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Abstract Recent advances in noncontact strain measurement techniques and large-strain
constitutive modeling of the linear low-density polyethylene film used in NASA superpres-
sure balloons StratoFilm 420 are combined to provide a novel measurement technique for
the tear propagation critical value of the J -integral. Previously these measurements re-
quired complex test configurations and procedures. It is found that the critical value of
the J -integral increases by approximately 50 % when the strain rate is decreased from
1.33 × 10−4 s−1 to 1.33 × 10−5 s−1. It is shown that there is good correlation between mea-
surements made on uniaxially loaded dogbone samples and circular diaphragms loaded by
pressure, both with a 2-mm-wide slit in the middle. This result indicates that more extensive
studies of strain-rate dependence may be made with the simpler, uniaxial test configuration.

Keywords Viscoelasticity · Free volume model · J -integral · StratoFilm

1 Introduction

The use of linear low-density polyethylene (LLDPE) films in NASA superpressure balloons
has motivated extensive studies of their viscoelastic behavior in the small and large strain
regimes. However, their viscoplastic behavior and ultimate failure have remained relatively
unexplored, making it difficult to quantify the failure margins of structures built from these
films. Currently, balloon designers are forced to the conservatism of point-based stress fail-
ure criteria. The objective of the present study is to gain insight into the viscoplastic tearing
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of LLDPE films and to develop quantitative models that in the future will enable more ra-
tional estimates of load margins.

Essential background for the present study is the recent development of viscoelastic mod-
els (Rand 2008; Kwok and Pellegrino 2011; Kwok 2012; Li et al. 2015) for LLDPE films.
Balloon designers are currently using these models, in combination with stress limits based
on a 2 % strain offset, to provide a failure criterion for balloon film. However, such an
approach may be overly conservative in the case of localized stress peaks, and yet the pos-
sibility of slowly propagating tears in films loaded over long periods of time is neglected.
Pointwise failure criteria neglect the stress redistribution that occurs near a peak and thus
may underestimate the reserve strength of a structure. A global approach that allows the
stresses to redistribute until the occurrence of macroscopic yielding or tearing of the film
occur, required to estimate the full strength.

Failure of polymers is frequently approached with time-dependent yield criteria ex-
pressed in terms of stress components or energy. These criteria are able to capture the
time to failure of the polymer. Key references on this general topic include (Knauss 1989;
Brown and Lu 1995; Brinson and Brinson 2008), but there has been no specific study of
the time to failure of LLDPE film. Tielking (1993) has argued that the critical value of the
integral of the energy release rate on a closed path that surrounds the tip of a small slit (J -
integral) in a thin film can be measured only in a plane-strain biaxial test, and hence carried
out a series of complex tests on wide rectangular samples to obtain the relationship between
crack amplitude and the J -integral.

For highly ductile, soft materials, the essential work method (Chan and Williams 1994)
measures the work done by the test machine on tensile samples with double-edged notches
in the middle. This test geometry provides a fully plastic area in a narrow ligament, whereas
most of the sample remains elastic. It has been argued that the essential work method is
equivalent to the J -integral and yet is easier to implement in soft materials; however, its
performance for thin films is not known.

The present study builds on recent advances in experimental techniques, particularly in
3D digital image correlation (DIC), and on large-strain constitutive modeling of LLDPE
thin films, to obtain the critical values of the J -integral from direct strain measurements on
two different sample geometries. Both uniaxial tension and biaxial pressure-load tests are
considered. It is found that the test configuration has only rather minor effects on the critical
value of the J -integral Jc , which suggests that it is possible to obtain this key property
from the simpler of the two configurations. An additional advantage of measuring Jc from
the simpler, uniaxial test samples is that in this case it is possible to control strain rate
effects directly. These results provide the background and a methodology for the future
development of detailed tearing criteria for LLDPE films.

