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Abstract In this paper, the static and dynamic response of a clamped–clamped viscoelastic
nanocomposite microbeam under combined electrostatic and piezoelectric actuations is an-
alyzed. The equations of motion of the system are derived using the Euler–Bernoulli beam
theory, Kelvin–Voigt model and Hamilton principle. The nonlinear model for the system is
studied by considering stretching of the mid-plane, a DC electrostatic force, an AC har-
monic force and a DC piezoelectric actuation. The static deflection and natural frequency
of the system is extracted, and the influence of system parameters on the primary resonance
behavior of the system is studied. It is shown that, based on various electrostatic and piezo-
electric excitations, hardening or softening behavior is expected. So, one can tune these volt-
ages such that this highly nonlinear system behaves linearly close to resonance frequency.
Also it is shown that damping characteristics of the system with viscoelastic material not
only depends on the damping coefficient of the system, but also on its other parameters.

Keywords Composite microbeam · Multiple scale method · Viscoelastic · Piezoelectric
layer · Electrostatic

List of Abbreviation
A(T1, T2) Complex-valued function for system response with amplitude a and

phase ϑ

A1 Cross-section of the microbeam
A2 Cross-section of the piezoelectric layer
Bc(t) Constant of integration
B1(s), B3(s) The axial and bending stiffness of the system, respectively
B2(s),B4(s) The axial load and bending moment due to the piezoelectric effects,

respectively
B5(s), B6(s) The axial load and bending moment due to viscoelastic effect
C Viscoelastic damping coefficient
Ci , i = 1, . . . ,4 Coefficients of the solution equation ϕs[i]
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d31 Piezoelectric constant
E1 Microbeam modulus of elasticity
E2 Piezoelectric modulus of elasticity
e The axial strain of the microbeam
F The external force due to AC actuation
f̂ Constant displacement applied to the one end of the microbeam
gi , i = 1,2 The positive roots of the characteristic equation governed by ϕs[i]
H1n(x) Dimensionless coefficient of the linear term due to bending stiffness of the

system
H2n(x) Dimensionless coefficient of the linear term due to viscoelastic effects
H3n(x) Dimensionless coefficient of the nonlinear term due to viscoelastic effects
Hli Heaviside function at the point li
h Initial gap
I1 Second moment of the area of the microbeam about the neutral axis for

s < l1 or s > l2
I2 Second moment of the area of the piezoelectric layer about the neutral

axis for l1 < s < l2
I3 Second moment of the area for the cross-section of the microbeam about

the neutral axis for l1 < s < l2
K Kinetic energy
L Length of the microbeam
l2 − l1 Length of the piezoelectric layer
M(s) Mass per unit length of the microbeam
Mn(x) Dimensionless mass per unit length of the system
P Distance between the neutral axis and the mid-plane of the microbeam for

l1 < s < l2
Q Electrostatic force
R1,R2 The positive roots of the characteristic equation governed by ϕs[i]
s Position along the length of the microbeam
Ti , i = 0,1,2 Time scales
t1 Thickness of the microbeam
t2 Thickness of the piezoelectric layer
U Potential energy
u(x, τ ) Dimensionless form of the dynamic deflection
V Longitudinal displacement
vac AC fluctuation voltage between the microbeam and the stationary

electrode
vdc DC polarization voltage between the microbeam and the stationary

electrode
vP DC voltage between the upper and lower surface of the piezoelectric layer
v1 Length of the microbeam
v2 Length of the piezoelectric layer
W Transverse displacement
w Dimensionless form of W

wc Width of the microbeam and the piezoelectric layer
ws Dimensionless static deflection
Xi , i = 1, . . . ,4 Coefficients of the solution equation ϕd[i]
x Dimensionless form of s

α Dimensionless measure of the axial load
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γ Dimensionless measure of the piezoelectric actuation
γP 1 Dimensionless measures of the axial load due to the piezoelectric effects
γP 2 Dimensionless measures of the bending moment due to the piezoelectric

effect
δ1i Kronecker delta
ε Small dimensionless bookkeeping parameter
εs Strain of the microbeam
ε0 Dielectric constant of the medium
η Dimensionless measure of the electrostatic actuation
κ Curvature bending of the microbeam in the sz plane
μ Damping coefficient of the viscoelastic microbeam
ρ1 Specific density of the microbeam
ρ2 Specific density of the piezoelectric layer
σ Detuning parameter
σ1 Axial stress of the microbeam
σ2 Axial stress of the piezoelectric layer
τ Dimensionless form of t

ϕ Mode shape of the system
φ(x) Normalized linear mode shape of the microbeam
χe

q ,χ
e
c Electrostatic nonlinear quadratic and cubic terms

χ
g
q ,χ

g
c Geometrical nonlinear quadratic and cubic terms

Ω̂ Electrostatic actuation frequency
ω Natural frequency of the system

1 Introduction

Batch fabrication, small size, low price, energy consumption, and high durability have
caused the MEMS devices to be widely used in the past two decades in many scientific
research fields such as biotechnological, aerospace, automotive, medical, signal processing,
robotic and manufacturing (Younis 2011; Senturia 2001). Among many elements which
are used as the basis of microstructures, microbeams have received great attention due to
their widespread applications (Ghayesh et al. 2013a, 2013b). The nature of these structures
introduces an evident coupling between electrical and mechanical behavior of the system
which is not ignorable. Due to the importance and wide application of microbeam-based
microstructures, many analytical/numerical analyses from various viewpoints, considering
various configurations of the microbeam with different load types, were performed, and
applicable results were extracted. For example, the static deflection and instability of the
nonlinear micro/nano cantilever beam with tip mass was studied by Mojahedi et al. (2010).
Using a homotopy perturbation method, they investigated the effects of van der Waals and
Casimir forces on the static deflection and pull-in instability of the system. In another study,
Ghayesh et al. (2013a, 2013b) employed the modified couple stress theory to investigate the
nonlinear size-dependent resonant behavior of an electrically actuated clamped–clamped
microbeam. They investigated the static and dynamic behavior of the system by means of
the pseudo-arc length continuation technique.

Other researchers considered other aspects of this basic structure such as nonlinear res-
onant behavior (Kim et al. 2012) and nonlinear dynamics (Kacem et al. 2011) of the mi-
crobeam resonator.
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One of the inherent phenomena which appear in these devices is the pull-in phenomenon.
In many applications such as resonators, it is necessary to work in the region far from the
pull-in instability. Piezoelectric materials are one of the best candidates to control the be-
havior of the microdevices. In recent years, the applications of the smart materials such
as piezoelectric materials have received serious attention. The piezoelectric materials are
light, they can be easily attached on the structure, are able to provide rapid response through
electromechanical coupling, and have high ability in reducing vibrations (Rezazadeh et al.
2009). So, the response analysis of the microsystems with the presence of the piezoelectric
material is of great interest.

