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Abstract Poisson’s ratio is a well-defined parameter in elasticity. For time-dependent ma-
terials, multiple definitions based on the ratios between lateral and axial deformations are
available. Here, we focus ourselves on the two most widely used definitions in the time
domain, which define time-dependent functions that we call relaxation Poisson’s ratio and
creep Poisson’s ratio. Those two ratios are theoretically different, but are linked in an exact
manner through an equation we derive. We show that those two functions are equal at both
initial and large times and that their derivatives with respect to time also are. Based on sim-
ple rheological models for both the deviatoric and volumetric creep behaviors, we perform a
parametric study and show that the difference between those two time-dependent Poisson’s
ratios can be significant. However, based on creep data available in the literature, we show
that, for cementitious materials, this difference can be negligible or not, depending on the
case.
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1 Introduction

For an isotropic body, the elastic Poisson’s ratio ν0 is defined unambiguously as the ratio
of the lateral contraction −εl to the elongation εa in the infinitesimal deformation under
uniaxial load, that is,

ν0 = − εl

εa

. (1)

By extension, for linear viscoelastic materials, we can aim at defining a time-dependent
Poisson’s ratio (Van der Varst and Kortsmit 1992; Hilton 2001, 2011; Tschoegl et al. 2002;
Lakes and Wineman 2006). However, such an aim can generate some ambiguity since Hilton
(2001) enumerated five different ways of defining a time-dependent Poisson’s ratio. Here, by
using a direct extension of Eq. (1) to a uniaxial creep experiment and to a uniaxial relaxation
experiment, we define the creep Poisson’s ratio νc and the relaxation Poisson’s ratio νr :

νc(t) = − εl(t)

εa(t)
during a uniaxial creep experiment for which σa(t) = σa0, (2a)

νr(t) = −εl(t)

εa0
during a uniaxial relaxation experiment for which εa(t) = εa0, (2b)

where εa(t) and εl(t) are the time-dependent axial and lateral strains, respectively, σa(t) is
the axial load, and σa0 and εa0 are constants. Note that these definitions are specific to
the case of creep and relaxation with an instantaneous loading: indeed, even in the case of
uniaxial compression only, various load histories lead to various evolutions of the ratio of
the lateral dilation to the axial contraction over time.

With respect to the terminology used by Hilton (2001), our creep Poisson’s ratio νc cor-
responds to his type I definition restricted to a uniaxial creep experiment, whereas our relax-
ation Poisson’s ratio corresponds to his type II definition. These two Poisson’s ratios are not
equal (Tschoegl et al. 2002; Lakes and Wineman 2006). However, little is known on how
significant the difference between them is. Quantifying such a difference is the main goal of
this work.

Better understanding how Poisson’s ratios evolve with time is relevant for a variety of ap-
plications, among which we find the estimation of service life of the containment of French
nuclear power plants. Indeed, the containment of French nuclear power plants is made of a
biaxially prestressed concrete and designed to withstand an internal pressure of 0.5 MPa in
case of an accident. In order to avoid tensile stresses in concrete, the applied prestress cor-
responds to compressive stresses in concrete of around 8.5 MPa and 12 MPa along vertical
and orthoradial axes, respectively (Torrenti et al. 2014). To limit cracking of concrete, ten-
sile stresses should remain below the tensile strength of concrete in case of accident. That is
why the evolution of prestressing forces with respect to time is critical for the operation of
nuclear power plants and for the optimization of their service life. Consequently, a good pre-
diction of the evolution of delayed strains of the containment under a biaxial stress condition
is needed.

In this article, starting from the basic equations of linear viscoelasticity, we derive a re-
lationship between the two time-dependent Poisson’s ratios just introduced. We specifically
consider how their values and their derivatives can be compared at short and long times.
Then, a parametric study of the difference between them over all times is performed, based
on common rheological models. In the last section, we consider the practical case of ce-
mentitious materials (on which creep data in both axial and lateral directions are available
from the literature): for this specific class of materials, the difference between the two time-
dependent Poisson’s ratios is scrutinized.
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2 Theoretical derivations

This section is devoted to derive analytical relations pertaining to the creep Poisson’s ra-
tio νc and the relaxation Poisson’s ratio νr . First, from the basic equations of viscoelasticity
we derive expressions of the two Poisson’s ratios. Then, we derive relation between them
and compare their initial and long-time asymptotic values and derivatives with respect to
time.

2.1 Viscoelastic constitutive relations

We restrict ourselves to an isotropic nonaging linear viscoelastic solid submitted to infinites-
imal strains in isothermal conditions. For such a case, the time-dependent state equations
that link the stress tensor σ (decomposed into the volumetric stress σv = tr(σ )/3 and the
deviatoric stress tensor s such that σ = σv1 + s, where tr is the trace operator and 1 is the
unit tensor) to the strain tensor ε (decomposed into the volumetric strain εv = tr(ε) and the
deviatoric strain tensor e such that ε = (εv/3)1 + e) are (Christensen 1982):

σv(t) = K(t) ⊗ ε̇v(t), (3a)

sij (t) = 2G(t) ⊗ ėij (t), (3b)

where ⊗ denotes the convolution product defined as f ⊗ g = ∫ t

−∞ f (t − τ)g(τ ) dτ , and ḟ

is for derivatives with respect to time, ḟ = df (t)/dt . Those state equations can equivalently
be written as (Christensen 1982)

εv(t) = JK(t) ⊗ σ̇v(t), (4a)

eij (t) = 1

2
JG(t) ⊗ ṡij (t), (4b)

where JK(t) and JG(t) are called the bulk creep compliance and the shear creep compliance,
respectively. Creep compliances are linked to relaxation moduli through (Christensen 1982)

sĴK = 1

sK̂
, (5a)

sĴG = 1

sĜ
, (5b)

where s is the Laplace variable, and f̂ (s) is the Laplace transform of a function f (t).
Starting from the state equations (4a)–(4b), in uniaxial testing, we can show that the axial

stress history σa(t) and the axial strain history εa(t) are related by (Christensen 1982)

