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Abstract In this study, the quasi-static and dynamic behavior of viscoelastic Kirchhoff
plates is studied numerically by using the mixed finite element method in transformed
Laplace–Carson space. In the transformed Laplace–Carson space, a new functional has been
constructed for viscoelastic Kirchhoff plates through a systematic procedure based on the
Gâteaux differential. For numerical inversion, the Maximum Degree of Precision (MDOP),
Dubner and Abate’s, and Durbin’s transform techniques are employed. The developed solu-
tion technique is applied to several quasi-static and dynamic example problems.

Keywords Viscoelastic plate · Laplace–Carson transform · Mixed finite element · Inverse
Laplace transform

1 Introduction

Plates are one of the most significant structural members due to their wide application in all
fields of engineering. The classical (thin) plate theories assume that the material of the plate
is linear elastic based on the fundamental assumption of the linear, elastic, small-deflection
theory of bending.

Adopting elastic theory to simplify the analysis proves to be inconsistent with reality
since most engineering materials exhibit noticeable time-effects due to internal friction.
Therefore, viscoelastic constitutive relations should be used instead of elastic constitutive
relations with regard to material behavior. There are many works in the literature on the
theory of viscoelasticity (Flügge 1975; Christensen 1982).

In structural analysis of time-dependent materials, linear viscoelasticity has been used for
a long time. There are basically three approaches that can be used in linear viscoelastic anal-
ysis: Laplace transformation, Fourier transformation and Direct Time Integration method
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(Wang and Birgisson 2007; Xu et al. 2004). Flügge (1975) applied Laplace transform to
viscoelastic beams. Christensen (1982) presented the application of the Fourier transform
to viscoelastic beams. Sorvari and Hämäläinen (2010) analyzed and compared the Time
Integration methods in linear viscoelasticity.

Closed-form solutions are often not possible for the problems which have complex ge-
ometries, loading conditions and constitutive relations. Hence, numerical solution tech-
niques should be employed. Finite Element Method (FEM) and Boundary Element Method
(BEM) are the most commonly used numerical methods in solution of viscoelastic prob-
lems. Applications of the FEM to the solution of static and dynamic problems involving
materials exhibiting viscoelastic behavior have evolved over a period of time.

The application of the FEM to viscoelastic problems has been presented by a number
of authors. White (1986) used constitutive law of hereditary integral type and applied the
time interval form finite difference method to perform a finite element analysis in a quasi-
static problem. Chen (1995) studied the quasi-static and dynamic response of the linear
viscoelastic Timoshenko beam. In the analysis, the hybrid Laplace transform was used to
remove the time terms and the FEM was used for the solution of the associated equation.
Numerical results were presented and discussed for the Maxwell fluid and three-parameter
solid models.

However, to the best of authors’ knowledge, there are very few published studies on the
analysis of viscoelastic plates. Wang and Tsai (1988) studied the quasi-static and dynamic
response of the linear viscoelastic Mindlin plates using the FEM. They used the constitutive
law of hereditary integral type and assumed that Poisson ratio is constant. The relaxation
modulus is expressed by the Prony series. Yi and Hilton (1994) developed numerical proce-
dures in the time domain using variational principles and a direct time integration method
to analyze the transient response of anisotropic viscoelastic composite plates. Ilyasov and
Aköz (2000) presented a method to obtain the static and dynamic behavior of viscoelastic
triangular plates. The viscoelastic constitutive equations were written in the Boltzmann–
Volterra form. Temel and Şahan (2013) investigated the damped response of viscoelastic
laminated Mindlin plates using the FEM in conjunction with the Laplace transform method.

When employing the conventional FEM, shear locking is an undesirable phenomenon.
In the prevention of shear locking phenomena, reducing the influence of the shear energy
by considering suitable Mixed and Non-Standard Finite Element Methods is a more general
and flexible way (Lovadina 1996). The use of the Hu–Washizu and Hellinger–Reissner vari-
ation principles is more popular when formulating Mixed type Finite Elements. In the work
considered here, the Gâteaux Differential Method, which is a more powerful, reliable and
efficient variational tool when compared to Hu–Washizu and Hellinger–Reissner variational
theorems, is employed to obtain a new functional. Comparison of these techniques is widely
discussed by Aköz and Özütok (2000).