A microbeam under piezoelectric actuation was studied by Rezazadeh et al. (2009). They
applied a voltage on the piezoelectric layers which were bonded on the surfaces of the
microbeam and calculated the critical piezoelectric force for avoiding of the instability in
the microcantilever beam and clamped–clamped microbeam. They validated the results by
known buckling capacity of the Beck column.

The nonlinear response of an inhomogenous piezoelectrically actuated microcantilever
beam was derived by Mahmoodi and Jalili (2007) using the multiple scale method. They
considered inextensibility conditions for the microbeam.

The nonlinear response of a microcantilever beam under electrostatic and piezoelectric
actuation was investigated by Chen et al. (2013). They considered the Euler–Bernoulli hy-
pothesis and used a developed periodicity-ratio (PR) approach to analyze the behavior of
the system. They considered the effects the of moment, shear, damping and axial forces in
equations.

In another work, a micro-switch as a microcantilever beam was investigated under com-
bination of electrostatic and piezoelectric actuation by Raeisifard et al. (2014). They consid-
ered nonlinearities due to inertia, curvature, electrostatic forces, and piezoelectric actuator.

Also, many other researches were performed by considering the influence of the piezo-
electric patch (Ghazavi et al. 2010; Hosseinzadeh and Ahamadian 2010; Rezazadeh et al.
2006; Zamanian and Khadem 2010).

In fact, the force required for a given deformation corresponds to the stiffness of the struc-
ture, and the natural frequency of vibration is a measure of the response time. Commonly,
increasing the stiffness reduced to decreasing the response time and vice versa. On the other
hand, vibration with high frequency (low response time) and large amplitude (low stiffness)
is one of the most favorable characteristics for MEMS applications (Senturia 2001). Among
many materials, composite materials have good and favorable characteristics and, among
them, CNT reinforced nanocomposite materials are the best with properties rivaling those
of other materials (Ashrafi et al. 2006), which is the consequence of small size and excep-
tional mechanical properties (Qian et al. 2002).

The static and dynamic responses of a viscoelastic microplate under combined electro-
static and piezoelectric actuations were studied by Fu and Zhang (2009). They considered
the standard solid model and von Karman’s plate theory for studying voltage control behav-
ior.

In another paper, Fu et al. (2009) investigated nonlinear dynamic stability for an elec-
trically actuated clamped–guided viscoelastic microbeam. Considering the standard linear
solid model, the Euler–Bernoulli hypothesis and the Galerkin method, they investigated the
effect of the environmental and inner damping, geometric nonlinear creep quantity and the
symmetric electrostatic load on the principal region of instability.

The deflection, natural frequency and damping quality factor of a viscoelastic microplate
under an electrostatic actuation were investigated by Jalali and Khadem (2010). They as-
sumed a CNT-reinforced nanocomposite microplate, with electrostatic actuation applied on
it and obtained static pull-in instability of the microplate.
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Fig. 1 Schematic of an electrostatically actuated microbeam with piezoelectric layer

Also, the response of a resonant viscoelestic clamped–clamped microbeam under electric
actuation was studied by Zamanian et al. (2010). Considering mid-plane stretching, they
solved a nonlinear dynamic equation using multiple scale and Galerkin methods.

Nonlinear free vibrations of viscoelastic microcantilevers with a piezoelectric actuator
layer were investigated by Shooshtari et al. (2012). In this study, the microcantilever com-
plies with the Euler–Bernoulli beam theory and Kelvin–Voigt model. Then, the Galerkin
approximation is utilized for separation of time and displacement variables, and finally, us-
ing the method of multiple scales, the analytical relations for nonlinear natural frequency
and amplitude of the vibration are derived.

The viscoelastic materials have almost high damping characteristics which make these
materials an inappropriate choice for some applications.

In this paper, a geometrically nonlinear microbeam is considered taking into account
the simultaneous viscous, electrostatic and piezoelectric effects, and the influence of the
viscoelastic damping on the nonlinear forced response of the system as well as other pa-
rameters is studied. For this purpose, the system is considered as a clamped–clamped CNT
reinforced microbeam under combination of electrostatic and piezoelectric actuations. In
this study, the nonlinear Euler–Bernoulli beam theory and Kelvin–Voigt viscoelastic model
are implemented, and the effect of mid-plane stretching is considered. The material prop-
erties of the viscoelastic material are derived by using the Eshelby–Mori–Tanaka method
(Chen and Cheng 1996). The equations of motion are extracted using Hamilton’s energy
principle and then these equations are solved by using the directly applied multiple scale
perturbation method and Galerkin procedure. Finally, the influence of the damping on the
nonlinear response of the system is investigated.

2 Mathematical modeling

As shown in Fig. 1, in this paper a clamped–clamped uniform microbeam with constant ge-
ometrical and material properties is considered, in which L is the length, and wc is the width
of the microbeam. The microbeam is simultaneously under a combination of electrostatic
and piezoelectric actuation. Electrostatic actuation is defined by vdc + vac cos(Ω̂t), where
vdc is the DC polarization voltage, vac is the amplitude of the applied AC voltage, and Ω̂ is
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Fig. 2 (a) Original cross-section
of microbeam and piezoelectric,
(b) equivalent cross-section of
part (a)

the actuation frequency. Also, piezoelectric actuation is expressed as vP , a DC voltage, that
is applied to upper and lower sides of the piezoelectric layer. Compared with the length of
the microbeam, it is assumed that the air gap is very small.

Also, it is assumed that the microbeam follows the Euler–Bernoulli beam theory in which
rotary inertia and shear deformation are traditionally neglected. Hamilton’s principle is used
to derive the governing equation of motion of the system. So, the kinetic energy of the
system can be calculated as

K = 1

2

∫ L

0
M(s)

(
V̇ 2 + Ẇ 2

)
ds (1)

where s is the position along the length of the microbeam and M(s) is mass per unit length
of the microbeam which can be obtained as

M(s) = wcρ1t1 + (Hl1 − Hl2)wcρ2t2 (2)

where ρ1 and ρ2 are the specific densities of the microbeam and piezoelectric layer, respec-
tively, wc is the width of microbeam and the piezoelectric layer, and t1 and t2 are the thick-
nesses of the microbeam and the piezoelectric layer, respectively. In order to add the mass
of the piezoelectric layer to the microbeam, a Heaviside function is used that is represented
by Hli and expressed as follows:

Hli = Heaviside function (s − li ) =
{

1, s > li,

0, s < li .
(3)

As the piezoelectric layer is attached just to the part of the microbeam length, the neutral
axis changes for each section of the microbeam. For s < l1 and s > l2 where the piezoelectric
layer does not exist, the neutral axis is the same as the geometric center of the microbeam’s
cross-section. But for l1 < s < l2, where the piezoelectric layer exists, the neutral axis is
a distance P from the center of the microbeam. According to Timoshenko (1940), by in-
troducing n = E1

E2
, where E1 and E2 are the Young’s moduli of the microbeam and the

piezoelectric layer, respectively, and, by considering Fig. 2, one can obtain

P
∑

i

Ai =
∑

i

YiAi, i = 1,2 (4)

where Ai and Yi are the cross-section and neutral axis of each layer, respectively. So, P is
defined as

P (t1nwc + t2wc) =
(

t1

2

)
t1nwc +

(
t2

2
+ t1

)
t2wc =⇒

P = (
t1
2 )t1n + (

t2
2 + t1)t2

t1n + t2
.