σa(t) = E(t) ⊗ ε̇a(t), (6a)

εa(t) = JE(t) ⊗ σ̇a(t), (6b)

where E(t) and JE(t) are called the uniaxial relaxation modulus and the uniaxial creep com-
pliance, respectively. For a uniaxial relaxation or creep test, by solving Eqs. (3a), (3b) and
(4a), (4b) in the Laplace domain, we obtain an analytic expression for the uniaxial relaxation
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modulus E and the uniaxial creep compliance JE in the Laplace domain, respectively, the
latter being transformed back directly:

Ê(s) = 9K̂(s)Ĝ(s)

3K̂(s) + Ĝ(s)
, (7a)

JE(t) = 1

9
JK(t) + 1

3
JG(t). (7b)

In the uniaxial relaxation test, for which εa(t) = εa0, by substituting this condition into
Eqs. (3a), (3b) and solving it in Laplace domain, the relaxation Poisson’s ratio is found:

ν̂r (s) = 3K̂(s) − 2Ĝ(s)

2s(3K̂(s) + Ĝ(s))
. (8)

For the uniaxial creep test, for which σa(t) = σa0, Eqs. (4a), (4b) are solved directly in
the time domain, which yields an analytic expression of the creep Poisson’s ratio νc in time:

νc(t) = 3JG(t) − 2JK(t)

2(3JG(t) + JK(t))
. (9)

In the creep test, the ratio between the Laplace transform ε̂l of the lateral strain to the
Laplace transform ε̂a of the axial strain is evaluated and found to be equal to −sν̂r . By
transforming this equality back to the time domain we have

ε̂l = −sν̂r ε̂a ⇒ εl(t) = −νr(t) ⊗ ε̇a(t). (10)

Comparing Eq. (10) with Eq. (2a) and combining them with Eq. (6b), we get the relation
between the two Poisson’s ratios:

νc(t) = νr(t) ⊗ J̇E(t)

JE(t)
. (11)

Van der Varst and Kortsmit (1992) also found this relation by writing the equilibrium of a
cylindrical bar subjected to a uniaxial load. Salençon (1983) also demonstrated this relation,
but in the Laplace domain. Note that this relationship is only valid to relate the creep and
relaxation Poisson’s ratios as defined by Eqs. (2a) and (2b), respectively. In contrast, if the
loading is not applied instantaneously, then how the ratio between lateral and axial strains
evolves over time during the creep phase is related in a different manner to how this same
ratio evolves over time during the relaxation phase.

2.2 Comparison of the relaxation Poisson’s ratio and the creep Poisson’s ratio

Equations (8) and (9) indicate that both the relaxation Poisson’s ratio νr and the creep Pois-
son’s ratio νc can be expressed as functions of the relaxation moduli, even though they are
defined with reference to a specific loading path. In order to evaluate the difference between
the relaxation Poisson’s ratio νr and the creep Poisson’s ratio νc , their initial and long-time
asymptotic values are compared first.

At time t = 0, the relaxation modulus and creep compliance are equal to their
elastic values, that is, K(t = 0) = K0, G(t = 0) = G0, JK(t = 0) = JK0 = K−1

0 ,
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JG(t = 0) = JG0 = G−1
0 . By using the initial value theorem (Auliac et al. 2000), the value

of the relaxation Poisson’s ratio νr at time 0 is evaluated:

νr(0) = lim
s→+∞ sν̂r (s) = lim

s→+∞
3K̂ − 2Ĝ

6K̂ + 2Ĝ

s

s
= 3K0 − 2G0

6K0 + 2G0
= ν0. (12)

What concerns the creep Poisson’s ratio νc , evaluating Eq. (9) at time t = 0 is straightfor-
ward:

νc(0) = 3JG0 − 2JK0

6JG0 + 2JK0
= 3K0 − 2G0

6K0 + 2G0
= ν0. (13)

Therefore, the value of both the relaxation Poisson’s ratio νr and the creep Poisson’s ratio νc

at time 0 is equal to the elastic Poisson’s ratio ν0.
At large times (i.e., as t → +∞), the bulk and shear relaxation moduli tend toward K∞

and G∞, respectively. Hence, an asymptotic Poisson’s ratio ν∞ can be defined:

ν∞ = 3K∞ − 2G∞
6K∞ + 2G∞

. (14)

The asymptotic value of the relaxation Poisson’s ratio is evaluated by using the final value
theorem (Auliac et al. 2000):

lim
t→+∞νr(t) = lim

s→0
sν̂r (s) = lim

s→0

3K̂ − 2Ĝ

6K̂ + 2Ĝ

s

s
= 3K∞ − 2G∞

6K∞ + 2G∞
= ν∞, (15)

whereas since limt→+∞ JK(t) = 1/K∞ and limt→+∞ JG(t) = 1/G∞,

lim
t→+∞νc(t) = 3/G∞ − 2/K∞

6/G∞ + 2/K∞
= 3K∞ − 2G∞

6K∞ + 2G∞
= ν∞. (16)

Therefore, both relaxation Poisson’s ratio νr and creep Poisson’s ratio νc tend toward the
same value ν∞ at large times.