The paper is laid out as follows. Section 2 presents a brief review of linear viscoelasticity,
followed by a nonlinear viscoelastic model for LLDPE thin films and by a review of the
literature on time-dependent failure of polymers. Section 3 presents a set of preliminary
uniaxial tension tests on dogbone samples of LDDPE film to select the best length of the slit.
Section 4 presents two test configurations, dogbone and spherical, in which the expansion
and propagation of 2-mm-wide transverse cracks were measured. Section 5 presents the
analysis method to compute the stress field and the strain energy distribution, and Sect. 6
presents the results of the J -integral computations for different test configurations. Section 7
discusses the key results of the paper and concludes that there is a good correlation between
the values of Jc for the two different sample geometries.
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Fig. 1 (a) Kelvin–Voigt elements in series provide a creep model; (b) Maxwell elements in parallel provide
a relaxation model

2 Background to time-dependent behavior

2.1 Linear viscoelastic models

The uniaxial time-dependent behavior of polymers can be described by combinations of
springs and dampers (Coleman and Noll 1961; Christensen 1982; Ferry 1980; Flugge and
Viscoelasticity 1975). To model creep a series of n Kelvin–Voigt elements is typically used
(see Fig. 1(a)), and the corresponding expression for the time-dependent compliance D(t)

using a Prony series is

D(t) = D0 +
n∑

i=1

Di · (1 − e−t/τi
)
, (1)

where t is the time variable, D0 is the compliance at time 0, Di is the compliance, and τi is
the retardation time for the ith element.

To model relaxation a series of Maxwell elements in parallel is typically used (see
Fig. 1(b)), and the corresponding expression for the relaxation modulus E(t) is

E(t) = E∞ +
n∑

i=1

Ei · e−t/ρi , (2)

where E∞ is the long-term modulus, Ei is the stiffness, and ρi is the relaxation time for the
ith element.

In these models, element i corresponds to a specific term in the Prony series in Eqs. (1)–
(2). The coefficients of the Prony series correspond to the parameters of the springs and
dampers, with viscosity μi , in the physical models.

Temperature and time effects are combined through the time–temperature superposition
(TTS) principle (Brinson and Brinson 2008), which states that for a class of materials known
as thermorheologically simple, varying the temperature provides a logarithmic correction to
the real time scale t . Hence, a reduced time t ′ is defined, which is related to real time by

t ′ = t

aT

. (3)

Here the time shift factor at is determined experimentally and is usually assumed to have
the expression (Williams et al. 1955)

logaT = − c1 · (T − T0)

c2 + (T − T0)
. (4)
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Note that the logarithm is in base 10. Also, T is the actual temperature, and T0 is the refer-
ence temperature at which the material characterization tests were carried out. The material
constants c1 and c2 are obtained by fitting Eq. (4) to experimental measurements.

The time-dependent stress and strain can be computed by stepping over time using the
constitutive model as follows. Consider Fig. 1(a) and note that the Kelvin–Voigt elements
are in series, hence the stress σt is equal throughout, and so

σt = ε0 · E0 = εit · Ei + μi · dεit

dt
, (5)

where the subscript t , without brackets, denotes the value calculated at time step t .
The overall strain in the Kelvin–Voigt model is obtained by adding the strain in each

element, and hence

εt = ε0t +
n∑

i=1

εit . (6)

Both of these equations can be written in incremental form to allow the calculation of
stress and strain at time t when their values at the previous time step t − 1 are known. The
incremental form of Eq. (5) is

σt = (εit−1 + dεi) · Ei + μi · dεi

dt
, (7)

which can be rearranged to

dεi ·
(

Ei + μi

dt

)
− σt = −εit−1 · Ei. (8)

The incremental form of Eq. (6) is

dε0t +
n∑

i=1

dεt = εt − ε0t−1 −
n∑

i=1

εit−1. (9)

Given the strain in each element at time t − 1, εit−1, and the total strain at time t , εt ,
together with the Prony coefficients, the strain increments in each element dεi and the com-
mon stress σt can be calculated by solving a system of n + 1 linear equations.

2.2 Large-strain viscoelastic model for StratoFilm 420

The particular LLDPE film studied in this paper is the 38-μm-thick film used in the NASA
superpressure balloons; this film is called StratoFilm 420 (Rand and Wakefield 2010).

To capture large strain viscoelasticity, instead of Eq. (4), the alternative expression for
the shift factor proposed by Knauss and Emri (1981), Knauss and Emri (1987) is adopted:

logaT = − B

2.303f0

(
αV (T − T0) + εV

f0 + αV (T − T0) + εV

)
. (10)

Note that Eq. (10) incorporates the volumetric strain of the material in order to account for
strain-related changes in the mobility of molecular chains; εV is the volumetric strain, and
αV is the volumetric coefficient of thermal expansion.

