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Abstract In this paper we study the three-dimensional response of isotropic viscoelastic
solid-like polymers undergoing degradation due to mechanical stimuli. A single integral
model is used to describe the time-dependent behaviors of polymers under general loading
histories. The degradation is associated to excessive deformations in the polymers as strains
continuously increase when the mechanical stimuli are prescribed, and therefore we con-
sider a degradation threshold in terms of strains. The degradation part of the deformations
is unrecoverable, and upon removal of the prescribed external stimuli, the accumulation
of the degradation strains lead to residual strains. We also systematically present material
parameter characterization from available experimental data under various loading histo-
ries, i.e., ramp loading with different constant rates, creep–recovery under different stresses,
and relaxation under several strains. We analyze viscoelastic-degradation response of two
polymers, namely polyethylene and polyoxymethylene under uniaxial tensile tests. Longer
duration of loading can lead to increase in the degradation of materials due to the sub-
stantial increase in the deformations. The single integral model is capable in predicting the
time-dependent responses of the polymers under various loading histories and capturing the
recovery and residual strains at different stages of degradations.

Keywords Viscoelastic · Polymers · Degradation

1 Introduction

Polymers are often described as viscoelastic bodies, which are shown by stress relaxation
and creep deformation at the macroscopic scale when they are subjected to mechanical stim-
uli. Based on their macroscopic response, viscoelastic materials can be classified as solid-
like and fluid-like (see Wineman and Rajagopal 2001; Christensen 2002). In a viscoelastic
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solid-like behavior, the bodies should exhibit instantaneous (elastic) response and some de-
layed (time-dependent) response, and upon removal of the mechanical stimuli the materials
are expected to recover their original shapes. The creep deformation and stress relaxation in
viscoelastic solid-like bodies will reach asymptotic nonzero values.

Several experimental studies on creep–recovery behaviors of polymers (Findley and
co-authors 1954, 1962, 1970; Lai and Bakker 1995; Chailleux and Davis 2003, 2005)
have shown that under relatively low stress levels and short duration of loading (sev-
eral hours to thousands of hours), polymers creep and reach steady values, and experi-
ence fully recovery; while higher stress levels lead to permanent deformations. Loading–
unloading under strain control tests on polymers also showed that higher strain amplitude
results in pronounced permanent deformations (Drozdov 2011; Tscharnuter et al. 2012).
Another experimental observation showed failure in polymeric specimens under creep test-
ing (Raghavan and Meshii 1997; Regrain et al. 2009; Drozdov 2010; Tajima and Itoh 2010;
Melo and de Medeiros 2014). Up to failure, the polymers typically experience primary,
secondary, and tertiary stages of creep deformations. The rate of creep deformation in the
primary stage decreases with time, followed by a nearly constant rate in the secondary stage,
and the creep rate increases with time in the tertiary stage until failure occurs. Higher stresses
cause the specimens to fail at shorter time. It is then reasonable to think that before experi-
encing complete failure, the specimens might undergo several stages of degradation.

In describing the time-dependent behaviors of polymers based on experimental ob-
servations of their macroscopic responses, several phenomenological constitutive models
have been formulated. Viscoelastic constitutive models are often considered in the liter-
ature when the materials experience full recovery upon removal of the mechanical stim-
uli provided that a sufficient resting time is given, while viscoplastic (or viscoelastic–
plastic, elastic–viscoplastic, viscoelastic–viscoplastic) models are typically used for ma-
terials that show permanent (residual) deformations upon complete removal of the stim-
uli. Lai and Bakker (1995), Chailleux and Davis (2003, 2005), Kim and Muliana (2009),
Miled et al. (2011), and Tscharnuter et al. (2012) are among the authors who consid-
ered viscoelastic–viscoplastic1 response of polymers when the polymers exhibit permanent
deformations. It is noted that some viscoelastic models, e.g., Maxwell and Burger mod-
els, result in permanent deformations upon removal of the prescribed mechanical stim-
uli, which are used to model viscoelastic fluid or fluid like behaviors (e.g., Pipkin 1986;
Christensen 2002, Wineman and Rajagopal 2001). Permanent deformations are also seen
after removal of the mechanical stimuli, when the materials experience some degradation
during loadings. Several studies have addressed creep failure in polymers, such as Hin
and Cherry (1984), Vujosevic and Krajcinovic (1997), Christensen (2004), Regrain et al.
(2009), Muliana et al. (2013), etc. Christensen (2004) has associated the creep failure to
time-dependent kinetic crack growth in polymers. Vujosevic and Krajcinovic (1997) have
considered changes in the microstructural morphologies of the polymers in explaining the
macroscopic creep rupture of polymers. Hin and Cherry (1984) and Regrain et al. (2009)
used an empirical approach in order to describe creep failure in polymers. Empirical mod-
els typically require different material parameters to fit the experimental data for different
loading conditions, while the microstructural models often contain a large number of param-
eters. It might be necessary to conduct a series of experimental tests under various loading

1These authors consider that the material experiences viscoelastic responses when upon removal of the load
and given sufficient resting time the material does not show any significant permanent deformations that is
typically shown when the stress/strain is relatively small. When stress is sufficiently large, the material shows
plastic deformation that also changes with time, which they called viscoplastic part of the deformations.
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histories in order to better understand the performance of the polymers and classify them
into certain categories before developing constitutive models that describe the responses of
the polymers.