Based on the Gâteaux differential, Aköz and Kadıoğlu (1999) constructed two new func-
tionals for viscoelastic Timoshenko beams. For quasi-static and dynamic response of vis-
coelastic Timoshenko beams, the Mixed Finite Element Method (MFEM) in transformed
Laplace–Carson space was used. In addition, Kadıoğlu and Aköz (1999; 2003) developed
a functional for the quasi-static and dynamic analysis of viscoelastic circular beams using
the MFEM in transformed Laplace–Carson space. Furthermore, Kadıoğlu and Aköz (2000)
studied the quasi-static and dynamic responses of linear viscoelastic parabolic beam us-
ing the MFEM in the transformed Laplace–Carson space based on the Gâteaux Differential
Method. To our knowledge, these are the preliminary studies which have used Laplace–
Carson transform to analyze the quasi-static and dynamic response of the viscoelastic beams.

Although the static and dynamic behavior of elastic beam, plate and shell structures is
a widely studied topic, there are few studies that exist in the literature pertaining to the
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Fig. 1 Internal forces on the
laterally loaded rectangular plate
element of the middle surface

analysis of the viscoelastic structural elements. To the best of the authors’ knowledge, this
will be the first study that presents a new functional through a systematic procedure based
on the Gâteaux Differential Method for the quasi-static and dynamic analysis of viscoelastic
Kirchhoff plates in the Laplace–Carson space.

The unique aspects of this study and the possible contributions of the proposed method
to the literature can be explained as follows:

(i) By using this new functional, moment and shear force values that are important for
engineers can be obtained directly without any mathematical operation.

(ii) Geometric and dynamic boundary conditions can be obtained easily and a field variable
can be included to the functional systematically.

(iii) Shear locking problem can be eliminated by using the Gâteaux Differential Method.

2 Field equation and functional

It is well-known that the constitutive equations of viscoelastic materials for three-
dimensional bodies have two different operators for dilatation and distortion. The use of
two operators for constitutive equations causes difficulties in solving problems. To over-
come these difficulties, two different assumptions are accepted in the literature. In the first
assumption, the dilatation is accepted to be elastic, and the distortion viscoelastic. In the
second one, the distortion and dilatation parameters are assumed to be equal. The second
assumption is equivalent to assuming that the Poisson’s ratio is constant. In this study, the
second one is accepted (Flügge 1975; Ilioushin and Pobedria 1970).

The field equations of viscoelastic plates are derived considering the equilibrium equa-
tions, kinematic relations and viscoelastic constitutive equations as

∂2Mx

∂x2
+ ∂2My

∂y2
+ 2

∂2Mxy

∂x∂y
+ q = 0 (1)

where q indicates the normal load distribution and Mx , My , Mxy are internal moments. The
positive directions of internal forces are illustrated in Fig. 1. The equilibrium equations of a
plate can be found in many textbooks such as Timoshenko and Woinowsky-Krieger (1959)
and Dym and Shames (1973).
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Adopting the Kirchhoff hypothesis, the kinematic relations for plates can be written as
follows:

εx = −z
∂2w

∂x2
,

εy = −z
∂2w

∂y2
,

γxy = −2z
∂2w

∂x∂y

(2)

where w is the vertical displacement function of the plate’s middle surface. To relate the
stress–strain (σ–ε) relations, two operators, E∗

1 and E∗
2 are defined as follows:

σx = E∗
1εx + E∗

2εy,

σy = E∗
2εx + E∗

1εy.
(3)

Using Mohr circle, it can be easily shown that shear stress (τ ) and shear strain (γ ) relation
can be expressed using the same operator as follows:

τxy = 1

2

(
E∗

1 − E∗
2

)
γxy (4)

where E∗
1 and E∗

2 can be any operators. Additional details about these operators which are
in the hereditary integral form can be obtained from Flügge (1975) in a simple form and
obtained from Ilyasov and Aköz (2000) for the plates as follows:

E∗
1w = E1(0)

w(t) +
∫ t

0

dE(t−τ)

d(t − τ)
w(τ) dτ,

E∗
2w = E2(0)

w(t) +
∫ t

0

dE(t−τ)

d(t − τ)
w(τ) dτ.

(5)

The bending and torsion moments of plates are obtained as a result of stress as follows:

Mx =
∫ h/2

−h/2
σxz dz,

My =
∫ h/2

−h/2
σyz dz,

Mxy =
∫ h/2

−h/2
τxyz dz.

(6)

Substituting Eqs. (2)–(4) into Eq. (6) and carrying out integration, we get

Mx = −h3

12

[
E∗

1

∂2w

∂x2
+ E∗

2

∂2w

∂y2

]
,

My = −h3

12

[
E∗

1

∂2w

∂y2
+ E∗

2

∂2w

∂x2

]
,

Mxy = −h3

12

[
E∗

1 − E∗
2

] ∂2w

∂x∂y
.