The volumetric strain εV has the following expression in terms of the Green–Lagrange
strain components, where 1 and 2 are the in-plane directions of orthotropy (respectively in
the machine and transverse direction of the film), and 3 is the through-thickness direction:

εV
∼=

√
2ε11 + 1 · √2ε22 + 1 · √2ε33 + 1 − 1, (11)
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Table 1 Thermal expansion parameters for StratoFilm420

j p1j [K−1] p2j [K−1]

1 −1.314349420165660·10−27 1.656628670569420·10−27

2 3.757961363054510·10−24 −4.538552920810370·10−24

3 −4.870560919889060·10−21 5.644504822368260·10−21

4 3.783161974578100·10−18 −4.213294503544060·10−18

5 −1.961126506078030·10−15 2.102008465628270·10−15

6 7.146793667601330·10−13 −7.383200108461120·10−13

7 −1.877228425197230·10−10 1.871956621022750·10−10

8 3.580706769622300 · 10−8 −3.451673660888610 · 10−8

9 −4.922242452967390 · 10−6 4.593443382129490 · 10−6

10 4.755521948988130 · 10−4 −4.302432036460990 · 10−4

11 −3.065068396780760 · 10−2 2.692250002443280 · 10−2

12 1.183350730959610 · 100 −1.010550330725230 · 100

13 −2.069690662157120 · 101 1.720772480526920 · 101

αV can be calculated from the linear coefficients of thermal expansion:

αV
∼= α1 + α2 + α3. (12)

The in-plane coefficients of thermal expansion α1 and α2 were measured by Young
(2010), who provided the following polynomial expressions, valid in the range 170–320 K:

αi =
13∑

j=1

pijT
13−j for i = 1,2, (13)

where the parameters pij are provided in Table 1.
Li et al. (2015) have shown that equally accurate large strain models can be set up for

different expressions of α3; hence, it is easiest to assume that

α3 = 0. (14)

Thin films are subject to plane stress conditions, and hence the creep compliance is usu-
ally expressed as a 3 by 3 matrix that relates the in-plane stress and strain component (Rand
2008).

However, in the present study, ε33 is additionally needed to compute the volumetric strain,
and hence a 4 by 4 compliance matrix is defined:

⎡

⎢⎢⎣

D11(t) D12(t) D13(t) 0
D12(t) D22(t) D23(t) 0
D13(t) D23(t) D33(t) 0

0 0 0 D66(t)

⎤

⎥⎥⎦ , (15)

where D66 is the in-plane shear compliance. A plot of D11 is shown in Fig. 2.
Li et al. (2015) have recently derived from creep tests the following parameters for the

time shift factor in Eq. (10):

B = 1610 and f0 = 1.752, (16)

as well as the in-plane creep compliance coefficients D11,D22,D12, provided in Table 2.
The out-of-plane coefficients D13 and D23, also provided in the table, were obtained by
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Table 2 Parameters of compliance Prony series for StratoFilm 420

i τ [s] D11 [MPa−1] D22 [MPa−1] −D12 [MPa−1] D13 [MPa−1] D23 [MPa−1]

0 0 3.0 · 10−4 3.0 · 10−4 1.5 · 10−4 −8.020578·10−5 −2.489835·10−5

1 1.0·10−9 1.742744·10−4 1.099837·10−4 6.173672·10−6 1.417732·10−5 −1.486979·10−5

2 1.0·10−8 6.510906·10−6 5.864904·10−5 2.739557·10−5 −2.989882·10−5 −6.915666·10−5

3 1.0·10−7 6.284269·10−5 2.414277·10−5 5.169134·10−5 4.949892·10−5 −9.152935·10−6

4 1.0·10−6 1.075431·10−4 4.221770·10−5 5.750443·10−5 −4.295294·10−5 3.786862·10−5

5 1.0·10−5 5.857710·10−5 1.506274·10−4 9.245293·10−6 1.656885·10−4 1.107330·10−4

6 1.0·10−4 1.550803·10−4 9.609312·10−5 1.315824·10−4 1.574928·10−5 3.056652·10−5

7 1.0·10−3 2.843866·10−4 2.597968·10−4 1.954518·10−4 −7.100409·10−5 −9.308906·10−6

8 1.0·10−2 4.567155·10−4 4.462205·10−4 2.426414·10−4 −5.967733·10−5 −1.172953·10−4