Macroscopic response of polymers depends strongly on their microstructural morpholo-
gies and movement of the macromolecular structures. Ferry (1961) has discussed that the
shapes of the macroscopic viscoelastic response of polymers are correlated to certain types
of molecular motions, such as rearrangements of the chain backbone, entanglement, bend-
ing and stretching of the chemical bonds, breaking and reforming of the bonds (scissions),
etc. The molecular motions depend also on the rate and duration of loadings, which affect
the macroscopic response of polymers. Ferry also mentioned that the time-dependent prop-
erties of polymers can be directly associated to their chemical properties, such as molec-
ular weight, cross-linking, and branching. The relationships between viscosity, molecular
weight, and temperature have also been addressed by Fox and Flory (1948). The deforma-
tion of semi-crystalline polymers is governed by the interaction of the amorphous regions
and the crystalline structures. Above the glass transition temperature, the initial deformation
occurs on the amorphous regions. As the strain increases, crystalline deformation mecha-
nisms are activated that eventually lead to crystallographic slips and the fragmentation of
lamellae. For a comprehensive overview of the research on deformation mechanisms the
reader is referred to the review by Pawlak et al. (2014).

It is no doubt that integrating the macromolecular changes to the macroscopic response
of polymers will give us a comprehensive understanding on the performance of polymers
and help in formulating rigorous constitutive models. Despite some limitations in the phe-
nomenological models in capturing detailed physical mechanisms that describe the vis-
coelastic response of polymers, properly developed phenomenological models can give sen-
sible prediction of the response of polymers, which are useful for designing devices or struc-
tures made of polymers.

In this study, our aim is to formulate a phenomenological constitutive model for vis-
coelastic solid-like materials undergoing degradation with regards to their mechanical prop-
erties. In this study, degradation in the materials is associated to secondary and tertiary stages
of creep during loading. When the degradation occurs during loading, upon unloading we
often observe some permanent deformation. The motivation of this study is based on exper-
imental observations of the macroscopic response of polymers due to quasi-static loading at
different constant rates, creep at different stresses and durations, and relaxation under dif-
ferent strains. It is assumed that the polymers are isotropic and remain isotropic during the
deformations. The model is derived for linearized strain measures that incorporates different
time-dependent and nonlinear responses for the two independent components in isotropic
bodies. An additive decomposition between the recoverable and irrecoverable strains is con-
sidered. The model can be easily reduced to one-dimensional viscoelastic-degradation be-
haviors. In absence of degradation and time-dependent effect, the model reduces to nonlinear
elastic behavior, and eventually can be reduced to linearized elastic response. Experimental
tests on polypropylene reported by Drozdov (2010) are used to study the one-dimensional
behavior. Uniaxial tensile tests on polyoxymethylene (POM) under various loading histories
are conducted, and the corresponding axial and transverse responses are recorded and used
to examine the three-dimensional response of the model. A discussion on material param-
eter characterizations for multi-axial deformations of isotropic bodies are also presented,
which indicates the need of two time-dependent material parameters in capturing responses
of POM. The manuscript is organized as follows. Section 2 presents general formulations of
the constitutive model. Section 3 discusses one-dimensional response of the model and ma-
terial characterization, followed by the multi-axial response in Sect. 4. Section 5 is dedicated
to concluding remarks.
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Fig. 1 Comparisons between
linearized and Green–St. Venant
strain measures

2 Constitutive model

This section starts with a brief discussion of linearized strains, followed by formulation of
the constitutive relations. Let us consider a solid body with a stress-free reference config-
uration.2 The position of a particle in the reference configuration is denoted by X, and the
motion of a particle in the body is given by x = χ(X, t). The displacement u is then defined
by

u = x − X. (2.1)

In the deformable body, we quantify the change in shape of the body from its refer-
ence configuration to the current (deformed) configuration by a strain measure. The strain
is measured at the localized region in the body. Different strain measures have been consid-
ered (see Freed 2014 for discussion on various strain measures) depending on the practical
applications. One of the commonly used strain measures is the Green–St. Venant strain E,3

E = 1

2

(
∂u
∂X

+
(

∂u
∂X

)T

+
(

∂u
∂X

)T
∂u
∂X

)
(2.2)

where ∂u
∂X is the displacement gradient. When the displacement gradient is small, i.e.,

max‖ ∂u
∂X ‖ = 0(δ), δ � 1, where ‖.‖ is the trace norm, then the Green–St. Venant strain

E reduces to the linearized strain ε,

ε = 1

2

(
∂u
∂X

+
(

∂u
∂X

)T )
. (2.3)

While it is clearly seen from Eqs. (2.2) and (2.3) that the Green–St. Venant is a more gen-
eral strain measure that is applicable for any range of strains and displacement gradients, the
linearized strain measure that is only applicable for problems involving small deformation
gradients is often considered. Figure 1 illustrates an example of creep–recovery deforma-
tions, measured by the Green–St. Venant and linearized strains, of POM under a uniaxial
tensile stress. Deviations in the two strain measures are easily observed when the strain

2In this study, we take the initial configuration as our reference configuration and we assume that in the initial
configuration the materials are stress and strain free.
3A detailed discussion on the kinematics can be found in many continuum mechanics books, e.g., Chadwick
(1998).
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is larger than 10 %. The percent difference between the two strain measures at the peak
value (around 4000 minutes and ∼20 % strain) is less than 10 %. In this study, we consider
linearized strain measures due to its simplicity in obtaining the solutions to the viscoelastic-
degradation model and, except some of the experimental data, most of the strain data con-
sidered in this study are less than 10 %; thus the error in neglecting the higher order term of
the displacement gradient is relatively small.