The relation between their derivatives with respect to time will be derived from Eq. (11).
The uniaxial creep compliance JE(t) is a continuous function for times t ≥ 0 but exhibits
a discontinuity at t = 0: JE(t < 0) = 0, whereas JE(t = 0) = JE0 > 0. The existence of
this discontinuity implies that the convolution integral on the right-hand side of Eq. (11)
is a hereditary integral. By multiplying both sides of Eq. (11) by JE and simplifying the
hereditary integral, we get

νc(t)JE(t) = νr(t)JE(0) +
∫ t

0+
νr(t − τ)

dJE(τ)

dτ
dτ . (17)

Differentiating this equation with respect to time yields

ν̇c(t)JE(t) + νc(t)J̇E(t) = ν̇r (t)JE(0) + νr(t)J̇E(t), (18)

which, after evaluation at t = 0, yields ν̇r (0) = ν̇c(0).
The relaxation Poisson’s ratio νr and creep Poisson’s ratio νc are known to be bounded.

In addition, in most cases, considering that, after a certain time, those two Poisson’s ratios
are monotonic functions of time is a reasonable assumption. Under such an assumption, we
can therefore conclude that their derivatives with respect to time must tend to zero, that is,
limt→∞ ν̇r (t) = limt→∞ ν̇c(t) = 0.



542 Mech Time-Depend Mater (2015) 19:537–555

Fig. 1 Rheological models used in the parametric study: (a) Both volumetric and deviatoric behaviors gov-
erned by the Maxwell unit; (b) Volumetric behavior and deviatoric behavior governed by the Maxwell unit
and the Kelvin–Voigt unit, respectively; (c) Volumetric behavior and deviatoric behavior governed by the
Kelvin–Voigt unit and the Maxwell unit, respectively; (d) Both volumetric and deviatoric behaviors governed
by the Kelvin–Voigt unit

In conclusion, the initial values of the relaxation Poisson’s ratio νr and of the creep
Poisson’s ratio νc are equal to each other. So are their long-time asymptotic value, their initial
derivative with respect to time, and the long-time asymptotic values of their derivatives with
respect to time. However, in spite of these similarities, over all times, those two Poisson’s
ratios differ from each other. Quantifying how different those quantities are is the main
objective of the next section.

3 Difference between relaxation and creep Poisson’s ratios in rheological
models

This section is devoted to assessing how different the relaxation Poisson’s ratio νr and the
creep Poisson’s ratio νc are over all times. To do so, we perform a parametric study in
which the shear and volumetric behaviors are modeled with the most common rheological
units.

Here, we consider virtual materials for which the volumetric behavior and the deviatoric
behavior are modeled with either the Maxwell unit (to model a creep behavior that diverges
with time) or the Kelvin–Voigt unit (to model a creep behavior with an asymptotic value).
All four combinations of those units are considered (see Fig. 1). For simplicity, when the
Kelvin–Voigt unit is considered, the stiffness of the two springs it contains are set equal to
each other.

If the bulk behavior is modeled with the Maxwell unit, then the bulk relaxation modu-
lus K̂(s) in the Laplace domain and the bulk creep compliance JK(t) in the time domain
read

K̂(s) =
(

s

K0
+ 1

ηK

)−1

, (19a)

JK(t) = t

ηK

+ 1

K0
. (19b)
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Fig. 2 Relaxation Poisson’s
ratio νr (t) and creep Poisson’s
ratio νc(t) for a material whose
volumetric and deviatoric
behaviors are governed by the
Maxwell unit and for which
ν0 = 0.1 and ηK/ηG = 10

In contrast, if the bulk behavior is modeled with the Kelvin–Voigt unit, the bulk relaxation
modulus K̂(s) in the Laplace domain and the bulk creep compliance JK(t) in the time
domain read

K̂(s) =
(

s

K0
+ s

K0 + sηK

)−1

, (20a)

JK(t) = 1

K0

(

2 − exp

(

−K0

ηK

t

))

. (20b)

Equivalent equations can be derived for the shear behavior.
For every combination of rheological units considered (see Fig. 1), by applying the in-

verse Laplace transform to Eq. (8), in which the corresponding time-dependent moduli have
been injected, we obtain the relaxation Poisson’s ratio νr over all times. The creep Poisson’s
ratio νc is obtained by injecting the corresponding creep compliances into Eq. (9). Details
of all calculations are provided in Appendix A.

The relaxation Poisson’s ratio νr and the creep Poisson’s ratio νc depend on the stiff-
nesses K0 and G0 of the springs and on the viscosities ηK and ηG of the dashpots. In fact,
dimensional analysis shows that those two Poisson’s ratios νr and νc can be expressed with
the following dimensionless parameters:

νc(t,K0,G0, ηK,ηG) = νc(t̃ , ν0, ηK/ηG), (21)

νr(t,K0,G0, ηK,ηG) = νr(t̃ , ν0, ηK/ηG), (22)

where t̃ = tG0/ηG is a dimensionless time. This dimensional analysis defines the rationale
for the parametric study: For the four combinations of rheological units considered, the
difference between the two Poisson’s ratios is studied for various values of the elastic ini-
tial Poisson’s ratio ν0 ∈ [−1,0.5] and for a wide range of values of the ratio ηK/ηG (i.e.,
ηK/ηG ∈ [0.01,100]).

Figure 2 displays the two Poisson’s ratios νr and νc for the specific case of a material
whose both the volumetric and deviatoric behaviors are governed by the Maxwell unit and
for which ν0 = 0.1 and ηK/ηG = 10. We observe that, in this case, the relaxation Poisson’s
ratio νr increases more rapidly and reaches its asymptotic value earlier than the creep Pois-
son’s ratio νc .