9 1.0·10−1 6.461394·10−4 4.793379·10−4 3.909654·10−4 −1.651097·10−4 6.069053·10−5

10 1.0 · 100 8.698046·10−4 5.911529·10−4 5.343249·10−4 −7.618915·10−5 8.091049·10−5

11 1.0·10+1 1.017441·10−3 7.511220·10−4 6.859082·10−4 −3.185557·10−4 −2.022027·10−5

12 1.0·10+2 1.120139·10−3 1.237382·10−3 6.414569·10−4 −3.834378·10−5 −4.021026·10−4

13 1.0·10+3 1.088133·10−3 1.262248·10−3 5.781361·10−4 −1.826515·10−4 −2.684576·10−4

14 1.0·10+4 8.624522·10−4 6.440784·10−4 6.454454·10−4 2.793315·10−4 5.106999·10−4

15 1.0·10+5 1.059337·10−3 8.245951·10−4 6.162569·10−4 −7.470997·10−6 −4.664092·10−5

16 1.0·10+6 1.149470·10−3 9.435898·10−4 6.142091·10−4 −1.867866·10−4 −1.068666·10−4

17 1.0·10+7 1.414411·10−3 1.742152·10−3 1.049955·10−3 −1.028044·10−4 −6.341502·10−4

18 1.0·10+8 9.262340·10−4 7.797793·10−4 5.307633·10−4 −7.175202·10−6 −2.024296·10−4

19 1.0·10+9 1.370308·10−4 9.743801·10−5 6.842945·10−5 2.356255·10−5 −7.689222·10−6

Fig. 2 Compliance master curve
for StratoFilm 420 in machine
direction at 293 K (Kwok 2012)

considering the measured in-plane nonlinear behavior in combination with the nonlinear
model. Following (Rand 2008), D66 = 4.48 × D11. The last coefficient of the compliance
matrix D33 is not needed; more details will be provided in Sect. 5. Note that the creep
compliance coefficients of StratoFilm420 indicate a mildly orthotropic behavior, whereas
the thermal expansion coefficients are strongly orthotropic.
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Fig. 3 Comparison of
experimentally measured
stress–strain behavior at four
temperatures, with predictions
from large strain model, at a
uniform strain rate of 0.1 % s−1

This large-strain model has been shown to be accurate up to the point of horizontal tan-
gency in the stress–strain curve. This point marks the onset of nonrecoverable deformation
for the film. For example, at 263 K and a strain rate of 0.1 % s−1, nonrecoverable deforma-
tion becomes significant at a strain in excess of 7 %; see Fig. 3. Until this strain value is
reached, the measured and predicted stress–strain relationship are practically coincident. At
lower temperature, the measured and predicted relationships are also practically coincident,
although the strain limit is lower.

2.3 Failure of polymer films

Uncrosslinked polymers such as LLDPE are used mainly above the glass transition tempera-
ture (Tg), to avoid brittle behavior. Hence, under normal operating conditions, they can show
significant time-dependent deformation and plasticity. Their failure behavior also depends
on time and temperature. For example, a test sample that is loaded well below the failure
load measured at room temperature in a short-duration test may fail when the same load is
applied for a longer period of time. Also, at lower temperature, the strength of the sample
increases.

The prediction of failure for such materials has been modeled by defining a function
(failure criterion) that relates stress, strain, and several other time-dependent parameters
to a time-dependent yield stress. One approach (Naghdi and Murch 1963; Crochet 1966)
considers the function

f = 1

2
σijσij −

(
A + B exp

(
−C

√(
εV
ij − εE

ij

) · (εV
ij − εE

ij

)))2 = 0, (17)

where σij is the stress tensor, εij is the strain tensor, and the superscripts V and E denote
viscous and elastic components. Note that Eq. (17) is defined in terms of a Mises equivalent
stress (first term) and a time-dependent yield stress (second term); A,B , and C are material
parameters.

In an alternative approach, it has been assumed that failure is linked to the stored strain
energy reaching a critical level, without accounting for viscous or plastically dissipated en-
ergy (Bruler 1973; Bruler 1981; Brinson 1999). Furthermore, only the deviatoric component
of the strain energy is considered, not the dilatational energy. Since the time-dependent stress
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Fig. 4 Integration path around
crack tip

Fig. 5 Schematic diagram of
relationship between J -integral
and increase of crack length �a.
Jc marks the start of the crack
propagation

and strain components can be estimated from a finite element analysis, implementation of
the latter approach requires only a single failure parameter to be defined, and hence it is
simpler to implement this approach than the three-parameter criterion in Eq. (17).