(7)
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If a new operator D∗ is defined as

D∗ = h3

12
E∗

1 (8)

and the second assumption is adopted, Eq. (7) can be written as follows:

Mx = −D∗
[

∂2w

∂x2
+ ν

∂2w

∂y2

]
,

My = −D∗
[

∂2w

∂y2
+ ν

∂2w

∂x2

]
,

Mxy = −(1 − ν)D∗ ∂2w

∂x∂y

(9)

where ν is Poisson’s ratio and D∗ is the operator form of the flexural rigidity of the plate.
In order to remove the time derivatives from governing equations and boundary con-

ditions, the method of Laplace–Carson transform will be employed. The Laplace–Carson
transform of a real function is

f̄(s) = sf(s) (10)

where the Laplace transform of a real function is:

f(s) = L[f(t)] =
∫ ∞

0
e−stf(t) dt,

f(t) = L−1[f(s)] = 1

2πi

∫ a+i∞

a−i∞
estf(s) ds.

(11)

Taking Laplace–Carson transform of Eqs. (1) and (9), we obtain the field equations in
Laplace–Carson space:

−∂2M̄x

∂x2
− ∂2M̄y

∂y2
− 2

∂2M̄xy

∂x∂y
= q̄,

−M̄x − D̄∗
(

∂2w̄

∂x2
+ ν

∂2w̄

∂y2

)
= 0,

−M̄y − D̄∗
(

∂2w̄

∂y2
+ ν

∂2w̄

∂x2

)
= 0,

−M̄xy − (1 − ν)D̄∗ ∂2w̄

∂x∂y
= 0

(12)

where D̄∗ is related with the creep function Ȳ ∗ as follows:

D̄∗ = h3

12
Ȳ ∗. (13)

To complete the field equations, the boundary conditions are defined as follows:

T̄ = ˆ̄T ,

−M̄ = − ˆ̄M,

(Dynamic Boundary Condition) (14)
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w̄′ = ˆ̄w′,

−w̄ = − ˆ̄w
(Geometric Boundary Condition) (15)

where the quantities with hat are given at the boundary points. Of course, these boundary
conditions do not belong to a specific problem and they serve to include boundary terms to
the functional.

These equations can be written in operator form similar to elastic plate as (see Aköz and
Özçelikörs 1985 for a review)

Q̄ = P̄ ū − f̄ . (16)

The explicit form of operator Q in the Laplace–Carson space is given in the Appendix.
If the operator Q is potential (Oden and Reddy 1976) then

〈
dQ̄

(
ū, ū′), ū∗〉 = 〈

dQ̄
(
ū, ū∗), ū′〉 (17)

must be satisfied. After satisfying the requirement, the functional is obtained as

I (ū) =
∫ 1

0

〈
Q̄(ηū, f̄ ), ū

〉
dη. (18)

Inserting Eq. (16) into Eq. (18), the functional for viscoelastic Kirchhoff plate is obtained
as follows:

I (ū) =
[

∂w̄

∂x
,
∂M̄x

∂x

]
+

[
∂w̄

∂y
,
∂M̄y

∂y

]
+

[
∂w̄

∂x
,
∂M̄xy

∂y

]
+

[
∂w̄

∂y
,
∂M̄xy

∂x

]
− [q̄, w̄]

− 1

2D̄(1 − ν2)
[M̄x, M̄x] − 1

2D̄(1 − ν2)
[M̄y, M̄y] + ν

D̄(1 − ν2)
[M̄x, M̄y]

− 1

D̄(1 − ν)
[M̄xy, M̄xy] − [ ˆ̄T , w̄]σ − [

(M̄ − ˆ̄M), w̄′]
σ

− [ ˆ̄w′, M̄
]
ε
− [

(w̄ − ˆ̄w), T̄
]
ε

(19)

where [, ] is the inner product which is defined as

[f,g] =
∫

A

fg dA. (20)

Using the functional in Eq. (19), viscoelastic plate element VPLT16 can be obtained
with four nodal variables w̄, M̄x , M̄y, M̄xy . In Eq. (19), the last four terms are boundary
conditions defined as:

[T̄ , w̄] =
[(

∂M̄x

∂x
+ ∂M̄xy

∂y

)
nx +

(
∂M̄y

∂y
+ ∂M̄xy

∂x

)
ny, w̄

]
,

[
M̄, w̄′] = [M̄x, w̄,xnx] + [M̄y, w̄,yny] + [

M̄xy, (w̄,xny + w̄,ynx)
]
.