(5)
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Fig. 3 A segment on the
microbeam before and after
deformation in fixed and local
coordinate systems

And so

P = E2t2(t1 + t2)

2(E1t1 + E2t2)
. (6)

Because of the viscoelastic characteristics of the microbeam, a classical linear viscoelastic
model, i.e., Kelvin–Voigt model is implemented:

σ1 = E1εs + Ĉε̇s (7)

where σ1 is the axial stress of the microbeam, εs is the strain, and Ĉ is the viscoelastic
damping coefficient. Also, the stress–strain relationship for one directional piezoelectric
material can be written as (Preumont 1997)

σ2 = E2εs − E2d31
vP

t2
(8)

where σ2 is the axial stress of the piezoelectric layer and d31 is the piezoelectric strain
constant that usually is negative.

Based on the nonlinear Euler–Bernoulli beam theory, the strain of the microbeam can be
written in the form of (Nayfeh and Pai 2004)

εs = e − kP (9)

where e is the axial strain and k is the curvature bending of the microbeam in the sz plane.
In order to facilitate the use of numerical or analytical methods, the Taylor series expansion
is used (Nayfeh and Pai 2004):

e =
√(

1 + V ′)2 + W ′2 − 1 = V ′ + 1

2
W ′2 − 1

2
V ′W ′2 + · · · ,

k = θ ′ =
(

W ′ − V ′W ′ + V ′2W ′ − 1

3
W ′3

)′ (10)

in which V and W are the mid-plane displacement of the microbeam in the x and y direction,
respectively (Fig. 3).

Also the total potential energy of the system may be obtained as

U =
∫ v

0

∫ ε

0
σ1 dε dv1 +

∫ v

0

∫ ε

0
σ2 dε dv2 (11)
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where v1 and v2 are the length of microbeam and piezoelectric layers, respectively. Expand-
ing Eq. (11) reduces to

V = (1 − Hl1)

∫ L

0

∫ t1
2

− t1
2

∫ ε

0
σ1wc dε dz ds + (Hl1 − Hl2)

∫ L

0

∫ t1
2 −P

− t1
2 −P

∫ ε

0
σ1wc dε dz ds

+ (Hl1 − Hl2)

∫ L

0

∫ t1
2 −P+t2

− t1
2 −P

∫ ε

0
σ2wc dε dz ds + Hl2

∫ L

0

∫ t1
2

− t1
2

∫ ε

0
σ1wc dε dz ds.

(12)

Substituting Eqs. (7), (8) and (9) into Eq. (12) and considering Eq. (6), the potential energy
of the system may be expressed as

V = 1

2

∫ L

0
B1(s)e

2 ds −
∫ L

0
B2(s)vP e ds + 1

2

∫ L

0
B3(s)k

2 ds −
∫ L

0
B4(s)vP k ds

+
∫ L

0
B5(s)eė ds +

∫ L

0
B6(s)kk̇ ds. (13)

Furthermore, the external force of the system which is due to the electrostatic actuation can
be written as

F =
∫ L

0
Qw ds (14)

where Q is the electrostatic force expressed as follows:

Q = −1

2
ε0wc

(vdc + vac cos(Ω̂t))2

(h + W)2
(15)

where ε0 is dielectric constant of the medium and h is the capacitor gap. Also, in this equa-
tion the fringing field effect of the electric field is neglected. According to Hamilton’s prin-
ciple, we have

∫ t2

t1

(δK − δU + δF ) = 0. (16)

Substituting Eqs. (1), (13) and (15) into Eq. (16), the equations of motion, neglecting terms
over the third order nonlinearities, are obtained as

M(s)V̈ − (
B1(s)V

′)′ − (
B5(s)V̇

′)′

=
(

B1(s)

[
1

2
W ′2 − V ′W ′2

])′
−

(
B2(s)vP

[
1 − 1

2
W ′2 + V ′W ′2

])′

+ (
W ′(B3(s)

[
W ′ − V ′W ′]′)′ − 2V ′W ′(B3(s)W

′′)′)′

+ (
B ′

4(s)vP

[
W ′ + 2V ′2W ′ − 2V ′W ′ − W ′3 − V ′3W ′])′

+ (
B5(s)

[
W ′Ẇ ′ − V̇ ′W ′2 − V ′W ′Ẇ ′])′ + (

W ′(B6(s)
[
Ẇ ′ − V̇ ′W ′ − V̇ ′Ẇ ′]′)′

− 2V ′W ′(B6(s)Ẇ
′′)′)′

(17)
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and

(
B3(s)W

′′)′′ + M(s)Ẅ + (
B6(s)Ẇ

′′)′′

=
(

B1(s)

[
V ′W ′ + 1

2
W ′3 − W ′V ′2

])′

+ B5(s)
(
W ′2Ẇ ′ + V̇ ′W ′ − V̇ ′W ′V ′) +

((
B3(s)

(
W ′V ′)′)′(

1 − V ′)

+ (
W ′2 + V ′ − V ′2)(B3(s)W

′′)′ −
(

B3(s)

[
V ′2W ′ − 1

3
W ′3

]′)′)′

− (
B2(s)vP

(
W ′ − W ′V ′))′ − ((

B ′
4(s)vP

(
1 − V ′ − W ′2 − 3V ′W ′2))′

+ (
B6(s)

[
V ′Ẇ + V̇ ′W ′]′)′(

1 − V ′) + (
B3(s)Ẇ

′′)′[
V ′ − V ′2 + W ′2]

− (
B3(s)

[
V ′2Ẇ ′ + 2V ′V̇ ′W ′ − W ′2Ẇ ′]′)′)′ − 1

2
ε0wc

(vdc + vac cos(Ω̂t))2

(h + W)2

(18)

where

B1(s) = (1 − Hl1)E1A1 + (Hl1 − Hl2)(E1A1 + E2A2) + Hl2E1A1,

B2(s) = (Hl1 − Hl2)
E2A2d31

t2
,

B3(s) = (1 − Hl1)E1I1 + (Hl1 − Hl2)(E1I3 + E2I2) + Hl2E1I1,

B4(s) = (Hl1 − Hl2)
E2A3d31

t2
,

B5(s) = (1 − Hl1)C̄I1 + (Hl1 − Hl2)C̄I3 + Hl2E1C̄I1,

B6(s) = C̄A1,

A1 = wct1, A2 = wct2, A3 = wc

2

(
t1t2 + t2

2 − 2t2P
)
,

I1 = wc

12
t3
1 , I3 = wc

12
t3
1 + t1wcP

2,

I2 = wc

((
1

3
t3
2

)
+

(
1

2
t1t

2
2

)
+

(
1

4
t2t

2
1

)
+ t2P

2 − (
t2
2 + t1t2

)
P

)
.