A different approach to the failure of polymer films relates failure to the propagation
of a crack (Tielking 1993) and adopts fracture mechanics tools to study this problem. The
J -integral is the integral of the energy release rate on a path Γ that surrounds the crack tip;
in elastic fracture mechanics, it is path independent and is equal to the energy release rate,
that is, the fracture energy per unit surface of crack (Rice and Rosengren 1968); see Fig. 4.
It can be calculated from

J =
∫

Γ

(
Wn1 − T

∂u

∂x

)
ds, (18)

where W is the strain energy density, n1 is the normal strain n in the direction of the normal
to Γ , T is the normal stress in the n-direction, u is the displacement of a general point, the x-
axis is defined parallel to the direction of propagation of the crack, and ds is an infinitesimal
element along Γ .

The J -integral is usually plotted as a function of the crack length increase �a, see Fig. 5,
where Jc is the critical value of J when the crack size starts to increase. The slope of the
J -curve beyond Jc indicates the resistance of the material to crack propagation.

In isotropic elastic materials of modulus E and under plane stress, the toughness K is
directly related to the energy release rate G and to J by

K2

E
= G = J. (19)

In the case of inelastic materials, a part of the energy is dissipated, but the J -integral still
gives a general method to determine the energy release associated with the crack propagation
and can be determined by using the stress–strain relation far from the crack-disturbed area.

Tielking (1993) carried out unidirectional load tests on 76-mm-long and 254-mm-wide
samples of 20-µm-thick StratoFilm. Because of the large width-to-length ratio of these sam-
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Table 3 Results of preliminary failure tests. Temperature, humidity, rate, yield stress (fy ), breaking stress
(fu), ultimate extension (uu)

Test 1: no hole Test 2: pinhole Test 3: slit

Temp. [K] 263 263 223 223 223 223 223 223 223 203

Humidity [%] 75 85 40 40 40 40 40 40 20 20

Rate [mm/s] 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.01 0.001 0.001

fy [N/mm2] 16 15 24 26 26 26 22 26 26 34

fu [N/mm2] 17 16 26 26 22 24 22 26 26 34

uu [mm] 190 210 100 110 60 35 3 3 3 2.5

ples, the effect of their edge deformation on crack propagation was negligible, and hence
the J -integral can be evaluated indirectly from the equation (Begley and Landes 1972)

J = 1

B

∂WT

∂a
, (20)

where B is the thickness of the sample, WT is the total work of the loading mechanism, and
a is the half length of the crack.

Tielking carried out multiple loading–unloading cycles and evaluated J using this equa-
tion; each point of the J–�a diagram was determined from the difference between the
loading–unloading energies and the change in �a.

3 Failure by viscoelastic tearing: preliminary tests

For an initial understanding of the failure of StratoFilm 420, preliminary tests were carried
out on 75-mm-long and 12-mm-wide laser-cut dogbone samples, with the direction of ex-
trusion of the film (machine direction) aligned with the longer dimension of the sample.
These tests investigated the difference in behavior between pristine film vs. film damaged
by introducing a pinhole or a small slit.

The tests were carried out in an Instron 3119-506 environmental chamber at temperatures
between 203 K and 263 K using an Instron 5569 electromechanical materials testing ma-
chine. The ultimate strength fu was determined from the peak in the load-extension diagram
generated by the Instron BlueHill software. The yield stress fy was determined by the point
of intersection between a tangent line at the origin and a tangent to the initially nonlinear
part of the diagram. The ultimate extension uu was determined from the last measured point.
The full set of results is presented in Table 3. Note that, in the case of samples that failed
after extensive plastic deformation, fy and fu refer to the original cross-section and hence
do not reflect the true stress state in the necked sample. Representative snapshots from each
set of tests are shown in Fig. 6(a–d), and the load-extension plots for four representative
tests are presented in Fig. 6(e).