(21)

Equation (21) shows the work done by the shear force at the boundary and the work done
by the moment force at the boundary, respectively.
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Fig. 2 Master element

Fig. 3 Rectangular element

3 Finite element formulation of viscoelastic Kirchhoff plates

The functional variables w̄, M̄x , M̄y , M̄xy in Eq. (19) are in the Laplace–Carson space.
Therefore, the finite element formulation belongs to the same space. To derive the finite
element formulation, first the interpolation function must be chosen. The regularity of the
shape function, N , depends on the maximum degree of derivatives in the functional. To have
rigorous assurance of convergence as element size decreases, we must satisfy compatibility
and completeness requirement. Since the first derivative of the variables exists in the func-
tional in Eq. (19), conforming element formulation for the shape function must satisfy C◦(r)
continuity at element boundary and C ′(Ω) continuity in element; see Huebner (1975).

Rectangular master element is used in the formulation, see Fig. 2. The shape function for
the element is

N1 = (1 − ξ)(1 − η),

N2 = ξ(1 − η),

N3 = (1 − ξ)η,

N4 = ξη.

(22)

For arbitrary geometry, general coordinate transformation between (x, y) and (ξ , η) co-
ordinate systems is defined by:

x =
∑

xiNi(ξ, η),

y =
∑

yiNi(ξ, η)

(23)

where N = 4 for the rectangular element (as in Fig. 3).
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The four variables of the functional given in Eq. (19) are expressed by the shape function
Ni in the element as follows:

w̄ =
4∑

i=1

w̄iNi(ξ, η),

M̄x =
4∑

i=1

K̄iNi(ξ, η),

M̄y =
4∑

i=1

M̄iNi(ξ, η),

M̄xy =
4∑

i=1

L̄iNi(ξ, η)

(24)

where w̄, K̄ , M̄ and L̄ correspond to nodal variables, w̄, M̄x , M̄y and M̄xy respectively.
All expressions of unknown and known quantities in terms of interpolation functions are

inserted into Eq. (19) and, simplifying with respect to nodal variables; the following element
matrix is derived for the VPLT16 element based on the submatrices ([k1], [k2], [k3] and [k4])
of the rectangular finite element:

⎛

⎜
⎜
⎝

0 k2 k3 k4

k2 −αk1 ανk1 0
k3 ανk1 −αk1 0
k4 0 0 −βk1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

w̄

K̄

M̄

L̄

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

k1q̄

0
0
0

⎞

⎟
⎟
⎠ (25)

where

α = 1

D̄(1 − ν2)
,

β = 1

2D̄(1 − ν)
.

(26)

4 Numerical inversion of FEM solution

FEM formulation of viscoelastic Kirchhoff plate is derived in Laplace–Carson space, and
the numerical solution is obtained for different numerical values of transform parameters. In
order to obtain the solution in the real time domain, the inverse transformation is necessary.
There exist various methods for the inverse numerical Laplace transformation. The classifi-
cation of Laplace inversion techniques is given by Aral and Gülçat (1977). For a discussion
of Laplace inversion process, see Dubner and Abate (1968), Krylov and Skoblya (1969),
Durbin (1974), Narayanan and Beskos (1982).

In this study, we have restricted ourselves to the Maximum Degree of Precision (MDOP),
Durbin’s, and Dubner and Abate’s methods.

In the MDOP method, the function can be approximated by quadrature as

f(t) = 1

t

n∑

k=1

WkSm
k

[
F

(
Sk

t

)]
(27)
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where Sk is the abscissa and Wk is the weight function. Weights are taken from Krylov and
Skoblya (1969). In this study, calculation are carried out for m = 1 and n = 5.

In Dubner and Abate’s method, f (t) is assumed to be expanded in a series of orthogonal
polynomials Φ(t), as:

f(t) =
∞∑

k=0

CkΦk(t). (28)

The coefficients Ck are then expressed in terms of the values of f (s) at certain real points,
and we end up with:

f(t) = 2eat

T

{
1

2
Re

[
F(a)

] +
∞∑

k=1

Re

[
F

(
a + kπi

T

)]
cos

(
kπ

T
t

)}

. (29)

If we substitute aT = A and T = 2t in Eq. (29), we obtain

f(t) = e
A
2

t

{
1

2
F

(
A

2t

)
+

∞∑

n=1

(−1)n Re

[
F

(
A + 2nπi

2t

)]}

. (30)

In the computer program, Eq. (29) is employed.
Durbin’s method is an efficient improvement of Dubner and Abate’s method. Durbin

combined both finite Fourier Sine and Cosine transforms to obtain the inversion formula as

f(tj ) = 2eaj�t

T

{

−1

2
Re

[
F(a)

] + Re

[
N−1∑

k=0

Lk(A(k) + iB(k))

]

Wjk

}

(31)

where

A(k) =
L∑

p=0

Re

[
F

(
a + i(k + pN)

2π

N

)]
,

B(k) =
L∑

p=0

Im

[
F

(
a + i(k + pN)

2π

N

)]
,

W = cos

(
2π

N

)
+ i sin

(
2π

N

)
,

Lk = sin( kπ
N

)

( kπ
N

)
.