(19)

For a slender beam, the longitudinal inertia in Eq. (17) may be negligible (Zamanian and
Khadem 2008). Also based on the SI system of units, by considering the order of magnitude
of the microbeam and piezoelectric thickness and the order of magnitude of the piezoelec-
tric constant, according to Zamanian and Khadem (2008), B3(s) and B4(s) can be ignored
when compared to B1(s) and B2(s). Also damping is negligible compared to stiffness in the
longitudinal direction. To facilitate the extraction of the equation of motion, terms above the
third order nonlinearities are ignored. By applying the above mentioned simplifications in
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(17), one can obtain

(
V ′B1(s) + 1

2
W ′2B1(s)

)′
− B ′

3(s)vP = 0. (20)

Integrating Eq. (20) yields the following equation:

V ′ = −1

2
W ′2 + B3(s)

B1(s)
vP + Bc(t)

B1(s)
. (21)

Equation (21) shows that the axial deformation is of the same order as of the quadratic
transversal deformation, which means O(V ) = O(W 2).

Also Bc(t) is the constant of integration that can be determined using the longitudinal
boundary conditions:

v(0) = 0, V (L) = f̂ . (22)

So Bc(t) becomes

Bc(t) = f̂ + 1
2

∫ L

0 W ′2 dx − E2d31A2
t2(E1A1+E2A2)

vP (l2 − l1)

l1
E1A1

+ l2−l1
E1A1+E2A2

+ L−l1
E1A1

. (23)

Substituting V ′ from Eq. (21) into (18) by considering the mentioned simplifications, recall-
ing that O(V ) = O(W 2), and keeping the terms up to cubic nonlinearities, the equation of
transverse vibration of the microbeam is obtained as

(
B3(s)W

′′)′′ + (
B6(s)Ẇ

′′)′′ + M(s)Ẅ

− B5(s)

(
W ′ ∫ L

0 W ′Ẇ ′ds

B1(s)(
l1

E1A1
+ l2−l1

E1A1+E2A2
+ L−l1

E1A1
)

)

+
(

f̂ + 1
2

∫ L

0 W ′2 dx − E2d31A2
t2(E1A1+E2A2)

vP (l2 − l1)

l1
E1A1

+ l2−l1
E1A1+E2A2

+ L−l1
E1A1

W ′
)

= 1

2
ε0wc

(vdc + vac cos(Ω̂t))2

(h + W)2
. (24)

It is easier to study and analyze the dimensionless form of this equation. So the nonlinear
equation of motion can be rewritten in the dimensionless form as

∂2(Hn1(x) d2w

dx2 )

∂x2
+ Mn(x)

d2w

dx2
+ C

∂3

∂x2∂τ

(
Hn2(x)

d2w

dx2

)

− (
βΓ (ws,ws) + α − γP 1vP

)d2w

dx2
− 2βCΓ

(
∂w

∂τ
,w

)
∂

∂x

(
Hn3(x)

∂w

∂x

)

= η(vdc + vac cos(Ω̂τ ))2

(1 − w)2
− γP 2vP

(
d2Hl1/L

dx2
− d2Hl2/L

dx2

)
,

w|x=0 = 0,
∂w

∂x

∣∣∣∣
x=0

= 0, w|x=1 = 0,
∂w

∂x

∣∣∣∣
x=1

= 0.

(25)
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Equation (25) is a dimensionless integral-partial-differential equation with linear and non-
linear terms. The dimensionless variables appearing in Eq. (25) are:

w = −W

h
, x = s

L
, τ = t

T
, T =

√
ρ1t1wcL4

E1I1
. (26)

The parameters in the above equation are defined as follows:

Γ (a, b) =
∫ L

0

∂a

∂x

∂b

∂x
dx,

Mn(x) = 1 + ρ2t2

ρ1t1
(Hl1/L − Hl2/L),

Hn1(x) = (1 − Hl1/L) +
(

Ī1

I1
+ E2I2

E1I1

)
(Hl1/L − Hl2/L) + Hl2/L,

Hn2(x) = (1 − Hl1/L) + Ī1

I1
(Hl1/L − Hl2/L) + Hl2/L,

Hn3(x) = (1 − Hl1/L) + E1A1

E1A1 + E2A2
(Hl1/L − Hl2/L) + Hl2/L,

α = α1

( 1 + E2t2
E1t1

(1 + E2t2
E1t1

)(1 − l2−l1
L

) + l2−l1
L

)
, α1 = f̂ A1L

I1
, Ω = Ω̂T ,

β = β1

( 1 + E2t2
E1t1

(1 + E2t2
E1t1

)(1 − l2−l1
L

) + l2−l1
L

)
, β1 = 6

(
h

t1

)2

,

η = 6ε0L
4

E1t
3
1 h3

, C = ĈE1

T
,

γP 1 = γ1

( 6(
l2−l1

L
)

E2
E1

(1 + E2t2
E1t1

)(1 − l2−l1
L

) + l2−l1
L

)
, γ1 = 2L2d31vP

t3
1

,

γP 2 = γ2

(
E2t2

E1t1
+ E2

E1
− (

E2
E1

)2 t2
t1
(1 + t2

t1
)

1 + E2t2
E1t1

)
, γ2 = 3γ1

√
6

α1
;

(27)

α, β , η, C, γP 1, and γP 2 are dimensionless parameters, which represent the axial load, mid-
plane stretching, the electrostatic force, damping, piezoelectric axial force, and piezoelectric
bending moment, respectively.

3 Governing equation of the static response

In order to extract the equation of the static response of the microbeam, terms with time
derivatives, including inertia, damping, and variable forcing, have been assumed to be zero
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in Eq. (25). So, one obtains

∂2(Hn1(x) d2ws

dx2 )

∂x2
− (

βΓ (ws,ws) + α − γP 1vP

)d2ws

dx2

= ηv2
dc

(1 − ws)2
+ γP 2vP

(
d2Hl1/L

dx2
− d2Hl2/L

dx2

)
,

ws |x=0 = 0,
∂ws

∂x

∣∣∣∣
x=0

= 0, ws |x=1 = 0,
∂ws

∂x

∣∣∣∣
x=1

= 0.