The first set of tests (Test 1) was carried out on pristine samples. Tests at two different
strain rates, 1.33 × 10−3 s−1 and 2.66 × 10−3 s−1, and two different temperatures, 263 K
and 223 K, on 6-mm and 12-mm-wide samples showed large stretching (100–300 %) fol-
lowed by the formation of a neck and failure of the sample. In all of these tests, there was
a significant amount of plastic deformation, as evidenced by the milky appearance of the
sample (crazing). In the higher-temperature (263 K) tests, crazing developed over the full
length of the samples. In the lower-temperature (223 K) tests, crazing started at one end of
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Fig. 6 Snapshots from four tests on dogbone samples with initial width of 12 mm: (a) no hole, T = 263 K;
(b) no hole, T = 223 K, (c) pinhole, T = 223 K; (d) 2-mm-wide slit, T = 223 K; (e) force-extension diagrams
for the four tests

the sample (in the case shown in Fig. 6(b), crazing started at the bottom) and propagated
through the full length of the sample before necking began. The ultimate stress was higher
at the lower temperature and at the higher strain rate. This type of behavior is described with
good accuracy by the energy-based failure criteria in Sect. 2.3, apart from the need to ac-
count for the large elongation before failure. The observed dependence of the ultimate stress
on temperature is also captured by this approach.

The second set of tests (Test 2) was carried out on samples that had been initially dam-
aged by introducing a pinhole in the middle. The idea for this test, which was done only at
the lower temperature of 223 K, was that the pinhole might provide the initiation point for
a tear through the sample, avoiding a large amount of crazing. However, extensive crazing
was still observed in this set of tests. Crazing always started at a point away from the pin-
hole, usually near one end of the sample, and propagated through the sample until it reached
the pinhole. At this point, the sample broke by propagation of a tear. The measured ultimate
strength was in the same range as in the tests without pinhole, but this time the ultimate ex-
tension of the sample was significantly smaller; see Fig. 6(e). Hence, it was concluded that
a pinhole has no appreciable effect on the global strength, but it does affect the maximum
global deformation.
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The third set of tests (Test 3) was carried out on samples with a central 2 mm transversal
slit. In this case, crazing first appeared near the tips of the slit, which rapidly expanded and
tore through the sample. The ultimate extension was much smaller than in the previous two
cases; see curve (d) in Fig. 6(e); however, the ultimate strength values were in the same
range as for the other types of samples.

The tests on pristine samples showed a large amount of visco-plastic deformation. Lower
temperatures caused the strength to increase, as expected from the failure criterion approach
in Sect. 2.3. However, doubling the strain rate did not increase the strength as predicted by
the failure criterion. Introducing a pinhole or a slit in the sample did not change the overall
strength, but it substantially decreased the ultimate elongation.

These results were useful in planning further, more detailed experiments. Since all three
sample configurations had provided approximately the same ultimate strength, the choice
between pristine, damaged by a pinhole, or damaged by a slit was made on the basis of
which configuration is most suited to producing the highest resolution in the strain field near
the crack that ultimately tears through the sample. This strain field can be used to evaluate
the J -integral around the crack. Here the key factor is the limited viewing field over which
DIC systems can produce high-resolution strain fields. In order to image a narrow region of
the sample and to avoid that this region moves out of the viewing field during the test, the
third sample configuration was selected.

4 Test apparatus and sample configurations

The strain in the film was measured with the Correlated Solutions Vic-3D 2010 DIC sys-
tem. Three-dimensional DIC captures the effects of out-of-plane deformations, including
any wrinkling of the film. The test configuration can be seen in Fig. 7; the cameras were
Point Gray GRAS-50SSM-C with Pentax 75-mm F/2.8 lenses, set up with a field of view of
approximately 50 mm. The test samples were lightly sprayed with black paint to provide a
random speckle pattern with average size of 0.25 mm; they were imaged at a rate of 1 frame
per second. The images were processed with Vic-3D using a correlation subset of 29 × 29
pixels, and the strain field was computed from an 8-tap B-sline interpolation of the displace-
ment field (Sutton et al. 2009). The slit was made with a scalpel and had a length 2a = 2 mm,
and the initial length of the slit, measured in pixels, provided a calibration factor.