(32)

A computer program was written for the above inversion methods. The results of these
methods are discussed in applications.

5 Numerical solution

The method performance is tested through various problems presented below. In all appli-
cations, Kelvin or Three-parameter Kelvin (TPK) model is employed.

These models are represented by a spring–dashpot elements as illustrated in Fig. 4. The
displacement of Kelvin and Three-parameter Kelvin models approaches a finite value as
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Fig. 4 Mechanical analog for
the Kelvin (a) and
Three-parameter Kelvin (b)
model

t → ∞. Kelvin model does not have an elastic response to the suddenly applied load, but
the Three-parameter Kelvin model has an elastic response for t = 0.

The material coefficients are chosen as follows:

• The Kelvin model:

E = 3 × 107 kPa, η = 3 × 107 kPa s, ν = 0.3;
• The Three-parameter solid model:

E1 = 3 × 107 kPa, E = 3 × 107 kPa, η = 3 × 107 kPa s, ν = 0.3.

The relaxation modulus of Kelvin and Three-parameter Kelvin material are as follows:

J(t) = 1

E

(
1 − e

− E
η t

)
,

J(t) = 1

E1
+ 1

E

(
1 − e

− E
η t

)
.

(33)

In all applications, the quarter of simply supported rectangular plate with length a = 4 m,
width b = 4 m and thickness h = 0.1 m as illustrated in Fig. 5 is solved for different loads.
The displacement and time are measured in meters (m) and seconds (s), respectively. In all
numerical examples, the displacement value is given for the middle point of the plate by

Fig. 5 Geometrical properties of the simply supported rectangular plate
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Fig. 6 Time histories of external loads

Fig. 7 Comparison of
theoretical and calculated
deflection results under (a) step
load, (b) point load

taking advantage of the symmetry property. The time histories of loads in applications are
sketched in Fig. 6.

Using different types of time-dependent loads and viscoelastic material models enhances
the accuracy and applicability of the presented results for subsequent studies.

Example 1 The performance of the developed computer program is tested through this
example. This program consists of two parts, elastic and viscoelastic. In this example, the
elastic part is tested.

A plate is subjected to a Type I load (step load) of qo = 10 kPa and a point load P =
100 kN separately. The displacement values at the center of the elastic plate are computed
for different orders of mesh schemes, 2 × 2, 4 × 4, 6 × 6 and 8 × 8, and the results are
presented in Fig. 7(a)–(b). The results are compared with existing results in the literature in
order to determine the most suitable mesh scheme.
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Fig. 8 The displacement-time
variation of the center point of an
elastic plate

Simulations show that if the mesh gets finer, the results of the developed mixed finite
element solution show good agreement with the theoretical results. However, an increase in
the number of mesh cells naturally increases the time of computer solution.

As illustrated in Fig. 7, the 4 × 4 mesh scheme results are very satisfactory and this
scheme has the advantage of saving time. Therefore, through this study, the results of the
4 × 4 mesh scheme are considered in all numerical examples. For the theoretical results of
elastic plates, see Timoshenko and Woinowsky-Krieger (1959).

Once the results of elastic plates and the most suitable mesh scheme for the solution are
obtained, the performance of the viscoelastic part of the developed program is tested for the
elastic plates.

In this example, the viscoelastic coefficient, η, is set to zero in the developed viscoelas-
tic computer program in order to obtain the results of the elastic plate. The results of the
elastic plates obtained from the developed mixed finite element viscoelastic Kirchhoff plate
program are given in Fig. 8 for the step load (Type I). The numerical results show an ex-
cellent agreement with the theoretical results of elastic plates. Thus, it is proved that the
performance of the developed viscoelastic computer program is efficient.