We formulate a constitutive model for viscoelastic solids undergoing degradation due to
mechanical stimuli. Based on the time-dependent macroscopic response of polymers, the
polymers can experience primary, secondary, and tertiary stages of deformations prior to
failure. We assume that the degradation in polymers occurs when they experience secondary
and tertiary stages of deformations, while the primary stage is mainly governed by the vis-
coelastic response. We also neglect a possible healing in the degrading polymers, so that the
deformations associated with the degradation are irrecoverable. The time-dependent strain
is additively decomposed into the recoverable εR(t) and irrecoverable εD(t) components:

ε(t) = εR(t) + εD(t). (2.4)

In Eq. (2.4) the linearized strain is expressed in terms of stresses and time. The recov-
erable strain component is associated with the viscoelastic response of the body. We adopt
the quasi-linear viscoelastic (QLV) model, proposed by Fung (1981),4 for the defining the
recoverable linearized strain component as a function of the Cauchy stress σ :

εR(t) =
∫ t

0−
D(t − s) dFel

(
σ (s)

) =
∫ t

0−
D(t − s)

∂Fel(σ (s))

∂σ

dσ

ds
ds

= Fel
(
σ (0)

)
D(t) +

∫ t

0+
D(t − s)

∂Fel(σ (s))

∂σ

dσ

ds
ds (2.5)

where D(t) is the normalized creep function, which is a general fourth order tensor, Fel is
the nonlinear elastic strain measure that depends on the stress, t is the present time, and s

is the history of time, where s ∈ [0, t]. The term Fel(σ (0))D(t) in Eq. (2.5) is incorporated
when there is a jump discontinuity at t = 0. For an isotropic material, the nonlinear elastic
strain measure can be written as

Fel
(
σ (s)

) = −f1(I1, I2, I3)I1I + f2(I1, I2, I3)σ (s) (2.6)

where the stress invariants are defined as I1 = trace(σ ), I2 = 1
2 trace(σ 2), I3 = 1

3 trace(σ 3),
and I is the identity matrix. The choice of the nonlinear functions f1(I1, I2, I3) and
f2(I1, I2, I3) should be determined from available experimental data (see Muliana et al.
2015), which will be discussed in Sects. 3 and 4. It is noted that the nonlinear elastic strain
measure should reduce to zero in absence of stresses Fel(0) = 0. In this study we assume
f1(I2) and f2(I2) since the second invariant includes both normal and shear components
of the stress tensor, which gives more general nonlinear functions in case shear loadings
are considered. For isotropic materials, we further consider two normalized time-dependent

4Fung (1981) presented a QLV model to study response of biological tissues, in which he expressed the
second Piola–Kirchhoff stress as function of Green–St. Venant strain. It is noted that Fung (1981) referred
the stress in the QLV model as Kirchhoff stress. Further discussion on the QLV model can be found in De
Pascalis et al. (2014).
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functions B(t) and J (t), and the viscoelastic strain from Eq. (2.5) reduces to

εR(t) = −f1

(
I2

(
σ (0)

))
I1

(
σ (0)

)
B(t)I −

∫ t
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d[f1(I2(σ (s)))I1(σ (s))]
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dsI

+ f2

(
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))
σ (0)J (t) +

∫ t
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ds (2.7a)

or
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(
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)
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∫ t

0
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(
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(
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∫ t

0
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(
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(
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))
σ (s) ds. (2.7b)

When the stress components at t = 0 are smooth and continuous with time and σ (t) =
ε(t) = 0,∀t < 0, the first and third terms on the right-hand side of Eq. (2.7a) can be dropped,
and the lower limit of the integral shall be written as 0 instead of 0+. It is noted that for the
normalized time-dependent functions B(0) = J (0) = 1. The time-dependent functions are
not unique, any function that is positive, continuous, and monotonically increasing with
time can be used for B(t) and J (t). In this study, we consider the following discrete time
functions

B(t) = B(0) +
N∑

n=1

Bn

(
1 − e−t/τn

)
and J (t) = J (0) +

M∑
n=1

Jn

(
1 − e−t/λn

)

that describe the primary creep deformation with a decreasing rate, and at relaxed time the
deformation reaches an asymptotic value. Several experimental evidences have also shown
that the rate of creep or the rate of relaxation in viscoelastic materials increase with in-
creasing the external mechanical stimuli. Several studies have considered a time-shifting
method in order to incorporate the accelerated creep and relaxation due to mechanical stim-
uli, e.g., Schapery (1969), Wineman (2002), Tscharnuter and Muliana (2013). Equations
(2.7a), (2.7b) can be modified to incorporate the accelerated creep/relaxation by incorporat-
ing the time-shifting method, which is

εR(t) = −
∫ t

0
B

(
ϕ(t) − ϕ(s)

)d[f1(I2(σ (s)))I1(σ (s))]
ds

dsI

+
∫ t

0
J
(
ϕ(t) − ϕ(s)

)d[f2(I2(σ (s)))σ (s)]
ds

ds (2.8)

where the reduced time is given as ϕ(t) = ∫ t

0
1

a(σ (x))
dx, and a(σ ) is the time-shift factor that

depends on the stresses.
Similar to the integral form for viscoelastic response in Eq. (2.5), the degradation strain

is described by the following single integral form:

εD(t) =
∫ t

tcr

R(t − s) d
(
σ (s)

) = σ (tcr)R(t − tcr) +
∫ t

tcr

R(t − s)
dσ

ds
ds. (2.9)

The irrecoverable part is associated with the secondary and tertiary stages of deforma-
tions, and R(t) is the time kernel fourth order tensor associated to the degradation strain.
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Here tcr is the critical time at which the degradation starts, according to a strain-based ini-
tiation criterion that will be introduced below, and s ∈ [tcr, t]. For isotropic materials we
consider two scalar time-dependent functions K(t) and D(t) that are chosen to describe de-
formations with an increasing rate, which in this study we consider the following functions
K(t) = K1(e

t/ω1 − 1) and D(t) = D1(e
t/η1 − 1). The degradation strain in Eq. (2.9) now

reduces to

εD(t) = −K(t − tcr)I1
(
σ (tcr)

)
I −

∫ t

tcr

K(t − s)
dI1(σ (s))

ds
dsI

+ D(t − tcr)σ (tcr) +
∫ t

tcr

D(t − s)
dσ (s)

ds
ds (2.10a)

or

εD(t) = −K(0)I1

(
σ (t)

)
I −

∫ t

tcr

dK(t − s)

d(t − s)
I1

(
σ (s)

)
dsI + D(0)σ (t)

+
∫ t

tcr

dD(t − s)

d(t − s)
σ (s) ds (2.10b)

where the first and second terms are expressed in terms of the first stress invariant I1. When
K(0) and D(0) are equal to zero, then the first and third terms of Eq. (2.10b) can be dropped.
Like in the viscoelastic strain component, the rate of the irrecoverable creep in the polymers
can also change with stresses. Thus, the irrecoverable strain in Eqs. (2.10a), (2.10b) can be
modified to include the time-stress shifting effect:

εD(t) = −K
(
ϕ(t) − ϕ(tcr)

)
I1

(
σ (tcr)

)
I −

∫ t

tcr

K
(
ϕ(t) − ϕ(s)

)dI1(σ (s))

ds
dsI

+ D
(
ϕ(t) − ϕ(tcr)

)
σ (tcr) +

∫ t

tcr

D
(
ϕ(t) − ϕ(s)

)dσ (s)

ds
ds (2.11)

where the reduced time is given as ϕ(t) = ∫ t

0
1

aD(σ (x))
dx, and aD(σ ) is the time-degradation

shift factor for the irrecoverable strain that depends on the stresses.
Since the irrecoverable part is associated with the degradation, we define a threshold

at which degradation starts. When considering phenomenological models in describing re-
sponses of materials with permanent deformations (plastic or damage/degradation), the mag-
nitude of stress and/or strain is typically used in the criteria for determining further gener-
ation of plastic deformation or degradation. For example, an overstress function has been
widely used in determining a yield surface for describing plastic deformations. Perzyna
(1971) defined a yield function in terms of the current stress and accumulated plastic strain.
As we are dealing with viscoelastic polymers, in which strains continuously increase and
stresses relax with time, it is practical to consider a degradation threshold in terms of strains.
We consider the following degradation criterion:

f (ε, εcr) = √
2J2(t) − εcr(t) (2.12)

where J2 = 1
2 trace(ε2) is the second invariant of the strain tensor and εcr is the magnitude

of the critical strain analogous to the yield stress in the overstress plasticity. The initial
value of the critical strain is εcr(0) = εo

cr, which is the strain threshold for the degradation to
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initiate. We introduce a parameter κ(t), which denotes the current stage of degradation, and
in absence of degradation κ(t) = 0. The irrecoverable strain is formed when f (ε, εcr) ≥ 0.
As the degradation progresses, the critical strain is updated as εcr(t) = √

2J2(t) and a new
stage of degradation is defined as κ(t) = √

2J2(t) − εo
cr. When f (ε, εcr) < 0, there are no

updates for the critical strain and stage of degradation.
It is expected that degradation in polymers would influence the mechanical behaviors of

the polymers, in which the material parameters in the viscoelastic and irrecoverable strains
change with degradation. It is possible that the polymers would creep or relax faster as
they degrade, or the polymers become softer with degradation. Thus, the recoverable and
irrecoverable strains can be modified to incorporate such effects:

εR(t) = −
∫ t

0
B

(
ϕ(t) − ϕ(s)

)d[f1(κ(s),σ (s))I1(σ (s))]
ds

dsI

+
∫ t

0
J
(
ϕ(t) − ϕ(s)

)d[f2(κ(s),σ (s))σ (s)]
ds

ds, (2.13)

εD(t) = −K
(
κ,ϕ(t) − ϕ(tcr)

)
I1

(
σ (tcr)

)
I −

∫ t

tcr

K
(
κ,ϕ(t) − ϕ(s)

)dI1(σ (s))

ds
dsI

+ D
(
κ,ϕ(t) − ϕ(tcr)

)
σ (tcr) +

∫ t

tcr

D
(
κ,ϕ(t) − ϕ(s)

)dσ (s)

ds
ds. (2.14)

The shift factors inside the reduced times are a(κ,σ ) and aD(κ,σ ). The critical time tcr is
determined when

√
2J2(tcr) = εo

cr.
When the loading history and nonlinear elastic and time-dependent functions are of sim-

ple forms, we might be able to solve the above integral and obtain exact solutions. If exact
solutions are not possible, then numerical methods are often considered to obtain approxi-
mate solutions.