In the following parametric study, the difference in the evolutions of the two Poisson’s
ratios over time is characterized by two parameters, a characteristic difference �ν and a
retard factor f�t that captures the retard of the creep Poisson’s ratio νc with respect to the
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Fig. 3 Characteristic difference �ν between relaxation Poisson’s ratio νr (t) and creep Poisson’s ratio νc(t):
(a) Both volumetric and deviatoric behaviors governed by the Maxwell unit (see Fig. 1a); (b) Volumetric
behavior and deviatoric behavior governed by the Maxwell unit and the Kelvin–Voigt unit, respectively (see
Fig. 1b); (c) Volumetric behavior and deviatoric behavior governed by the Kelvin–Voigt unit and the Maxwell
unit, respectively (see Fig. 1c); (d) Both volumetric and deviatoric behaviors governed by the Kelvin–Voigt
unit (see Fig. 1d)

relaxation Poisson’s ratio νr :

�ν = νr(tm) − νc(tm), (23a)

f�t = tc

tr
, (23b)

where tm is such that |νr(tm) − νc(tm)| = maxt |νr(t) − νc(t)|, and tr and tc are such that
νr(tr ) = νc(tc) = (ν0 + ν∞)/2.

Figure 3 displays the characteristic difference �ν. For a material whose both volumet-
ric and deviatoric behaviors are governed by the Maxwell unit (see Figs. 3a and 1a), the
characteristic difference �ν is an increasing function of the ratio ηK/ηG and a decreasing
function of the initial Poisson’s ratio ν0. For this material, the characteristic difference �ν

is comprised between −0.3 and 0.3. For a material whose volumetric and deviatoric behav-
iors are governed by the Maxwell unit and the Kelvin–Voigt unit, respectively (see Figs. 3b
and 1b), the characteristic difference �ν is a decreasing function of the initial Poisson’s
ratio ν0. The minimum characteristic difference is equal to −0.3 and is observed for the
material for which ν0 = 0.5. For a material whose volumetric and deviatoric behaviors are
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Fig. 4 Retard factor f�t of the creep Poisson’s ratio νc(t) with respect to the relaxation Poisson’s νr (t):
(a) Both volumetric and deviatoric behaviors governed by the Maxwell unit (see Fig. 1a); (b) Volumetric
behavior and deviatoric behavior governed by the Maxwell unit and the Kelvin–Voigt unit, respectively (see
Fig. 1b); (c) Volumetric behavior and deviatoric behavior governed by the Kelvin–Voigt unit and the Maxwell
unit, respectively (see Fig. 1c)

governed by the Kelvin–Voigt unit and the Maxwell unit, respectively (see Figs. 1c and 3c),
the characteristic difference �ν is an increasing function of the initial Poisson’s ratio ν0. The
maximum characteristic difference is equal to 0.3 and is observed for the material for which
ν0 → −1. For a material whose both volumetric and deviatoric behaviors are governed by
the Kelvin–Voigt unit (see Figs. 1d and 3d), the characteristic difference �ν is almost 0. The
observation of such a small characteristic difference is likely due to the fact that we chose
identical stiffnesses for the two springs of the Kelvin–Voigt unit, for both the volumetric and
deviatoric behaviors.

Figure 4 displays the retard factor f�t . For a material whose both volumetric and devi-
atoric behaviors are governed by the Maxwell unit (see Figs. 1a and 4a), the retard factor
f�t is constant and equal to 1.44 for the various values of the initial Poisson’s ratio ν0 and
the ratio ηK/ηG. For a material whose volumetric and deviatoric behaviors are governed by
the Maxwell unit and the Kelvin–Voigt unit, respectively (see Figs. 1b and 4b) and for a
material whose volumetric and deviatoric behaviors are governed by the Kelvin–Voigt unit
and the Maxwell unit, respectively (see Figs. 1c and 4c), the retard factor f�t is a mono-
tonic function of neither the initial Poisson’s ratio ν0 nor the ratio ηK/ηG. For each of those
two types of materials, the retard factor f�t is comprised between 1.44 and 2.08. For the
material whose both volumetric and deviatoric behaviors are governed by the Kelvin–Voigt
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unit (see Figs. 1d and 3d), since the characteristic difference �ν between the two Poisson’s
ratios is almost 0, the retard factor is not studied.

To sum up this parametric study, for some materials, the creep Poisson’s ratio νc(t) can
differ significantly from the relaxation Poisson’s ratio νr(t) (see, e.g., the case of a mate-
rial whose both volumetric and deviatoric behaviors are governed by the Maxwell unit in
Fig. 3a). In contrast, for other materials, the difference can be negligible (see, e.g., the case
of a material whose both volumetric and deviatoric behaviors are governed by the Kelvin–
Voigt unit in Fig. 3d). For all cases considered, the characteristic difference �ν between the
two Poisson’s ratios lies in the range [−0.3,0.3]. In terms of kinetics, the creep Poisson’s
ratio νc(t) always evolves slower than the relaxation Poisson’s ratio νr(t): for all cases for
which the difference between the two Poisson’s ratios is not negligible, the retard factor f�t

that we introduced is always comprised in the range [1.44,2.08].

4 Discussions

This section discusses the difference between the two Poisson’s ratios νr and νc , first in
practice in the case of multiaxial creep tests on cementitious materials, and then with respect
to the elastic–viscoelastic correspondence principle (Christensen 1982). A brief conclusion
on the different usage of the two Poisson’s ratios is drawn at the end of this latter section, in
which the influence of the duration of the loading phase on the creep strains is also discussed.

4.1 Poisson’s ratio from multiaxial creep tests on cementitious materials

In order to compare the two Poisson’s ratios νr and νc in practice, we consider cementitious
materials (i.e., cement paste, mortar, and concrete), for which multiaxial creep tests are avail-
able in Gopalakrishnan et al. (1969), Jordaan and Illson (1969), Parrott (1974), Kennedy
(1975), Neville et al. (1983), Bernard et al. (2003), Kim et al. (2005). The tests here consid-
ered characterize the so-called “basic” creep of the cementitious materials (Neville 1995),
which is measured in absence of any hydric transfer and to which any time-dependent de-
formation observed on a nonloaded specimen (i.e., autogenous shrinkage) is subtracted.