(28)

4 Governing equation of the dynamic response

For electrostatic actuation, first, the microbeam is deflected due to a DC voltage vdc which
is defined by ws(x) and then, the dynamic forced response of the system appears about
this static equilibrium position which is defined by u(x, t). So the total deflection of the
microbeam consists of two parts as follows:

w(x, t) = ws(x) + u(x, τ ). (29)

Using Eq. (29) in Eq. (25), eliminating the static deflection terms represented by (28), and
expanding the electrical term about the static position, the dynamic equation of motion of
the microbeam is obtained:

∂2(Hn1(x) ∂2u

∂x2 )

∂x2
+ Mn(x)

∂2u

∂τ 2

= (
βΓ (ws,ws) + α − γP 1vP

)∂2u

∂x2

+ 2βΓ (ws,u)
d2ws

dx2
+ βΓ (u,u)

d2ws

dx2
+ 2βΓ (ws,u)

∂2u

∂x2
+ βΓ (u,u)

∂2u

∂x2

+ 2ηv2
dc

(1 − ws)3
u + 3ηv2

dc

(1 − ws)4
u2 + 4ηv2

dc

(1 − ws)5
u3,

u|x=0 = 0,
∂u

∂x

∣∣∣∣
x=0

= 0, u|x=1 = 0,
∂u

∂x

∣∣∣∣
x=1

= 0.

(30)

4.1 Linear eigenvalue problem

Eliminating nonlinear, damping and forcing terms from Eq. (30) and taking u = ϕ(x)eiωτ ,
the equation of the linear eigenvalue problem will be:

d2

dx2

(
H1n(x)

d2ϕ

dx2

)
− (

βΓ (ws,ws) + α − γP 1vP

)d2ϕ

dx2
− 2βΓ (ws,ϕ)

d2ws

dx2

−
(

2ηv2
dc

(1 − ws)3

)
ϕ = 0,

ϕ|x=0 = 0,
∂ϕ

∂x

∣∣∣∣
x=0

= 0, ϕ|x=1 = 0,
∂ϕ

∂x

∣∣∣∣
x=1

= 0

(31)
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where ϕ(x) is the linear mode shape and ω is the natural frequency of the microbeam about
its static deflection.

5 Static response of the system

In order to solve Eq. (28), the Galerkin method is implemented. So, ws can be approximated
as

ws =
n∑

i=1

Rs[i]ϕs[i] (32)

where Rs[i] are unknown constants that would be obtained by applying the Galerkin method
and ϕs[i] is the ith undamped mode shape of a simple microbeam which is defined by:

d4ϕs[i]
dx4

− (α − γP 1vP )
d2ϕs[i]
dx2

− (Ω[i])2ϕs[i] = 0, i = 1,2,3, . . . ,

dϕs[i]
dx

∣∣∣∣
x=0

= 0, ϕs[i]|x=0 = 0,
dϕs[i]
dx

∣∣∣∣
x=1

= 0, ϕs[i]|x=1 = 0.

(33)

One can easily observe that Eq. (33) is the eigenvalue problem of a simple microbeam under
axial loading (α − γP 1vP ), ϕs[i] is the ith mode shape, and Ω[i] is the ith natural frequency
of the system. This equation is a linear differential equation with constant coefficients. The
characteristic equation for Eq. (33) can be obtained as

g4 − (α − γP 1vP )g2 − (Ω[i])2 = 0. (34)

This equation has two complex conjugate roots:

g1 = 1

4

√
(α − γP 1vP ) +

√
(α − γP 1vP )2 + 4(Ω[i])2,

g2 = 1

4

√
−(α − γP 1vP ) +

√
(α − γP 1vP )2 + 4(Ω[i])2i

(35)

where g1, g2 are the positive roots. The solution of Eq. (34) is expressed as:

ϕs[i] = C1 cosh(g1x) + C2 sinh(g1x) + C3 sin(grx) + C4 cos(grx) (36)

where C1, C2, C3 and C4 are the coefficients that are obtained using boundary conditions.
Also gr is the real part of g2.

Using Eq. (36) in (31), multiplying the resulting equation by ϕs[m] and integrating the out-
come from x = 0 to x = 1, a system of algebraic equations with variables Rs[i] is obtained.
Then, the coefficients Rs[i] are calculated using numerical methods.

6 Natural frequencies of the system

In order to obtain the natural frequency of vibration for the deflected microbeam about its
static position, the Galerkin method is used. So, it is assumed that

ϕ =
M∑
i=1

Rd[i]ϕd[i] (37)
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where ϕd[i] is a comparison function that satisfies all boundary conditions. Considering
some simplifications, the following equation with spring coefficient 2ηv2

dc and axial load
(βΓ (ws,ws) + α − γP 1vP ) is used for obtaining comparison functions:

d4ϕd[i]
dx4

− (
βΓ (ws,ws) + α − γP 1vP

)d2ϕd[i]
dx2

− (
2ηv2

dc + Ω2
1[i]

)
ϕd[i] = 0,

ϕd[i]|x=0 = 0,
dϕd[i]
dx

∣∣∣∣
x=0

= 0, ϕd[i]|x=1 = 0,
dϕd[i]
dx

∣∣∣∣
x=1

= 0.
(38)

The characteristic equation of Eq. (38) can be considered as

R4 − (
βΓ (ws,ws) + α − γP 1vP

)
R2 − (

2ηv2
dc + Ω2

1[i]
) = 0. (39)

Equation (39) has four roots in which R1 and R2 are the positive roots:

R1 = 1

4

√√√√(
βΓ (ws,ws) + α − γP 1vP

) +
√(

βΓ (ws,ws) + α − γP 1vP

)2

+ 4
(
Ω2

1[i] + 2ηv2
dc

) ,

R2 = 1

4

√√√√−(
βΓ (ws,ws) + α − γP 1vP

) +
√(

βΓ (ws,ws) + α − γP 1vP

)2

+ 4
(
Ω2

1[i] + 2ηv2
dc

) i.

(40)

So, the solution of Eq. (38) is expressed as

ϕd[i] = X1 cosh(R1x) + X2 sinh(R1x) + X3 sin(Rrx) + X4 cos(Rrx) (41)

where X1,X2,X3 and X4 are the coefficients that are obtained by applying the boundary
conditions. Also Rr is the real part of R2. Now, by using Eq. (41) in Eq. (37), multiplying
the outcome by ϕd[m] and integrating the result over the microbeam length from 0 to 1, Rd[i]
is obtained:

∫ L

0

M∑
i=1

Rd[i](1 − ws)
3 d2

dx2

(
Hn1(x)

d2ϕ1[i]
dx2

)
ϕd[m] dx

−
∫ L

0

M∑
i=1

Rd[i](1 − ws)
3
(
βΓ (ws,ws) + α − γP 1vP

)d2ϕ1[i]
dx2

ϕd[m] dx

− 2β

∫ L

0

M∑
i=1

Rd[i]Γ (ϕ1[i],ws)ϕd[m]
d2ws

dx2
(1 − ws)

3 dx

− ω2
∫ L

0

M∑
i=1

Rd[i]M(x)(1 − ws)
3ϕ1[i]ϕd[m] dx − 2ηv2

dc

∫ L

0

M∑
i=1

Rd[i]ϕ1[i]ϕd[m] dx = 0.

