for the force over the surface of the sphere Fw as (see
Tamaddon-Jahromi et al. 2011),

Fw = 2πa2
∫ π

0

{
Trz sin θ + (Tzz − p) cos θ

}
sin θ dθ, (20)

then, the torque for an Oldroyd-B fluid may be represented as a function of the m-parameter
(see Garduño et al. 2015), using the respective equation for the force over the surface of the
sphere expressed in (20). This realises the following expression for the torque:

TOB = 8πa3Ωη0[1 + Fw],
with its relative non-dimensional form represented by

TOBλ1(1 − β)/
[
8πa5η0Ω

] = m[1 + Fw]. (21)

The respective torque calculation can be performed through the angular velocity (Ω), ma-
terial velocity scale (α = ν/a), which produces an expression defined in terms of Reynolds
number (see Eq. (13) above).

Additionally, the in-plane velocity-scaling factor may be introduced to obtain the
unscaled-value of the drag-force over the surface of the sphere, as follows:

Tw = 8πa3Ωη0

[
1 + Fw

α

]
,

which under scaling and non-dimensionalization yields:

Twρ

8πaη2
0

= Re

[
1 + Fw

α

]
. (22)

Accordingly, the non-dimensional torque computations are presented in Fig. 16, at low
Reynolds number. Here, the theoretical equations are scaled by ρ/(8πaη2

0), as established
over the rhs-axis. The theoretical expressions of Stokes, Thomas and Walters (1964) and
Mena et al. (1972) show a consistent linearly increasing trend as they are plotted against Re.
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Fig. 16 Torque for different theoretical equations (Stokes, Mena et al. 1972; Thomas and Walters 1964)
and FENE-CR, LPTT solutions against Re, and Oldroyd-B solutions (Garduño et al. 2015) compared against
m-parameter

In our previous paper (Garduño et al. 2015), whilst following the same scaling procedure as
in the theoretical expressions, the Oldroyd-B numerical torque solutions were shown plot-
ted as a function of m-parameter, with the lhs-axis torque scaled by λ1(1 − β)/(8πρa5Ω).
Concerning those solutions, it was appreciable that, at the upper limits of m-parameter, there
was a slight tendency towards upward departure, whilst at lower values, preserving the linear
trend.

In order to detect possible departure from the Stokes torque-value, the respective numer-
ical torque solutions for FENE-CR and LPTT are scaled in the same fashion as theoretical
expressions, i.e. using ρ/(8πaη2

0). Adopting such practice, the torque numerical solutions
are obtained within the angular velocity range of {7.5Ωsphere,8.5Ωsphere}, reflecting a linear
trend as Re increases for both model solutions, with little to no departure noted from the
Stokes value.

5 Best matching: numerical predictions versus Giesekus experimental
findings

First, within Fig. 17, in the rhs image with respect to the polar axis, the FENE-CR {m =
0.14,8.2Ωsphere} solution is overlaid on the background Giesekus field pattern. For clarity,
the lhs image with respect to the polar axis, displays only the Giesekus field pattern. This
match well captures the strong clockwise polar-viscoelastic vortex (P ) in the rhs image.
The prediction vortex centre is shifted slightly to the left of experimental vortex centre,
and therefore slightly squeezed up from the full Giesekus (darker) zone occupied in the
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Fig. 17 Giesekus experimental
evidence versus FENE-CR
{m = 0.14,Wi = 0.021,

8.2Ωsphere} solution; includes
three different Giesekus (1970)
zones

Fig. 18 Giesekus experimental
evidence versus LPTT
{m = 0.14,Wi = 0.021,

7.6Ωsphere} solution; includes
three different Giesekus (1970)
zones

background. The counterpart equatorial vortex (E1) practically fills the Giesekus inner-
inertial zone, now assuming anticlockwise rotation. This region is representative of positive
values of N2, opposed to the zone outside. This equatorial vortex (E1) feature emerges
because of constriction from the bottom-tail-end of the polar vortex.

In contrast to the foregoing FENE-CR {m = 0.14,8.2Ωsphere} solution, the corresponding
LPTT {m = 0.14,7.6Ωsphere} solution is quite similar in overall flow pattern and structure,
but noting that both polar and equatorial vortices are now slightly more reduced against the
background Giesekus flow patterns. So, they are less space occupying, due in part to the
additional shear-thinning response of the LPTT prediction, as shown in Fig. 18.

6 Conclusions

This study has addressed viscoelastic numerical predictions for the rotating sphere problem,
comparing and contrasting FENE-CR and LPTT model solutions. For the base-case setting
{m = 0.14, αbase-ref,Ωsphere} there are no significant differences observed between FENE-CR
and LPTT solutions. Beyond this base-case, further parameter variations, that expose sig-
nificant differences in model predictions, have been investigated. This has aided in recogni-
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tion of rheological impact, as through shear-thinning effects, and via inertial effects (sphere
speed). For α-increments (in-plane velocity scaling), a widening effect over the polar-vortex
is observed for the high-solvent case. For the high-solute case, the polar-vortex is observed
to widen with α-elevation, but by less than half the width observed for the high-solvent case.