We consider that the coordinate frame is oriented in the principal directions, which are
numbered from 1 to 3. The principal stresses and strains in those principal directions are de-
noted σi(t) and εi(t), respectively, with i = 1,2,3. For a multiaxial creep test, the stresses
are kept constant over time, that is, σi(t) = σi0. For such a test, the linearity of the material
makes it possible to extend Eqs. (2a) and (10) to find out the viscoelastic stress–strain rela-
tions valid in the case of multiaxial solicitation, expressed in terms of either the relaxation
Poisson’s ratio νr(t) or the creep Poisson’s ratio νc(t):

εi(t) = JE(t)σi0 − (σj0 + σk0)νr (t) ⊗ J̇E(t), where i �= j �= k ∈ {1,2,3}, (24a)

εi(t) = JE(t)σi0 − (σj0 + σk0)νc(t)JE(t), where i �= j �= k ∈ {1,2,3}. (24b)

Here, we consider experimental results available in the literature (see Fig. 5), and by
using Eqs. (24a) and (24b) we compute the experimental values of the Poisson’s ratios νr

and νc . The details of the computation are given in Appendix B. Note that the Poisson’s
ratios displayed on Figs. 5a–c exhibit very different trends over time: some increase, one
decreases, and one remains constant. For such a variety of cases, we compare the relaxation
and creep Poisson’s ratios with each other.
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Fig. 5 Experimental data of multiaxial creep experiments on cementitious materials: (a) Biaxial creep test
on cubic concrete sample (Jordaan and Illson 1969); (b) Uniaxial creep test on a cuboid sample of cement
paste (Parrott 1974); (c) Triaxial creep tests on cylindrical specimens of leached cement paste and mortar
(Bernard et al. 2003)

Figure 5a displays results of a biaxial creep test on a cubic concrete sample (Jordaan
and Illson 1969). The two Poisson’s ratios reach their asymptotic value in less than 10 days,
during which they vary by about 0.004. The difference between them is smaller than 0.0002,
which is negligible: they can be considered as equal to each other. Note that such a trend
of almost constant Poisson’s ratios is observed with other experimental data on concrete
available in the literature (i.e., namely the data in Kennedy 1975; Stockl et al. 1989; Kim
et al. 2005): with such data, relaxation and creep Poisson’s ratio can again be considered
as equal to each other. The results from a uniaxial creep test on a cuboid sample of cement
paste (Parrott 1974) are displayed in Fig. 5b. Both Poisson’s ratios decrease by about 0.05
in about a dozen of days. The difference between the two Poisson’s ratios is always smaller
than 0.004, which, depending on the applications, can be considered as negligible or not.
The last case displayed in Fig. 5c is that of triaxial creep tests on cylindrical specimens of
leached cement paste and mortar (Bernard et al. 2003). In this last case, the Poisson’s ratios
are increasing functions of time and vary by about 0.157 for the cement paste specimen and
by about 0.218 for the mortar specimen.1 Here, the difference between the two Poisson’s
ratios can be as large as 0.017 for the cement paste specimen and 0.025 for the mortar

1Bernard et al. (2003) reported only creep strains. We estimated the elastic strains that are necessary for the
computation of the creep Poisson’s ratio by considering the Young’s modulus equal to 0.7 MPa and the elastic
Poisson’s ratio equal to 0.24 for the leached cement paste, the Young’s modulus equal to 0.5 MPa and the
elastic Poisson’s ratio equal to 0.24 for mortar (Heukamp 2003; Bellégo 2001).
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specimen: for those specimens, the difference between the relaxation Poisson’s ratio and
the creep Poisson’s ratio is no more negligible. From this back-analysis of creep tests on
cementitious materials we conclude that if the Poisson’s ratios vary little over time, then the
difference between the relaxation Poisson’s ratio and the creep Poisson’s ratio is negligible.
In contrast, when the Poisson’s ratios vary significantly over time, the difference between the
two Poisson’s ratios can be no more negligible: whether this difference must be taken into
account in practice needs to be assessed case by case, that is, for each application considered.

The significance of the difference between the two Poisson’s ratios must also be assessed
by keeping in mind the accuracy of the measurement of creep strains, which results from the
accuracy of strain gauges and of temperature control. For instance, the accuracy of the strain
gauges that were used in the biaxial creep test reported on concrete sample (see Fig. 5a)
is 1 × 10−6 (Jordaan and Illson 1969): this accuracy leads to an uncertainty on the creep
Poisson’s ratio of about 0.002, which is ten times larger than the difference between the
two Poisson’s ratios in that experiment. The temperature was controlled with an accuracy of
±1 °C in that experiment. Considering a thermal dilatation coefficient of 14.5 × 10−6 K−1

for concrete, uncorrected variations of temperatures would lead to an uncertainty on the mea-
sured strain that would be 15 times larger than the accuracy of the strain gauges. However,
in that experiment, variations of temperature were corrected so that the uncertainty induced
by variations of temperatures would be much smaller than 15 times the accuracy of the
strain gauges, although probably nonnegligible. Also, what concerns the uniaxial creep test
reported on cement paste (see Fig. 5b), for which the accuracy of the strain gauges they used
was 3 × 10−6 (Parrott 1974), we found an uncertainty on the creep Poisson’s ratio of about
0.003, which is of the same order of magnitude as the maximum difference between the two
Poisson’s ratios in that experiment. In contrast, what concerns the experiments performed on
leached specimens (see Fig. 5c), since the strains are about two orders of magnitude greater
than the strains in the experiments displayed in Figs. 5a and 5b, the uncertainty on the Pois-
son’s ratio becomes truly negligible: with respect to this uncertainty, the difference between
the creep and relaxation Poisson’s ratios in that experiment is significant.