(42)

By equating the determinant of the coefficients matrix to zero, the linear natural frequencies
of the system can be obtained.
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7 Primary resonance

In this section, the dynamic response of the system to the primary resonance excitation is
investigated using the multiple scale method. First, a bookkeeping parameter ε is introduced
to show the weakness of the nonlinear terms and fast and slow time scales T0 = τ , T1 = ετ

and T2 = ε2τ . Hence, the temporal operators can be expanded as:

∂

∂t
= D0 + εD1 + ε2D2 + O

(
ε3

)
,

∂2

∂t2
= D2

0 + 2εD0D1 + ε2D2
1 + 2ε2D0D2 + O

(
ε3

)
.

(43)

Also, u(x, τ ) can be written as a third expansion in the form of

u(x, τ ) = εu1(x, T0, T1, T2) + ε2u2(x, T0, T1, T2) + ε3u3(x, T0, T1, T2). (44)

In order to balance the effect of nonlinearity, damping and forcing terms, C and vAc are
replaced with ε2C and ε3vAc, respectively. Equating the coefficients of the same powers of
ε leads to the following set of linear partial differential equations:

(Order ε1)

L(u1) = Mn(x)
∂2u1

∂T 2
0

+ ∂2

∂x2

(
Hn1(x)

∂2u1

∂x2

)
− (

βΓ (ws,ws) + α − γP 1vP

)∂2u1

∂x2

− 2βΓ (ws,u1)
d2ws

dx2
− 2ηv2

dc

(1 − ws)3
u1 = 0; (45)

(Order ε2)

L(u2) = βΓ (u1, u1)
d2ws

dx2
+ 2βΓ (ws,u1)

d2u1

dx2
+ 3ηv2

dc

(1 − ws)4
u2

1 − 2Mn(x)
∂2u1

∂T0∂T1
;
(46)

(Order ε3)

L(u3) = −2Mn(x)
∂2u2

∂T0∂T1
∂T − Mn(x)

(
∂2u1

∂T 2
1

+ 2
∂2u1

∂T0∂T2

)

− C
∂3

∂x2∂T0

(
Hn2(x)

∂2u1

∂x2

)
+ 2βCΓ

(
∂u1

∂T0
,ws

)
∂

∂x

(
Hn3(x)

dws

dx

)

+ 2βΓ (u1, u2)
d2ws

dx2
+ 2βΓ (ws,u2)

∂2u1

∂x2
+ 2βΓ (ws,u1)

∂2u2

∂x2

+ βΓ (u1, u1)
∂2u1

∂x2
+ 6ηv2

dc

(1 − ws)4
u1u2 + 4ηv2

dc

(1 − ws)5
u3

1

+ 2ηvdcvac cos(ΩT0)

(1 − ws)4
. (47)
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The solution of Eq. (45) is

u1(T0, T1, T2) = A(T1, T2)e
iωT0φ(x) + Ā(T1, T2)e

−iωT0φ(x) (48)

where A and Ā are the complex amplitudes and their conjugates, respectively, that will
be determined by applying the solvability condition at third order. The eigenfunction φ(x)

describes normalized mode shapes so that
∫ 1

0 φ2(x) dx = 1.
By substituting Eq. (48) into Eq. (46),

L(u2) = (
A2e2iωT0 + 2AĀ + Ā2e−2iωT0

)
h(x) − 2Mn(x)ωi

(
∂A(T1, T2)

∂T1
eiωT0

− ∂Ā(T1, T2)

∂T1
e−iωT0

)
(49)

where

h(x) = βΓ (φ,φ)
d2ws

dx2
+ 2βΓ (ws,φ)

d2φ

dx2
+ 3ηv2

dc

(1 − ws)4
φ2. (50)

The particular solution of Eq. (49) may be expressed as

u2(T0, T2) = ψ1(x)A2e2iωT0 + 2ψ2(x)AĀ + ψ1(x)Ā2e−2iωT0 (51)

where ψ1(x) and ψ2(x) are the solutions of the boundary value problem,

d2

dx2

(
Hn1(x)

d2ψi

dx2

)
− 4ω2δ1iMn(x)ψ1 − (

βΓ (ws,ws) + α − γP 1vP

)d2ψi(x)

dx2

− 2βΓ (ws,ψi)
d2ws

dx2
− 2ηv2

dc

(1 − ws)3
ψi = h(x),

ψi |x=0 = 0,
∂ψi

∂x

∣∣∣∣
x=0

= 0, ψi |x=1 = 0,
∂ψi

∂x

∣∣∣∣
x=1

= 0.

(52)

In Eq. (52), δ1i is the Kronecker delta. Implementing Galerkin method and using the linear
symmetric mode shapes of the deflected microbeam about its static position as comparison
functions, the solution of Eq. (52) can be obtained.

Substituting Eqs. (48) and (51) into Eq. (47), replacing Ω by ω + ε2σ , where σ is a de-
tuning parameter to express the nearness of the excitation frequency to the natural frequency,
yields

L(u3) =
[
−2ωi

dA

dT2
Mn(x)φ(x) − iωACχυ + χ(x)A2Ā + F̄ (x)eiσT2

]
eiωT0 + c.c.

+ N.S.T. (53)

where c.c. indicates complex conjugate of the preceding terms and N.S.T . means the other
terms that do not produce secular terms. Also

χυ = C
d2

dx2

(
Hn2(x)

d2φ

dx2

)
− 2βCΓ (φ,ws)

d

dx

(
Hn3(x)

dws

dx

)
,

F̄ (x) = ηvdcvac

(1 − ws)2
.

(54)
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The function χ(x) is defined as

χ(x) = χg
q + χg

c + χe
q + χe

c (55)

where χ
g
q and χ

g
c are the quadratic and cubic geometric nonlinear terms and χe

q and χe
c are

the quadratic and cubic electric nonlinear terms, respectively, which are defined as:

χg
q = (

2α1Γ (ψ1, φ) + 4α1Γ (ψ2, φ)
)d2ws

dx2
+

(
2α1

d2ψ1

dx2
+ 4α1

d2ψ2

dx2

)
Γ (ws,φ)

+ (
2α1Γ (ψ1,ws) + 4α1Γ (ψ2,ws)

)d2φ

dx2
,

χe
q = 6ηv2

dc

(1 − ws)4
(2φψ2 + φψ1),

χg
c = 3βΓ (φ,φ)

d2φ

dx2
,

χe
c = 12ηv2

dc

(1 − ws)5
φ3.