3 One-dimensional responses

Drozdov (2010) has conducted uniaxial tensile tests on polyethylene under various load-
ing histories, which are quasi-static ramp tests under several constant strain rates, relax-
ation tests under several strains, and creep tests under various stresses. The loading duration
was limited to 1200 seconds. The corresponding responses are recorded in the direction of
loading, and the engineering stress–strain measure was used in presenting the responses.
The presented experimental data from the uniaxial loading would limit the analyses to one-
dimensional response. The creep responses showed that failure occurred under high stresses.
At low stresses the primary creep behavior was observed for the 1200 seconds of creep
tests. The stress relaxation behaviors suggested that polyethylene experienced a viscoelastic
solid-like behavior. The quasi-static ramp tests under lower strain rates resulted in smaller
magnitude of stresses, indicating significant stress relaxation processes.

We consider the phenomenological model discussed in Sect. 2 in order to describe the
response of the studied polyethylene. For one-dimensional case, Eq. (2.4) reduces to a scalar
component of strain ε(t) = εR(t)+ εD(t) and the invariants I1 = 2I2 = σ . The stress, strain,
and time relations in the recoverable and irrecoverable parts are:

εR(t) = −
∫ t

0
B

(
ϕ(t) − ϕ(s)

)d[f1(σ (s))σ (s)]
ds

ds
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Fig. 2 Nonlinear elastic
response of polyethylene from
quasi-static ramp with strain rate
0.08/s and isochronous plot from
relaxation tests at time t∗, at
which the stress relaxation starts

+
∫ t

0
J
(
ϕ(t) − ϕ(s)

)d[f2(σ (s))σ (s)]
ds

ds

=
∫ t

0
G

(
ϕ(t) − ϕ(s)

)dr(σ (s))

ds
ds

= G
(
ϕ(t)

)
σ(0) +

∫ t

0+
G

(
ϕ(t) − ϕ(s)

)dr(σ (s))

ds
ds, (3.1)

εD(t) = −K
(
ϕ(t) − ϕ(tcr)

)
σ(tcr) −

∫ t

tcr

K
(
ϕ(t) − ϕ(s)

)dσ(s)

ds
ds

+ D
(
ϕ(t) − ϕ(tcr)

)
σ(tcr) +

∫ t

tcr

D
(
ϕ(t) − ϕ(s)

)dσ(s)

ds
ds

= H
(
ϕ(t) − ϕ(tcr)

)
σ(tcr) +

∫ t

tcr

H
(
ϕ(t) − ϕ(s)

)dσ(s)

ds
ds. (3.2)

In the above equations, G(t) and H(t) are the time-dependent functions corresponding to
the viscoelastic (recoverable) and degradation (irrecoverable) parts, respectively, and r(σ )

is the nonlinear elastic strain measure. In order to determine the material parameters in the
above model, we start with calibrating the nonlinear viscoelastic response, in absence of
degradation εD(t) = 0, in which we consider responses under relatively low stresses and
strains. All experimental data discussed in this section are digitized from Drozdov (2010).
Figure 2 shows the stress–strain responses under the highest constant rate (0.08/s) up to
strain around 0.04. It is noted that the degradation is associated with the secondary and
tertiary creep deformations. By observing experimental data from the creep tests, it seems
that the secondary creep starts when the strain is greater than 0.04. Thus, we consider the
initial value of the critical strain is εo

cr = 0.045, which is a rough estimate. This is the strain
limit at which we calibrate the nonlinear elastic material parameters. It is noted that loading
rate 0.08/s is relatively fast, and under this rate the effect of stress relaxation process on the
overall responses of the polyethylene is considered negligible. We also plot the isochronous
data from the stress relaxation tests at time t∗, at which the stress relaxation starts. It is seen
that the responses at t∗ indicate the instantaneous elastic behavior. We then use the stress–
strain response in Fig. 2 to calibrate the nonlinear elastic function r(σ ), which is a strain
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Table 1 Material parameters of
polyethylene Parameters Values

A 0.002

B 0.12 MPa−1

η 35,000 MPa

ζ 11 s

Fig. 3 Stress relaxation response
of polyethylene under strain
0.044

measure, and we assume the following function:

r(σ ) = A
(
eB

√
2I2 − 1

) = A
(
eB

√
(σ (t))2 − 1

)
. (3.3)

The linearization of the nonlinear function in Eq. (3.3) reduced to a linear elastic response

ε = r(σ ) = dr

dσ

∣∣∣∣
σ=0

σ = ABσ = Doσ (3.4)

where Do is the linear elastic compliance. The calibrated material parameters are given in
Table 1. After calibrating the parameters in the nonlinear elastic response, Eq. (3.3), we then
calibrate the time-dependent function and consider the following normalized time-function
G(t) = G(0)+∑N

n=1 Gn(1−e−t/τn ) and the time shift factor a(σ ) inside the reduced time is
taken as 1. The stress relaxation response under a constant strain 0.044 is used to calibrate the
parameters in the above normalized time function (see Fig. 3) and the calibrated parameters
are given in Table 2.