Example 2 The main objective of this example is to determine the most suitable values for
the effective parameters of the inverse transform techniques. As the value of aT is changed,
fluctuation is observed in Dubner and Abate’s and Durbin’s inverse transform techniques. In
addition to aT , the results depend also on parameter N . The error in the solution decreases
as the value of N increases. This example is solved for a Kelvin solid employing MDOP,
Dubner and Abate’s and Durbin’s inverse transform techniques for different values of aT

(aT = 5, 10 and 20, respectively). The time variation of the bending moment and displace-
ment of the center point under the Type I load are computed. The results are presented in
Fig. 9. It is observed that the results of the MDOP method are independent of aT . However,
fluctuation is observed in the Dubner and Abate’s and Durbin inverse transform methods
when aT takes values bigger than 10. As observed from Fig. 9, the fluctuation scattering
increases as aT in Dubner and Abate’s inverse transform technique increases. Fluctuation
is observed for t > 20 s as aT = 20 and for t > 30 s as aT = 10 in Dubner and Abate’s and
Durbin’s methods. If the time histories of the external loads in applications are considered,
it is clearly seen that the behavior up to maximum 10 seconds is our interest. So throughout
this study, all examples are solved for the values of aT less than or equal to 10. For the
next examples, problems are solved for aT = 5 or 10 and N = 100 or 200 to decrease the
fluctuation and the error in the solutions.

Example 3 A plate is subjected to different loads, and the time histories are illustrated in
Fig. 6. Kelvin solid model is employed. For the numerical inversion, the MDOP, Dubner
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Fig. 9 Effect of the changes in
the value of the aT parameter

and Abate’s and Durbin’s transform techniques are used. The time-dependent displacement
and bending moment at the center of the plate are computed and presented in Fig. 10. This
example is solved for the η (viscosity coefficient of the material)/E (modulus of elasticity
of the material) ratio being equal to one.

The success of the MDOP, Dubner and Abate’s and Durbin’s methods is tested for the
step load (Type I), gradual step load for t1 = 2 s (Type II), rectangular impulsive load for
t1 = 10 s (Type III) and sinusoidal impulsive load t1 = 10 s (Type IV). It is observed that the
MDOP method gives good results for the displacement variation as compared to the bending
moment variation. Fluctuation is observed in the time-dependent bending moment at the
center of the plate as time increases in the MDOP inverse transform technique. Therefore,
the time variation of the bending moment is presented only for the Dubner and Abate’s and
Durbin’s inverse transform methods.

When the time variation of the bending moment at the center point is considered, it
is observed that Durbin’s method gives perfect results compared to Dubner and Abate’s
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Fig. 10 The displacement and bending moment-time variation results for the damping ratio η/E = 1

method for the Type III and IV loads. Since little fluctuation exists in the Dubner and Abate’s
method as time increases, the results are not shown in the next examples.

Example 4 The problem is solved for a Kelvin solid employing different η/E ratios in
order to show the damping effect in displacement variation of the center point. When the
viscosity coefficient decreases, the time-dependent displacement behavior of the plate ap-
proaches the elastic behavior as expected. The results are given in Fig. 11 only for the
rectangular impulsive load (Type III) employing Durbin’s inverse transform technique.

Example 5 This example is solved for a Three-parameter Kelvin Solid (TPK) under the
Type III load employing Durbin’s inverse Laplace transform technique. The time-dependent
displacement at the center of the plate is presented in Fig. 12 for the damping ratio (η/E)
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Fig. 11 Effect of the different η/E ratios

Fig. 12 Variation of different E/E1 ratio curves when the damping ratio equals to 1.5

equal to 1.5. The results are presented for different E/E1 ratios, and the time-dependent
displacements are compared with the previous example’s results (the curve corresponds to
the damping ratio equal to 1.5). As expected, the E/E1 ratio increases as the E1 value of
TPK decreases, and the results of the TPK model coincide with those for the Kelvin solid
model.

Example 6 In this example, the dynamic response of a simply supported viscoelastic plate
(a = b = 2 m and h = 0.1 m) is considered. For the analysis, the Kelvin solid model is
employed. The problem is solved for the Type I load, using the MDOP, Dubner and Abate’s
and Durbin’s inverse transform techniques. The material density ρ is defined as the mass
density per unit volume of the plate, and it is assumed to be 2000 kg/m3; and we also take
E = 3 × 107 kPa. In order to determine the frequency of vibration, free vibration analysis is
carried out for (m = 1 and n = 1). The effect of the increasing viscosity coefficient η on the
transient response and the frequency of vibration is shown in Fig. 13. When η is assumed to
be 1500 kPa s, the vibration period, T , of the plate equals to 0.0435 s. The vibration behavior
of the viscoelastic plate resembles the vibration of an elastic plate for small values of the
viscosity coefficient. This result is compared with the existing studies done by Leissa (1969)
and Craig and Kurdila (2006) and provides theoretical validation for the use of the vibration
frequency of elastic plates (see Eq. (34) for a review):