(56)

The left-hand side of Eq. (53) is self-adjoint. So, the inhomogeneous equation (53) has a
solution if the right-hand side of this equation is orthogonal to every solution of the corre-
sponding homogeneous self-adjoint equation, that is, φ(x)eiωT0 . So, the solvability condi-
tion would be obtained by multiplying the right-hand side of inhomogenous equation (53)
to φ(x)eiωT0 and then, integrating the outcome from x = 0 to x = 1 as

2iω

(
M̄

dA

dT2
+ μA

2

)
+ 8SA2Ā − FeiσT2 = 0 (57)

where

S = Sg
q + Sg

c + Se
q + Se

c ,

Sg
q = −1

8

∫ L

0
χg

q φ dx,

Sg
c = −1

8

∫ L

0
χg

c φ dx,

Se
q = −1

8

∫ L

0
χe

qφ dx,

Se
c = −1

8

∫ L

0
χe

c φ dx,

μ = C

∫ L

0
χυφ dx,

M̄ =
∫ L

0
Mn(x)φ2 dx,

F =
∫ L

0
F̄ φ dx =

∫ L

0

ηvdcvac

(1 − ws)2
φ dx.

(58)
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Expressing A in polar form gives

A = 1

2
aeiϑ (59)

where a and ϑ are amplitude and phase angle of the response, respectively. Considering
ϑ = σT2 − θ̂ and substituting Eq. (59) into (57), and splitting into real and imaginary parts,
the following equations are obtained:

M̄
da

dT2
= −μ

2
a + F

ω
sin θ̂ ,

M̄
dθ̂

dT2
= σM̄ − Sa2

ω
+ F

aω
cos θ̂ .

(60)

The point where da
dT2

= 0 and dθ̂
dT2

= 0 corresponds to a singular point of the system and
shows its steady-state motion. So, in the steady-state condition this equilibrium criterion
can be written as

a2
0

((
μ

2

)2

+
(

σM̄ − Sa2
0

ω

)2)
= F 2

ω2
. (61)

Equation (61) shows that the amplitude a0 is maximum when term (σM̄ − Sa2
0

ω
)2 is equal to

zero, and so

σ = Sa2
0

ωM̄
. (62)

As a result, the maximum a0 will be

a0 = 2F

ωμ
. (63)

Finally, the nonlinear resonance frequency is obtained as

Ω = ω + 4SF 2

M̄ω3μ2
. (64)

At last, solving Eq. (61) for σ yields

σ = ± 1

a0

√(
F 2

ω2
− μ2a2

0

)
+ Sa2

0

ω
. (65)

8 Results and discussion

Numerical values which are used in the analysis are listed in Table 1. Also dimensionless val-
ues, in accordance to Table 1, are shown in Table 2. It is necessary to note that in this paper a
(10, 10) SWNT was selected as a reinforcement and polymethyl methacrylate (PMMA) was
used as a matrix material because of its good variable-climate-resisting property. The elas-
tic modulus of CNT/PMMA nanocomposite was estimated by the Eshelby–Mori–Tanaka
method (Chen and Cheng 1996).
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Table 1 Geometrical and material properties of the microbeam and piezoelectric layer

Microbeam Piezoelectric layer

Length 200 µm 200 µm

Width 20 µm 20 µm

Thickness 1.5 µm 0.15 µm

Young’s modulus 166 GPa 78.6 GPa

Mass density 2331 kg m−3 7500 kg m−3

Piezoelectric coefficient – −9.29 C m−2

Initial gap 1.18 µm –

Damping coefficient 0.001 Ns/m2 –

Table 2 Values of parameters

β1 γ1 t2 α1 η l2 − l1 vac

3.7 −2 0.1t1 8.7 2.95 L 0.02

Fig. 4 Variations of static
deflection with respect to x for
l2 − l1 = L

For 28 % volume fraction of aligned (10, 10) SWNT fibers, and the aspect ratio of
fibers greater than 1000, the elastic modulus of SWNT/PMMA nanocomposite is obtained
as 166 GPa.

Neglecting the viscoelastic effects of the structure, the results of this work are compared
with those of Zamanian and Khadem (2008, 2010) for the static deflection and frequency
response, respectively, and good agreement between the results is obtained. They are shown
in Figs. 5 and 16.

Figure 4 shows the variation of the static deflection of the microbeam with respect to
polarization voltage. It is shown that, considering the boundary condition of the system, the
maximum static response occurred in the center of the microbeam and it increased as vdc

increased.
Figure 5 shows the variation of the static deflection with electrostatic voltage, for this

work and that of Zamanian and Khadem (2008), and represents a good agreement. In this
comparison, it is considered that the piezoelectric layer covered 0.8 length of the microbeam
and that the viscoelastic effect of the microbeam is eliminated.
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Fig. 5 Comparison of the effect
of ηv2

dc on the central static
deflection for this work and that
of Zamanian and Khadem (2008)

Fig. 6 Effect of ηv2
dc on the

central static deflection
microbeam for different
piezoelectric layer length

Figure 6 shows the variation of the static response with different lengths of the piezo-
electric patch. It is necessary to note that in the corresponding equation, the effects of the
nonlinear geometrical, electrostatic and piezoelectric terms have been considered. It is ob-
served that for a constant piezoelectric length, the static deflection is increased as the elec-
trostatic voltage is increased. By increasing the length of the piezoelectric layer from 0 to
0.5L, for a constant value of ηv2

dc, the static deflection is increased and, from 0.5L to L,
it is decreased. Because of the piezoelectric layer effects in Eq. (28), static behavior of the
microbeam changes for different length of the piezoelectric layer.

Considering Eq. (27), by increasing the length of the piezoelectric layer, γP 1vP increases.
Also Eq. (28) illustrates that the term γP 2vP for l2 − l1 = L and l2 − l1 = 0 goes to zero.
So, decreasing the piezoelectric length causes the system stiffness to decrease and the mi-
crobeam deflection to increase. As a result, for the electrostatic voltage far from pull-in
voltage, by decreasing the length of the piezoelectric layer from L to 0.5L, the static de-
flection is increased. Also it is shown that the pull-in voltage for different length of the
piezoelectric layer is varied, but, this phenomenon occurs for the deflection about ws ≈ 0.4.
Also, it is shown that for the microbeam without a piezoelectric layer, due to lower stiffness
of the system, the microbeam response became unstable for lower electrostatic voltage and
so, pull-in occurred sooner.
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Fig. 7 Effect of ηv2
dc on the

central static deflection
microbeam for different γ1

Fig. 8 Effect of ηv2
dc on the

central static deflection
microbeam for different β1

Figure 7 shows the maximum static deflection of the microbeam for different values
of γ1. Increasing the piezoelectric voltage causes the static deflection to increase and the
pull-in voltage to decrease. Also, it is shown that the static deflection has a nonzero value
for ηv2

dc = 0, and is increased as the absolute value of γ1 is increased.
In Fig. 8, the maximum static deflection of the microbeam for different values of β1

is investigated. It is shown that by increasing β1 the static deflection of the microbeam is
decreased. As β1 increased, the stiffness of the system also increased due to increasing the
mid-plane stretching and so, the static deflection is decreased. Also it is observed that a
lower β1 leads to the sooner pull-in instability.