4.2 The elastic–viscoelastic correspondence principle

For an isotropic elastic material with bulk modulus K0 and shear modulus G0, the stress–
strain relations read

σv = K0εv, (25a)

sij = 2G0eij . (25b)

We observe that these elastic relations are analogous to the viscoelastic stress–strain re-
lations (3a), (3b) and (4a), (4b). In fact, we could have inferred these latter viscoelastic
stress–strain relations in the Laplace domain directly from the elastic stress–strain rela-
tions (25a), (25b) simply by replacing all elastic coefficients by the s-multiplied Laplace
transform (also called the Carson transform) of their corresponding viscoelastic relaxation
functions (Tschoegl et al. 2002).

In terms of Poisson’s ratio, for an isotropic elastic material, we have the following relation

ν0 = 3K0 − 2G0

2(3K0 + G0)
. (26)

We observe that applying the correspondence principle to this equation makes it possible to
retrieve Eq. (8) if one replaces the elastic Poisson’s ratio ν0 with the s-multiplied Laplace
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transform of the relaxation Poisson’s ratio νr(t). Therefore, we infer that the correspond-
ing viscoelastic operator of the elastic Poisson’s ratio is the relaxation Poisson’s ratio νr(t)

and not the creep Poisson’s ratio νc(t); in other words, the correspondence principle can be
applied to elastic relations that involve the Poisson’s ratio if this latter is replaced with the
s-multiplied Laplace transform sν̂r (s) of the relaxation Poisson’s ratio νr(t) in the corre-
sponding viscoelastic equation.

The validity of correspondence principle is due to the fact that the viscoelastic relations
are “of the convolution type whose integral transforms lead to algebraic relations similar to
the elastic ones” (Hilton 2001). Considering the specific example of a uniaxial creep test, we
observe that the lateral strain εl(t) and the axial strain εa(t) can be related through the use of
either the relaxation Poisson’s ratio νr(t) or the creep Poisson’s ratio νc(t) through Eqs. (10)
or (2a), respectively. Of those two equations, the former involves a convolution, whereas the
latter does not, which shows that the correspondence principle is not applicable to the creep
Poisson’s ratio νc , as already noted by Hilton (2001, 2009, 2011) and Tschoegl et al. (2002).
Note that Lakes and Wineman (2006) found a relationship between the two Poisson’s ratios
νr and νc that differs from that given in Eq. (11). We believe that their equation is not valid
and that the error in their derivation stems from the fact that they applied the correspondence
principle not only to the relaxation Poisson’s ratio νr (which is valid), but also to the creep
Poisson’s ratio νc (which is not valid) (Tschoegl et al. 2002). This example shows that we
can easily get confused in how to manipulate the various Poisson’s ratios that can be defined;
in consequence, in the generic case, to perform a viscoelastic characterization, avoiding as
much as possible the use of viscoelastic Poisson’s ratios and restricting oneself to the use of
creep compliances and relaxation moduli seems to be a wise choice.

Since the relaxation Poisson’s ratio νr is the only Poisson’s ratio to which the corre-
spondence principle can be applied, solving viscoelastic problems analytically can be per-
formed much more easily by using the relaxation Poisson’s ratio rather than the creep
Poisson’s ratio. In contrast, since the relationship between the creep Poisson’s ratio νc

and the time-dependent strains does not involve any convolution (see Eq. (24b) in com-
parison with Eq. (24a)), back-calculating the creep Poisson’s ratio from experimental
data is more straightforward than back-calculating the relaxation Poisson’s ratio. This
is the reason why, when experimentalists report a Poisson’s ratio, they almost exclu-
sively report the creep Poisson’s ratio (see, e.g., Benboudjema 2002; Torrenti et al. 2014;
Hilaire 2014).

For a uniaxial experiment performed on an elastic material, the lateral strain εl is linked
to the axial strain σa through εl = −(ν/E)σa . Based on this elastic relation, the fact that
the correspondence principle is applicable to the relaxation Poisson’s ratio makes it possible
to derive how, for a uniaxial experiment with a generic load history σa(t) performed on a
viscoelastic solid, the lateral strain εl(t) must evolve over time. Thus, we find that, in the
Laplace domain, the following relation holds:

ε̂l = −sν̂r (sĴEσ̂a). (27)

This relation can be translated back into the time domain:

εl(t) = −νr(t) ⊗
(

d

dt

(
JE(t) ⊗ σ̇a(t)

)
)

. (28)

Thus, for a uniaxial experiment with a generic load history, we can use the relaxation Pois-
son’s ratio to calculate the evolution of the lateral strain over time. Note that we did not
succeed in deriving such an equation based on the creep Poisson’s ratio, which is a direct
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consequence of the fact that the correspondence principle cannot be applied to the creep
Poisson’s ratio.

For triaxial loadings with a generic load history, starting from Eqs. (6b) and (28), using
the principle of superposition makes it possible to derive the following equation:

εi(t) = JE(t)⊗ σ̇i (t)−νr(t)⊗
(

d

dt

(
JE(t)⊗(

σ̇j (t)+ σ̇k(t)
))

)

where i �= j �= k ∈ {1,2,3},
(29)

which is a direct extension of Eq. (24a). Thus, if we know the uniaxial creep compliance
and the relaxation Poisson’s ratio of the material, this equation makes it possible to predict
the evolution of the principal strains over time from the history of the triaxial stresses. Note
that, again, we did not succeed in deriving such an equation based on the creep Poisson’s
ratio.

4.3 Influence of duration of loading phase on apparent creep Poisson’s ratio

In order to identify the creep Poisson’s ratio, we may want to perform a creep experiment
and calculate the ratio −εl(t)/εa(t) of the lateral dilation to the axial contraction measured
during the creep phase. By doing so, we identify a time-dependent function to which we will
refer as to an “apparent” creep Poisson’s ratio since, in practice, for any creep experiment,
the duration of the loading phase is finite, whereas the creep Poisson’s ratio was defined with
respect to a creep experiment with an instantaneous loading (see Eq. (2a)). Therefore, we
can wonder by how much an apparent creep Poisson’s ratio identified on an actual creep ex-
periment differs from the creep Poisson’s ratio of the material. The study of such a difference
is the focus of this section.