ω =
√

D

ρh

[(
mπ

a

)2

+
(

nπ

b

)2]
(34)
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Fig. 13 Effect of viscosity
coefficient on the vibration period
and amplitude of displacement

where

D = Eh3

12(1 − ν2)
. (35)

If D is substituted in Eq. (34), then

ω = 2π

T
= h

√
E

12(1 − ν2)ρ

[(
mπ

a

)2

+
(

nπ

b

)2]
(36)

is obtained.
When the viscosity coefficient is assumed to be 30 000 kPa s, the viscoelastic plate shows

vibration in the same period as the elastic plate, and the time behavior under the Type I load
is illustrated in Fig. 13. As it is known, the period of vibration depends on the viscosity
coefficient, and a change in the value of free vibration period is expected when the viscosity
coefficient is increased. However, it is observed that when the viscosity coefficient takes any
value between 1500 and 30 000, the viscoelastic plate will vibrate in the same period as the
elastic plate.

Moreover, this example shows the effect of the thickness variation on the dynamic behav-
ior of the viscoelastic plates. The material density ρ is taken as 2000 kg/m3, η is assumed
to be 1500 kPa s, and E = 3 × 107 kPa. The thickness of the plate, h, is assumed as 0.01 m.
The results are presented in Fig. 14. It is observed that decreasing the thickness of the plate
element does not cause shear locking.

In addition, the vibration period is inversely proportional to the thickness, as expected.
If the thickness of the plate is changed from 0.1 m (the results are presented in Fig. 13(a))
to 0.01 m, according to Eq. (36), the vibration period of the plate becomes T1 = 10 T and
equals to 0.435 s as seen in Fig. 14. This is a very important result to show that the new
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Fig. 14 Effect of plate thickness
on the vibration period and
amplitude of displacement

solution method is free from shear locking. It is impossible to obtain similar results using
the well-known classical finite element method (see Bathe 1982 and Reddy 1993).

Example 7 In this example, the problem is solved for the Kelvin solid model employing
Dubner and Abate’s and Durbin’s inverse transform techniques. The material density ρ is
assumed as 2000 kg/m3, the viscosity coefficient η is assumed as 3000 kPa s, and E =
3 × 105 kPa. The dynamic behavior of the viscoelastic plate under the rectangular impulsive
load is illustrated in Fig. 15. The time-dependent displacement amplitude at the center of
the plate is continuous, whereas their derivatives show discontinuity at the time the load is
removed (t = 1 s). When t > 1 s, the plate starts to vibrate in the reverse direction.

Example 8 In this example, the problem is solved for the Kelvin solid model employing
Durbin’s inverse transform technique. A viscoelastic plate is subjected to a point load P =
100 kN. The displacement values at the center of the viscoelastic plate are computed for the
4×4 mesh scheme. The results of the developed mixed finite element viscoelastic Kirchhoff
plate program and the theoretical results of viscoelastic plates under point load are presented
in Fig. 16. The numerical results show an excellent agreement with the theoretical results
of viscoelastic plates. Thus, it is proved that the performance of the developed viscoelastic
computer program is efficient.

Moreover, in this example different η/E ratios are considered in order to show the damp-
ing effect in displacement variation of the center point of the viscoelastic plate under point
load P = 100 kN. The results are given in Fig. 17.

Fig. 15 Dynamic behavior of Kelvin solid model
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Fig. 16 Comparison of
theoretical and calculated
deflection results of viscoelastic
plates under point load

Fig. 17 Effect of the different
η/E ratios under point load

6 Conclusion

In a one dimensional problem such as bending or torsion of bars, one constitutive constant
is required. In isotropic plate problems, the constitutive equation of viscoelastic materials
has two different operators for dilatation and distortion. The use of two operators causes dif-
ficulties in solving problems. To overcome these difficulties, two simplifying assumptions
are accepted in the literature. According to the first assumption, the dilatation is elastic and
the distortion is viscoelastic. According to the second one, the distortion and dilatation pa-
rameters are proportional. The second assumption is equivalent to assuming that the Poisson
ratio is constant. In this study, employing the second assumption,

(i) The field equations of Kirchhoff plates in Laplace–Carson space have been obtained.
(ii) A new functional has been constructed for viscoelastic Kirchhoff plates in Laplace–

Carson space through a systematic procedure based on the Gâteaux differential. The
functional has four independent variables, w̄, M̄x , M̄y , M̄xy , in Laplace–Carson space.

(iii) Also, geometric (essential) and dynamic (natural) boundary conditions have been ob-
tained.