Figure 9 shows the effect of γ1 on the static deflection of the microbeam for l2 − l1 =
0.5L. It is shown that by increasing the absolute value of γ1, which means the increase
of piezoelectric voltage for a microbeam with piezoelectric layer l2 − l1 = 0.5L, the static
deflection is continuously increased. This happened due to terms with coefficients of γP 1vP

and γP 2vP in the static equation (28).
Figure 10 shows the effect of β1 on the static deflection of the microbeam for l2 − l1 =

0.8L. Considering Eq. (27), it is demonstrated that the maximum deflection occurs for the
minimum stretching of the neutral axis. It is shown that by increasing β1 the static deflection
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Fig. 9 Effect of γ1 on the central
static deflection microbeam with
piezoelectric layer length equal
to l2 − l1 = 0.5L

Fig. 10 Effect of β1 on the
central static deflection
microbeam with piezoelectric
layer length equal to
l2 − l1 = 0.8L

Fig. 11 Effect of ηv2
dc on the

natural frequency of microbeam
for different piezoelectric layer
length

of the system is suddenly decreased and after that, increasing β1 has only a small effect on
the static deflection.

Figure 11 shows the variations of natural frequency of the system with respect to ηv2
dc

for different lengths of the piezoelectric layer. It is shown that by increasing the length of
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Fig. 12 Effect of ηv2
dc on the

natural frequency of microbeam
for different γ1

Fig. 13 Effect of ηv2
dc on the

natural frequency of microbeam
for different β1

the piezoelectric layer from 0 to 0.8L, the natural frequency is decreased, and for 0.8L to L

is increased.
Figures 12 and 13 show the variations of the natural frequency of the system relative to

ηv2
dc. It is shown that, for a constant ηv2

dc far from the pull-in voltage, as the absolute value
of γ1 is increased, the natural frequency of the system is decreased, but, as the absolute value
of β1 is increased, the natural frequency of the system is increased.

The effects of γ1 and β1 on the natural frequency of the system are shown in Figs. 14
and 15, respectively. It is shown that by increasing γ1 or β1 the natural frequency of the
system is increased.

Figure 16 shows the frequency response of the elastic system with a complete piezoelec-
tric layer for ηv2

dc = 20 which is compared to Zamanian and Khadem (2010), and a good
and favorable agreement is obtained.

Figure 17 shows the variations of the vibration amplitude with respect to the detuning
parameter σ . According to Eq. (61), the frequency response of the system depends on the
various system parameters. All these parameters are positive except for S which can be posi-
tive or negative. S contains the nonlinear stiffness terms that include geometry, piezoelectric
and electrostatic nonlinearities. For S > 0, according to Eq. (64), the nonlinear resonance
frequency becomes greater than the linear one, i.e., Ω

ω
> 1. This causes the hardening behav-

ior of the system. In the same manner, for S < 0 the nonlinear resonance frequency is lower
than the linear one and the softening behavior appears. As shown in Fig. 17, by increas-
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Fig. 14 Effect of γ1 on the
natural frequency of microbeam
with piezoelectric layer length
equal to l2 − l1 = 0.5L

Fig. 15 Effect of β1 on the
natural frequency of microbeam
with piezoelectric layer length
equal to l2 − l1 = 0.8L

Fig. 16 Comparison between
frequency response of this work
with Zamanian and Khadem
(2010) in ηv2

dc = 20 with
piezoelectric layer L

ing the electrostatic voltage, the system represents a more softening behavior. For constant
piezoelectric parameters, increasing the electrostatic voltage reduces to decreasing S to neg-
ative values, and so, the softening behavior appears. Also, as ηv2

dc is increased, the vibration
amplitude is increased, which is due to the increasing value of F in Eq. (58).
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Fig. 17 Frequency response of
microbeam for different actuation
electrostatic voltage

Fig. 18 Frequency response of
microbeam for different γ1

Figure 18 depicts the variation of the vibration amplitude relative to the detuning param-
eter σ . It is shown that increasing the absolute value γ1 makes the system softer and, by
tuning the value of γ1, one can expect a linear response from a nonlinear system. Also, as
shown in this figure, the amplitude of a nonlinear vibration is increased as the absolute value
of γ1 is increased. By increasing γ1, the static deflection of the microbeam is increased and,
according to Eqs. (28), (58) and (63), ws , F and also a0 are subsequently increased.

Figure 19 shows the effect of β1 on the dynamic response of the microbeam. It is shown
that increasing the value of β1 leads to increasing the hardening behavior of the system.
Increasing the value of β1 causes the static deflection to decrease and the natural frequency
of the system to increase, and so, according to Eq. (63), leads to a decreasing amplitude of
the vibration.

Figure 20 shows the frequency response of the microbeam for different AC voltages.
As shown in this figure, by increasing the AC voltage, according to Eqs. (58) and (63), the
nonlinear vibration amplitude is increased, and the nonlinear resonance occurs at a higher
excitation frequency. Also one can observe that the hardening state of the system remains
unchanged due to the variation of vac.

The effect of the electrostatic voltage on the damping of the system is shown in Fig. 21.
As shown in this figure, the damping characteristic of the system is increased as the elec-
trostatic voltage is increased, especially near the pull-in voltage. So, one can say that for
a viscoelastic microbeam, the damping of the system not only depends on the viscoelastic



302 Mech Time-Depend Mater (2015) 19:277–304

Fig. 19 Frequency response of
microbeam for different β1

Fig. 20 Frequency response of
microbeam for different AC
voltage

Fig. 21 Effect of ηv2
dc on the

damping of system for C = 0.001

damping coefficient C, but also on other parameters of the system, for example, electrostatic
voltage.

Figures 22 and 23 show the variation of the damping characteristics of the system to
β1 and γ1, and one can easily observe that β1 has no evident effect on the damping of the
system. But, the damping characteristic is increased as γ1 is increased.
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Fig. 22 Effect of β1 on the
damping of system for C = 0.001

Fig. 23 Effect of γ1 on the
damping for C = 0.001

9 Conclusion

In this paper, the nonlinear dynamic response of a nanocomposite microbeam is studied
under electric and piezoelectric actuations. The microbeam has been assumed as a clamped–
clamped Euler–Bernoulli microbeam and having a symmetric piezoelectric patch deposited
on it. The Galerkin method and a perturbation method are applied to solve the nonlinear
equation of motion.

According to the obtained result, for a specific length of the piezoelectric, the hardening
behavior occurs for lower values of the DC voltage in electrostatic actuation and, by increas-
ing the value of this DC voltage, a softening behavior is detected. Also, for a piezoelectric
actuation by increasing piezoelectric voltage values, a softening behavior is observed. At the
same time, an increase of the mid-plane stretching causes a hardening of the system. Also it
is shown that damping characteristics of the system depends on both damping coefficient C

and on other parameters of the system.
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