To study this difference, we consider two virtual materials whose rheological behaviors
are those described in Figs. 1a and 1b in the specific case where ηK → +∞. Therefore, the
volumetric behavior of the two virtual materials is elastic since they only creep deviatori-
cally. The deviatoric behavior of the first virtual material is governed by the Maxwell unit
(see Fig. 1a), whereas the deviatoric behavior of the second virtual material is governed by
the Kelvin–Voigt unit (see Fig. 1b). Their characteristic viscous time is τG = ηG/G0. The
elastic stiffnesses are chosen such that the elastic Poisson’s ratio is ν0 = 0.2.

On each of those two materials, we consider creep experiments in which the load is in-
creased linearly over time in a duration τL, after which the load is kept constant. For various
durations τL of the loading phase, Fig. 6 displays what the ratio of the lateral dilation to the
axial contraction is, together with the creep Poisson’s ratio of the material. We observe that
the apparent creep Poisson’s ratio differs from the creep Poisson’s ratio: the slower the load-
ing, the greater this difference. Also, this difference is maximum at the end of the loading
phase (i.e., at the dimensionless time t/τL = 1), but we note that this difference is signifi-
cant only for times that are smaller than about 10 times the duration of the loading phase:
at times greater than 10 times the duration of the loading phase, the difference between the
creep Poisson’s ratio and the apparent creep Poisson’s ratio is negligible.

In conclusion, if we aim at identifying the creep Poisson’s ratio as the ratio −εl(t)/εa(t)

of a lateral dilation to an axial contraction measured during the creep phase of an actual
creep experiment, we will commit some error. However, the difference between the creep
Poisson’s ratio and the apparent one may only be significant for times smaller than about 10
times the duration of the loading phase; for larger times, this difference will be negligible.
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Fig. 6 Ratio −εl(t)/εa(t) of the lateral to the axial strain (black lines) observed during creep experi-
ments with various durations τL of the loading phase, and creep Poisson’s ratio νc (gray lines) for a ma-
terial that creeps deviatorically and whose deviatoric creep behavior is modeled by (a) the Maxwell unit or
(b) the Kelvin–Voigt unit

5 Conclusions

Two time-dependent Poisson’s ratios are defined for linear viscoelastic materials: the relax-
ation Poisson’s ratio νr(t) and the creep Poisson’s ratio νc(t). Those two Poisson’s ratios are
defined with respect to creep or relaxation experiments with an instantaneous loading. The
following conclusions are drawn on their differences, in both theory and practice:

– Those two Poisson’s ratios are not equal to each other. They can be expressed as functions
of the creep compliances and relaxation moduli and are linked to each other through the
exact expression (11).

– At the initial time of loading, both Poisson’s ratios are equal to the elastic Poisson’s ratio.
Their long-time asymptotic values are identical. Their initial derivatives with respect to
time are also identical, and so are their long-time asymptotic derivatives.

– The parametric study of virtual materials based on simple rheological models indicates
that the two Poisson’s ratios can differ significantly from each other. The maximum char-
acteristic difference �ν between them at a given time can be as large as 0.3. The creep
Poisson’s ratio evolves slower than the relaxation Poisson’s ratio by a retard factor f�t ,
which is in the range [1.44,2.08].

– A study of multiaxial creep data on cementitious materials showed that if the Poisson’s
ratios vary little over time, then their difference is negligible. When the Poisson’s ratios
vary significantly over time, whether their difference must be taken into account in prac-
tice should be assessed with respect to the application considered. The significance of the
difference must also be assessed by keeping in mind the accuracy of the measurement of
creep strains.

– The use of each of the two Poisson’s ratios is of interest: solving viscoelastic problems
analytically can be performed much more easily by using the relaxation Poisson’s ratio
rather than the creep Poisson’s ratio since the elastic–viscoelastic correspondence princi-
ple is applicable to this former parameter; in contrast, back-calculating the creep Poisson’s
ratio from experimental data is more straightforward than back-calculating the relaxation
Poisson’s ratio.

– For materials subjected to a triaxial loading, even if the load history is generic, from the
uniaxial creep compliance JE(t) and the relaxation Poisson’s ratio νr(t) we can calculate
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the evolution of the principal strains over time (see Eq. (29)). However, given all confu-
sion in the literature on how to manipulate viscoelastic Poisson’s ratios, in the generic
case, a wise choice to perform viscoelastic characterization or analytical calculations in
viscoelasticity is to restrict oneself to the use of unambiguously defined creep compli-
ances and relaxation moduli.

– The creep Poisson’s ratio was defined on a creep experiment with an instantaneous load-
ing. If the loading phase of the creep experiment is not instantaneous (which is the case
in practice), then the ratio of the lateral dilation to the axial contraction during the creep
phase differs from the creep Poisson’s ratio. This difference may be significant only for
times that are smaller than about 10 times the duration of the loading phase.