We now use the creep responses (Fig. 4) in order to determine the time-dependent degra-
dation behavior. The following function is considered for the degradation part:

H
(
ϕ(t)

) = 1

η

(
eϕ(t)/ς − 1

)
. (3.5)

The creep response under stress 28 MPa is used to determine the parameters η and ζ , and at
this stress, the degradation time shift factor aD is taken as 1. The recoverable and irrecover-
able strains are considered in this creep response. The calibrated degradation parameters are
given in Table 1. Next, the degradation time-shift factors aD are determined for the creep
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Table 2 Calibrated parameters
in the normalized time function
of polyethylene

n τn(s) Gn

0 – 1.0

1 10 0.05

2 20 0.2

3 30 0.35

4 300 0.8

5 900 0.99

Fig. 4 Creep degradation
behaviors of polyethylene (stress
is in MPa)

Fig. 5 Degradation shift factor
of polyethylene

responses under stresses 19.7, 21.5, 23.4, and 24.7 MPa. Figure 5 shows the degradation
shift-factors calibrated from the secondary and tertiary stages of creep deformations. A poly-
nomial fit is used for the degradation shift factor: aD = 0.6674σ 2 − 36.951σ + 512.27. At a
relatively small stress, the value of the degradation shift factor reaches a very large number,
indicating that the degradation predicted by the model would occur at much longer time, and
at a relatively small stress the contribution of the degradation strain at short-term period is
negligible since ϕ(t) ≈ 0 and H(ϕ(t)) ≈ 0. The calibration is done by varying the material
parameters to fit the experimental data.

The time-dependent viscoelastic and degradation model with material parameters given
in Tables 1 and 2 is now used to predict the response of polyethylene under stress relax-
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Fig. 6 Stress relaxation response
of polyethylene

Fig. 7 Responses of ramp
loading of polyethylene at
different constant strain rates
(unit /s)

ation and quasi-static tensile tests with constant strain rates. Figure 6 illustrates the stress
relaxation responses under several constant strains, and Fig. 7 depicts the responses under
constant strain rates. The model can reasonably capture the response of polyethylene under
various histories of loading. It is noted that the quasi-static responses of the polymers un-
der relatively slow rates are captured well by the model since these responses occurred at
relatively long period of time. For example, to reach strain 0.2 with a rate of 2 × 10−4/s,
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it takes 1000 seconds, and the viscoelastic and degradation strains have been calibrated for
period 1200 second and up to strain level 0.2 and stress level 28 MPa. It is noted that for the
quasi-static response under fast loading (10−2/s) it takes 20 seconds to reach strain 0.2. The
response can be considered mainly due to the instantaneous elastic behavior. We assumed
that the time-dependent degradation occurs due to an increase in the strain response with
time and neglect the possible degradation at the instantaneous elastic response since we do
not have enough data to calibrate the material parameters associated to the elastic degrada-
tion. This might explain the mismatches between the response obtained from the model and
experimental data at strain rate 10−2/s.

4 Three-dimensional responses

We study three-dimensional responses of viscoelastic solid polymers undergoing mechani-
cal degradation. For this purpose, experimental tests were conducted on POM under several
histories. The POM specimens (Tenac 3010, Asahi Kasei, Japan) were subjected to uniaxial
tensile tests at 23 °C and the responses along the loading (axial) and perpendicular to the
loading (transverse) directions were recorded using Digital Image Correlation (DIC). For the
monotonic tensile tests, a 3D-DIC system was used (ARAMIS 4M; GOM mbH, Germany).
The creep tests were conducted on a custom-built creep testing machine equipped with tele-
centric lenses for 2D-DIC. To monitor the recovery following the creep tests, the specimens
were unloaded and transferred to a dedicated recovery measurement device, where the strain
measurement using 2D-DIC was continued. On this test stand, specimens are subjected to
variations in the ambient temperature of up to ±2 K, which introduces inaccuracies in the
range of ±0.03 % due to thermal strains. As discussed in Sect. 3, we start with calibrating
material parameters in the nonlinear elastic function, followed by calibrating normalized
time-dependent parameters for the viscoelastic strain. Once the material parameters in the
viscoelastic strain have been determined, the parameters in the degradation strains are cal-
ibrated. Observing the nonlinear elastic response of POM from the quasi-static test under
displacement rate 10 mm/s (Fig. 8), we consider the following nonlinear elastic function for
isotropic materials:

Fel
(
σ (t)

) = −α

[
exp(β

√
2I2) − 1

1 + √
2I2

]
I1

(
σ (t)

)
I + γ

[
exp(δ

√
2I2) − 1

1 + √
2I2

]
σ (t). (4.1)

We assume that the response of materials under tension and compression is the same. The
linearization of Eq. (4.1) reduces to a linear elastic material response:

εel = −αβI1I + γ δσ (4.2)

where −αβ = − ν
E
;γ δ = 1+ν

E
and E and ν are the elastic modulus and Poisson’s ra-

tio, respectively. There are four material parameters in Eq. (4.1), i.e., α,β, γ , and δ, that
need to be calibrated. Following Muliana et al. (2015), we first use the transverse re-
sponse, where Eq. (4.1) reduces to ε22 = F22(σ11) = −α(

exp(βσ11)−1
1+σ11

), in order to determine
the parameters α,β . Once these parameters have been determined, we use the axial re-
sponse, ε11 = F11(σ11) = −α(

exp(βσ11)−1
1+σ11

) + γ (
exp(δσ11)−1

1+σ11
), to calibrate the parameters γ, δ.