Solutions for large-α agree well with the Giesekus experimental main flow field. For
these kinds of solution, an emerging equatorial vortex is found in the specific range of
{7.5Ωsphere,8.5Ωsphere}, where this vortex has an anticlockwise flow-direction. Finally, the
key objective of the research has been reached; in that best-case matching scenarios are
gathered between experimental Giesekus vortex patterns and current numerical predictions.
With respect to the FENE-CR {m = 0.14,8.2Ωsphere} solution, this has captured the strong
clockwise polar-viscoelastic vortex (P ). Then, the equatorial vortex (E1) almost fills the
Giesekus inner-inertial zone, assuming anticlockwise rotation. Inside the emerging equa-
torial vortex is found a highly rich positive N2-region compared against the negative N2-
enveloping layer that surrounds the rotating sphere. This also indicates the significance of
second normal stress-difference effects over the development of these various flow struc-
tures. With the corresponding shear-thinning LPTT {m = 0.14,7.6Ωsphere} solution, both
polar and equatorial vortices are now slightly more reduced, compared against the counter-
part FENE-CR solutions. They are less space occupying, as a consequence of the additional
shear-thinning response in the LPTT solutions.
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Ciencia y Tecnología (Mexico) through the scholarship No. 310618.

Appendix: Radius of secondary flow cell {polar-L kpl, equator-L keq
scaling}

The theory for the second-order regime predicts the emergence of a secondary flow cell
covering the entire rotating sphere (Thomas and Walters 1964) over the range of 1/12 <

m < 1/4. The radius of such cell (also, flow-axis anchor-point) is estimated as:

r∗
1 = 8m

1 − 4m
. (A.1)

In order to explore variation in the flow patterns, a length-scale (k) can be introduced over
the axes (adjustment of the sphere from spherical to elliptical form), so that the vortex anchor
points on the individual equator and polar axes can be adjusted, affecting the radius of the
secondary flow cell. The introduction of a denominator scaling k-parameter (identified on
each axis separately, ‘eq’ for equator and ‘pl’ for polar) modifies Eq. (A.1) as:

r∗
eq = 8m

(1 − 4m)keq
, r∗

pl =
8m

(1 − 4m)kpl
. (A.2)

This consideration also amends the form for the first velocity component (Uρ ) in Eq. (9)
above as

Uρ = ν

a
u

ρ

1 = ν

a

(r1 − 1)2

8r5
1

[
(1 − 4m)kr1 − 8m

](
3 sin2 θ − 2

)
. (A.3)

Figure 19 shows the variation of this sphere-geometric parameter k over the respective axis
(equatorial or polar). The case when k = 1 is the base and standard case (perfect sphere).
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Fig. 19 Flow patterns: equatorial and polar vortices; variation in elliptical k-parameter, LPTT m = 0.14,
Wi = 0.021

Fig. 20 Vortex-classes
C{1000αbase-ref, keq = 1.6,

Wi = 0.021} and D{400αbase-ref,
keq = 1.7,Wi = 0.021}, obtained
through the combination of
different stimuli

Then, for any particular axis, if k < 1, the vortex anchor point is located further away from
the sphere centre; whilst, if k > 1, the anchor point is located closer to the sphere, producing
a diminishing effect over the general vortex structure.

In addition to information exposed in Sect. 4.5 above, two further classes of flows may
be identified in Fig. 20, class C and D, under k-parameter adjustment, which demonstrate
equatorial vortex pinching with shift towards the sphere. A diminishing (keq > 1), or am-
plifying effect (keq < 1), over the vortex structure can be obtained according to the specific
value of the sphere-geometric scaling factor (k) chosen.

Class C flow pattern presents three vortices in the flow field, with a major vortex over
the polar region (P ), an equatorial vortex (E1), itself lying over a third vortex that emerges
from the equatorial axis (E2). This particular solution pattern is obtained through the ma-
nipulation of the keq-factor that is positioned close to the sphere in order to obtain a more
constricted secondary flow cell. Accordingly, the main polar vortex (P ) and E2 are rotating
in a clockwise direction, whilst driving E1 towards its anticlockwise rotation.

Class D flow pattern is characterized through the presence of two vortices in the flow
field, a main polar vortex (P ) and an emerging equatorial vortex (E2), now both moving
in a clockwise direction. Again, this instance is obtained through the manipulation of the
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keq-factor that is positioned close to the sphere in order to obtain a more constricted sec-
ondary flow cell. In Fig. 20 and for this particular instance, it is appreciable how the sec-
ondary flow cell outer perimeter moves below the polar vortex, pinching inwards towards
the sphere surface, to finally curtail interaction between both vortices. The secondary flow
cell constriction is located around ∼70° and produces a more spherical polar vortex.
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