(iv) A special mixed finite element program has been written which has four independent
field variables. Since the first derivatives of the variables exist in the functional, the
conforming element formulation for the shape function N must satisfy only C0(r)

continuity.
(v) To transform the numerical results from Laplace–Carson space, various transform

techniques have been tested. In particular, the MDOP, Dubner and Abate and Durbin
methods have been employed. The performance of the methods has been tested
through various quasi-static and dynamic problems.

(vi) The results are quite in agreement with each other for a simply supported plate. The
calculation is accomplished for different mesh Ωh, beginning with 2 × 2 and ending
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with 8 × 8. The error in the energy norm satisfies the inequality e < chp as presented
by Reddy (1993), where c is a constant and h is the characteristic element length.

(vii) The free vibration period of a viscoelastic plate has been obtained by the proposed
mixed finite element model.

(viii) A viscoelastic plate vibrates in the same period as does elastic plate for small values
of viscosity coefficient, as expected.

(ix) The free vibration period of a simply supported viscoelastic plate is inversely propor-
tional to the thickness. Results are in good agreement with the periods of elastic plates
in the literature for all thicknesses. This presented formulation avoids shear locking.

(x) In this study, a new mixed finite element is developed for viscoelastic Kirchhoff plates,
utilizing the new functional through standard procedures (see Kadıoğlu and Aköz
2003; Aköz and Kadıoğlu 1999 and Aköz and Özütok 2000). The same approach can
be applied for the higher order plate theories as well as shell theories. Following the
described methodology, some of these problems are under study.
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Appendix

The operator form of field equations Q̄ = P̄ ū − f̄ in the Laplace–Carson space is

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0 P̄12 P̄13 P̄14 0 0 0 0
P̄21 P̄22 P̄23 0 0 0 0 0
P̄31 P̄32 P̄33 0 0 0 0 0
P̄41 0 0 P̄44 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

w̄

ū2

ū3

ū4

w̄0

w̄′
0

M̄

T̄

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

q̄

0
0
0
ˆ̄T

− ˆ̄M
ˆ̄w′

− ˆ̄w

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(A.1)

where

P̄12 = −D̄

(
∂2

∂x2
+ ν

∂2

∂y2

)
,

P̄13 = −D̄

(
∂2

∂y2
+ ν

∂2

∂x2

)
,

P̄14 = −D̄(1 − ν)
∂2

∂x∂y
,

P̄22 = P̄33 = −D̄,

P̄23 = P̄32 = −νD̄, (A.2)

P̄44 = −1

2
D̄(1 − ν),

ū2 = M̄x − νM̄y

D̄(1 − ν2)
,
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ū3 = M̄y − νM̄x

D̄(1 − ν2)
,

ū4 = 2M̄xy

D̄(1 − ν)
.

The Gateaux derivative of the operator is the following vector:

dQ̄
(
ū, ū∗) =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

− ∂2M̄∗
x

∂x2 − ∂2M̄∗
y

∂y2 − 2
∂2M̄∗

xy

∂x∂y

−M̄∗
x − D̄( ∂2w̄∗

∂x2 + ν ∂2w̄∗
∂y2 )

−M̄∗
y − D̄( ∂2w̄∗

∂y2 + ν ∂2w̄∗
∂x2 )

−M̄∗
xy − (1 − ν)D̄ ∂2w̄∗

∂x∂y

T̄ ∗

−M̄∗
w̄∗′
−w̄∗

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (A.3)
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Kadıoğlu, F., Aköz, A.Y.: The mixed finite element for the quasi-static and dynamic analysis of viscoelastic

circular beams. Int. J. Struct. Eng. Mech. 15, 735–752 (2003)
Krylov, V.I., Skoblya, N.S.: Handbook of numerical inversion of Laplace transforms. Translated from Rus-

sian, Israel Program for Scientific Translations, Jerusalem (1969)
Leissa, A.W.: Vibration of Plates. NASA SP-160. US Government Printing Office, Washington, DC (1969)



Mech Time-Depend Mater (2015) 19:483–503 503

Lovadina, C.: A new class of mixed finite element methods for Reissner–Mindlin plates. SIAM J. Numer.
Anal. 33, 2457–2467 (1996)

Narayanan, G.V., Beskos, D.E.: Numerical operational methods for time-dependent linear problems. Int. J.
Numer. Methods Eng. 18, 1829–1854 (1982)

Oden, J.T., Reddy, J.N.: Variational Methods in Theoretical Mechanics. Springer, Berlin (1976)
Reddy, J.N.: An Introduction to the Finite Element Method, 2nd edn. McGraw-Hill, New York (1993)
Sorvari, J., Hämäläinen, J.: Time integration in linear viscoelasticity—a comparative study. Mech. Time-

Depend. Mater. 14, 307–328 (2010)
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