Table 3 presents the calibrated material parameters corresponding to the nonlinear elastic
responses.
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Fig. 8 Nonlinear elastic
response of POM from the
quasi-static loading under rate
10 mm/s

Table 3 Nonlinear elastic
material parameters of POM Parameters Values

α 0.21 × 10−2

β 0.037 MPa−1

γ 0.77 × 10−2

δ 0.037 MPa−1

K1 3.7 × 10−4 MPa−1

ω1 250000 s

D1 9.2 × 10−4 MPa−1

η1 200000 s

We then determine the parameters in the normalized time-dependent functions B(t) and
J (t) from the 1500 minute creep response under 20 MPa (see Fig. 9). With the nonlin-
ear elastic function given in Eq. (4.1) and two time-dependent functions B(t) and J (t) the
viscoelastic constitutive model is

εR(t) = −B(0)α

[
exp(β

√
2I2(t)) − 1

1 + √
2I2(t)

]
I1(t)I

−
∫ t

0
Ḃ(t − s)α

[
exp(β

√
2I2(s)) − 1

1 + √
2I2(s)

]
I1(s)Ids
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Fig. 9 Creep–recovery response
of POM under stress 20 MPa

+ J (0)γ

[
exp(δ

√
2I2(t)) − 1

1 + √
2I2(t)

]
σ (t)

+
∫ t

0
J̇ (t − s)γ

[
exp(δ

√
2I2(s)) − 1

1 + √
2I2(s)

]
σ (s) ds. (4.3)

Under a uniaxial stress σ11(t), the nonzero components of strains are:

εR11(t) = −B(0)α

[
exp(βσ11(t)) − 1

1 + σ11(t)

]
σ11(t)

−
∫ t

0
Ḃ(t − s)α

[
exp(βσ11(s)) − 1

1 + σ11(s)

]
σ11(s) ds

+ J (0)γ

[
exp(δσ11(t)) − 1

1 + σ11(t)

]
σ11(t)

+
∫ t

0
J̇ (t − s)γ

[
exp(δσ11(s)) − 1

1 + σ11(s)

]
σ11(s) ds, (4.4a)
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Table 4 Calibrated parameters
in the normalized time functions n τn = λn(s) Bn Jn

0 – 1.0 1.0

1 5 0.03 0.02

2 10 0.035 0.04

3 100 0.033 0.05

4 500 0.033 0.08

5 1000 0.15 0.09

6 5000 0.18 0.15

7 10000 0.34 0.2

8 50000 0.54 0.5

εR22(t) = −B(0)α

[
exp(βσ11(t)) − 1

1 + σ11(t)

]
σ11(t)

−
∫ t

0
Ḃ(t − s)α

[
exp

(βσ11(s)) − 1

1 + σ11(s)

]
σ11(s) ds,

εR33(t) = εR22(t).

(4.4b)

We first use the transverse strain response during the 1500 minute creep for determining
the parameters in B(t). Once these parameters have been calibrated, we use the axial creep
response to determine the parameters that appear in the expression for J (t). Table 4 lists
the calibrated parameters from the 1500 minute creep responses. We also use the model to
capture the recovery stage after 1500 minutes of creep test.

Next, we use the creep–recovery responses under higher stresses (40 and 50 MPa) to
study the time-dependent degradation of POM. Figure 10 shows the axial and transverse
strain responses of POM under 4000 minute, at 50 MPa, creep followed by recovery. The
responses show primary, secondary and tertiary creep stages and residual strains are ob-
served after removal of the stress, indicating some degradation has occurred in the sample.
The ramp loading to 50 MPa was done under a relatively short duration (<10 seconds) and
the unloading from 50 MPa to zero stress at around 4000 minutes was done also under a
short duration (<30 seconds). Thus, it is expected that the responses during ramp loading
and unloading are mainly due to elastic (instantaneous) responses. It is also seen that the
magnitude of the elastic (instantaneous) strain during ramp loading is smaller than the one
during unloading, which suggests that degradation might alter the nonlinear elastic response
of POM, i.e., the material is getting softer as it degrades. Figure 11 shows the creep–recovery
response of POM under 50 MPa for shorter creep duration (1500 minutes). Residual strains
are observed for the transverse and axial strain responses with smaller magnitude compared
to the ones presented in Fig. 10. It is seen that longer duration of creep induces more se-
vere degradation due to increases in the strain magnitude, resulting in larger residual strains.
Figure 12 illustrates the creep–recovery response of POM under 40 MPa for 1500 minutes
of creep. Smaller residual strains are observed in both axial and transverse strains, when
compared to the residual strains under 50 MPa after 1500 minutes of creep. It is also noticed
from Figs. 11 and 12 that the magnitude of the unloading strains is larger than the ones of
the loading, indicating softening in the elastic (instantaneous) response due to degradation.