We calculated how the relaxation and creep Poisson’s ratios of cementitious materials
evolved over time. The analysis of those parameters could be translated in terms of volu-
metric and deviatoric creep behaviors, thus paving the way for a more rational choice of
creep models for those materials.
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Appendix A: Relaxation and creep Poisson’s ratios in rheological models

This section is devoted to present an analytical expression of the relaxation Poisson’s ratio νr

and the creep Poisson’s ratio νc based on the rheological models that are presented in Fig. 1.
For a material whose both volumetric and deviatoric behaviors are governed by the Maxwell
units (see Fig. 1a), the Poisson’s ratios read as follows:

νr(t) = − (G0 + 3K0)(2ηG − 3ηK) + 9(ηGK0 − ηKG0) exp(−G0K0(ηG+3ηK)

ηGηK(G0+3K0)
t)

2(ηG + 3ηK)(G0 + 3K0)
, (30)

νc(t) = −ηGηK(2G0 − 3K0) + G0K0(2ηG − 3ηK)t

ηGηK(G0 + 3K0) + G0K0(ηG + 3ηK)t
. (31)

For a material whose volumetric and deviatoric behaviors are governed by the Maxwell
unit and the Kelvin–Voigt unit, respectively (see Fig. 1b), the Poisson’s ratios are expressed
as follows:

νr(t) = −1 + 9K0

2(G0 + 3K0)
exp(−Ω1t)

(
cosh(Ω2t) + Ω3 sinh(Ω2t)

)
, (32)

νc(t) = − 2ηKG0 − 6ηKK0 + 2G0K0t + 3ηKK0 exp(−G0
ηG

t)

2(ηKG0 + 6ηKK0 + G0K0t − 3ηKK0 exp(−G0
ηG

t))
, (33)

where the parameters Ω1,Ω2,Ω3 are functions of K0,G0, ηK,ηG:

Ω1 = G0(6K0ηK + ηGK0 + G0ηK)

2ηGηK(G0 + 3K0)
,

Ω2 =
√

G2
0(36η2

KK2
0 + 12η2

KG0K0 + η2
GK2

0 − 2ηGηKG0K0 + η2
KG2

0)

2ηGηK(G0 + 3K0)
,

Ω3 = (3ηKG0 + 6ηKK0 − ηGK0)√
(36η2

KK2
0 + 12η2

KG0K0 + η2
GK2

0 − 2ηGηKG0K0 + η2
KG2

0)

.
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For a material whose volumetric and deviatoric behaviors are governed by the Kelvin–
Voigt unit and the Maxwell unit, respectively (see Fig. 1c), the Poisson’s ratios read as
follows:

νr(t) = 1

2
− 3G0

2(G0 + 3K0)
exp(−Ω4t)

(
cosh(Ω5t) − Ω6 sinh(Ω5t)

)
, (35)

νc(t) = 3ηGK0 − 4ηGG0 + 3K0G0t + 2ηGG0 exp(− K0
ηK

t)

2(3ηGK0 + 2ηGG0 + 3K0G0t − ηGG0 exp(− K0
ηK

t))
, (36)

where the parameters Ω4,Ω5,Ω6 are functions of K0,G0, ηK,ηG:

Ω4 = K0(3K0ηG + 3ηKG0 + 2G0ηG)

2ηGηK(G0 + 3K0)
,

Ω5 =
√

K2
0 (9η2

GK2
0 − 18ηKηGK0G0 + 12η2

GK0G0 + 9η2
KG2

0 + 4η2
GG2

0)

2ηGηK(G0 + 3K0)
,

Ω6 = K0(3ηKG0 − 9ηGK0 − 2ηGG0)√
K2

0 (9η2
GK2

0 − 18ηKηGK0G0 + 12η2
GK0G0 + 9η2

KG2
0 + 4η2

GG2
0)

.

For a material whose both volumetric and deviatoric behaviors are governed by the
Kelvin–Voigt units (see Fig. 1d), the Poisson’s ratios read as follows:

νr(t) = 3K0 − 2G0

2(3K0 + G0)
+ 9K0G0

3K0 + G0
Ω9 exp(−Ω7t) sinh

(
Ω8

ηKηG(3K0 + G0)

)

, (38)

νc(t) = 6K0 − 4G0 − 3K0 exp(− K0
ηK

t) + 2G0 exp(−G0
ηG

t)

2(6K0 + 2G0 − 3K0 exp(− K0
ηK

t) − G0 exp(−G0
ηG

t))
, (39)

where the parameters Ω4,Ω5,Ω6 are functions of K0,G0, ηK,ηG:

Ω7 = 3K2
0 ηG + 6K0G0ηK + G2

0ηK + 2K0G0ηG

2ηKηG(3K0 + G0)
,

Ω8 = 9K4
0 η4

G − 36K3
0 G0ηKηG − 18K2

0 G2
0ηKηG + 12K3

0 G0η
2
G

+ 36K2
0 G2

0η
2
K + 12K0G

3
0η

2
K + G4

0η
2
K − 4K0G

3
0ηKηG + 4K2

0 G2
0η

2
G,

Ω9 = G0ηK − K0ηG

Ω8
.

Appendix B: Calculation of the two Poisson’s ratios
from the experimental results

This section is devoted to present how the relaxation Poisson’s ratio νr and the creep Pois-
son’s ratio νc are calculated from the experimental results. By using Eq. (24b) the creep
Poisson’s ratio νc(t) and the uniaxial creep compliance JE are computed directly from the
experimental measurement of principals strains ε1(t), ε2(t), ε3(t) and applied stress val-
ues σ10, σ20, σ30. Then, to the experimental values of the uniaxial creep compliance JE the
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following analytical expression is fitted:

JE(t) = α1t + α2 + α3 exp

(

− t

τ1

)

, (41)

where α1, α2, α3, and τ1 are fitted parameters.
Further, in order to capture the asymptotic behavior of the Poisson’s ratio, we assumed

that the relaxation Poisson’s ratio νr(t) has the exponential form

νr(t) = νf + α0 exp

(

− t

τ0

)

, (42)

where νf , α0, and τ0 are parameters to fit.
Substituting Eqs. (41) and (42) into Eq. (17), the creep Poisson’s ratio νc is computed

analytically. By changing the parameters νf , α0, and τ0 in Eq. (42), a best fit that gives the
minimum variance for the fitted creep Poisson’s ratio νc is obtained.
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