In order to describe the creep responses under stresses 40 and 50 MPa, in which degra-
dation occurs, we consider additive decompositions of the recoverable (viscoelastic) and
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Fig. 10 Creep–recovery
responses of POM under stress
50 MPa (data used for
calibration)

irrecoverable (degraded) strains, as shown in Eq. (2.4). The irrecoverable strain is

εD(t) = −K1
(
e(t−tcr)/ω1 − 1

)
I1

(
σ (tcr)

)
I −

∫ t

tcr

K1
(
e(t−s)/ω1 − 1

)dI1(σ (s))

ds
dsI

+ D1

(
e(t−tcr)/η1 − 1

)
σ (tcr) +

∫ t

tcr

D1

(
e(t−s)/η1 − 1

)dσ (s)

ds
ds. (4.5)

Under a uniaxial stress σ11(t), the nonzero components of the irrecoverable strain are

εD11(t) = −K1

(
e(t−tcr)/ω1 − 1

)
σ11(tcr) −

∫ t

tcr

K1

(
e(t−s)/ω1 − 1

)dσ11(s)

ds
ds

+ D1

(
e(t−tcr)/η1 − 1

)
σ11(tcr) +

∫ t

tcr

D1

(
e(t−s)/η1 − 1

)dσ11(s)

ds
ds, (4.6a)

εD22(t) = −K1
(
e(t−tcr)/ω1 − 1

)
σ11(tcr) −

∫ t

tcr

K1
(
e(t−s)/ω1 − 1

)dσ11(s)

ds
ds,

εD33(t) = εD22(t).

(4.6b)

As discussed above, the degradation in POM affects the elastic (instantaneous) response. In
order to incorporate such an effect, the material parameters in Eq. (4.1) can change with the
degrading stage. Since the experimental data suggested that the elastic (instantaneous) re-
sponse becomes softer as POM degrades, we consider the elastic material parameters change
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Fig. 11 Creep response under
1500 minutes, at 50 MPa stress,
followed by recovery

Table 5 Axial and transverse
residual strains from ramp
loading with several maximum
strains

εmax
11 (% ) εres

11 (%) −εres
22 (%)

1 0.007 0.004

3 0.055 0.035

5 0.217 0.108

8 0.544 0.243

with the degradation stage α(κ) and γ (κ). In this study, we assume that when κ = 0 then
α and γ are given in Table 3, otherwise when κ �= 0 then α and γ change with κ . In order
to determine the initial critical strain at which degradation starts, a ramp loading to several
amplitude of strains is conducted followed by removal of the load and the recovery strains
were monitored in order to investigate the residual strains, both along the axial and trans-
verse directions. Table 5 presents the magnitude of the residual axial and transverse strains
from the ramp loading with several maximum axial strains. Observing the residual strains
in Table 5, we take the initial critical strain to be εo

cr = 0.03. We use the creep responses un-
der 50 MPa, depicted in Fig. 10, in order to calibrate the material parameters in Eqs. (4.6a)
and (4.6b) and determine α(κ) and γ (κ). It is noted that κ = κ(t) = √

2J2(t) − εo
cr, which

depends on both axial and transverse strain components and at the same time the elastic
material parameters vary with κ ; thus we cannot calibrate the material parameters by sep-
arately considering the transverse and axial strain responses, as previously done for the
elastic and viscoelastic properties. We simultaneously use the axial and transverse strain
responses in order to determine K1,ω1,D1, η1 and α(κ) and γ (κ). The calibrated material
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Fig. 12 Creep–recovery
response under 40 MPa

parameters are given in Table 3, and the degradation dependent elastic material properties
are α(κ(t)) = 10−2(0.2589κ(t) + 0.21) and γ (κ(t)) = 10−2(4.222κ(t) + 0.74).

From Fig. 10, it is seen that the model can capture the overall creep–recovery behav-
iors, including the residual strains and elastic (instantaneous) responses during the loading
and unloading stages. It is also seen that the model shows continuous recovery, while the
experiment shows relatively fast recovery before reaching residual strains. This suggests
that degradation might affect the creep/relaxation behavior of POM. Unlike the degrada-
tion dependent elastic (instantaneous) response that can be determined from the unload-
ing period, the degradation dependent creep/relaxation response cannot be easily captured
from the creep–recovery responses in Fig. 10. In order to investigate how the degradation
influences the creep and relaxation processes of POM, it might be necessary to perform
creep/relaxation tests on the degraded samples, which is beyond the scope of this study. Fi-
nally, we also show the prediction of the creep–recovery responses under 50 and 40 MPa
stresses for 1500 minute creep tests is Figs. 11 and 12, respectively, using the calibrated ma-
terial parameters in Tables 3 and 4. The model shows relatively good prediction, and capable
in capturing the residual strains. The mismatches are seen due to the continuous recovery
after unloading, which has been explained above. Responses from the nonlinear viscoelastic
model, in absence of degradation, are also plotted for comparison.

5 Conclusions

We have formulated a constitutive model for nonlinear isotropic viscoelastic solids under-
going degradation due to mechanical stimuli. A linearized strain measure is considered and
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the strain is additively decomposed into viscoelastic (recoverable) and degradation (irrecov-
erable) strains. A single integral model with nonlinear integrands is used for the recoverable
part. The degradation strains are also expressed in integral forms where the kernel time
monotonically increases with time, and the rate of deformation also increases with time. We
have defined a threshold for degradation in terms of a critical strain and also determined the
stage of degradation in terms of the second invariant of the current strain tensor. Further-
more, we also assume that the degradation affects the elastic response of the polymers.

We have used the presented viscoelastic-degradation model for describing time-
dependent behaviors of two polymers, namely polyethylene and polyoxymethylene (POM)
under uniaxial tensile tests. Detailed material parameter characterizations from experimen-
tal data are presented. The model has been shown capable in capturing time-dependent re-
sponses of polymers undergoing various loading histories, i.e., ramp loading under various
rates, creep under different stresses, and relaxation at several strain levels. It is concluded
that longer duration of loading can lead to increase in the degradation of materials due to
the substantial increase in the deformations. The model is also capable in predicting the
recovery and residual strains at different stages of degradations.
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