Two types of tests were carried out: uniaxial tests on 12.7-mm-wide (ASTM D-412 A)
dogbone samples aligned with the machine direction of the film, and biaxial tests on spher-
ical bubbles obtained by inflating a flat circular sample with diameter of 125 mm, clamped
around the edge. Both sets of samples contained a 2-mm-wide slit in the middle. In the first
test, the machine direction of the film was aligned with the loading direction. The second test
used an air pressure box with a 125-mm-diameter hole; see Fig. 8. StratoFilm samples were
clamped over the box, and the box was connected to an Omega IP610-030 pressure regula-
tor. The applied pressure was measured with an Omega DPG409-015G electronic pressure
gauge. The deformed shape of the test sample was measured with DIC, and the strain field
near the crack was obtained with Vic-3D using the same settings as described before. Air
leakage through the slit was prevented by means of an inner layer of wrap foil liner. Accord-
ing to a preliminary FEM analysis of the inflation of the film, the maximum stress occurs in
the middle of the bubble, and hence the slit was placed there.

All tests were performed at 253 K, starting half an hour after closing the door of the
environmental chamber and setting the controller at this temperature.
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Fig. 7 Instron thermal chamber
with DIC cameras

Fig. 8 Section of pressure box
for biaxial tests

The next sections discuss how the strain fields obtained from Vic3D were used to com-
pute the stress in the film using the constitutive model presented in Sect. 2.2. Then the results
of the J -integral calculation and the critical value Jc are presented for each experiment.

5 Calculation of stress components and strain energy

The Green–Lagrange strains near the crack region of each sample, obtained from DIC at
regular time steps, were used to compute the corresponding second Piola–Kirchhoff stresses.
The large-strain viscoelastic model presented in Sect. 2.2 was used.

The calculation of the stress components is analogous to the one-dimensional case sum-
marized in Sect. 2.1, with a few additional details to account for the change to three dimen-
sions. Equation (8) is replaced by

dεjk i ·
(

E
jklm

i + μ
jklm

i

dt

)
− σ lm

t = −εjk i t−1 · Ejklm

i , (21)
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and Eq. (9) by

dεjk 0 t +
n∑

i=0

dεjk i t = εjk t − εjk 0 t−1 −
n∑

i=0

εjk i t−1. (22)

In a general 3D situation, Eqs. (21)–(22) provide 6(n + 1) independent equations. How-
ever, in a thin film, σ33 = 0, σ23 = 0, and σ13 = 0. Although the through-thickness strain
components are not measured, ε33 appears in the model and hence is required for the analy-
sis.

Consider the time-independent part of the constitutive model for a viscoelastic thin film
that is loaded in-plane. For a general element i of the Prony series, neglecting to show the
subscript i for simplicity, the stiffness equations have the form

⎡

⎢⎢⎢⎢⎢⎢⎣

E11 E12 E13 0 0 0
E12 E22 E23 0 0 0
E13 E23 E33 0 0 0
0 0 0 E44 0 0
0 0 0 0 E55 0
0 0 0 0 0 E66

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε23 = 0
ε13 = 0

ε12

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33 = 0
σ23 = 0
σ13 = 0

σ12

⎤

⎥⎥⎥⎥⎥⎥⎦
, (23)

where all out-of-plane stress components are zero as shown on the right-hand side of the
equation. Only the shear part of the stiffness matrix is diagonal because the material is
orthotropic. Since the out-of-plane shear stresses are zero, the corresponding shear strains
are also zero, but note that ε33 �= 0.

The constitutive equations can also be written in terms of compliance:
⎡

⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 0 0 0
D12 D22 D23 0 0 0
D13 D23 D33 0 0 0

0 0 0 D44 0 0
0 0 0 0 D55 0
0 0 0 0 0 D66

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33 = 0
σ23 = 0
σ13 = 0

σ12

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε23 = 0
ε13 = 0

ε12

⎤

⎥⎥⎥⎥⎥⎥⎦
, (24)

where three stress components and two strain components are zero as before.
The third equation in Eq. (24) can be used to obtain an expression for ε33 in terms of σ11

and σ22:

ε33 = D13 · σ11 + D23 · σ22. (25)

Then, substituting Eq. (25) into the first two equations in Eq. (23) we obtain:

[
E11 E12 E13

E12 E22 E23

]
·
⎡

⎣
ε11

ε22

D13σ11 + D23σ22

⎤

⎦ =
[

σ11

σ22

]
. (26)

Rearranging these equations yields
[

E11 E12

E12 E22

]
·
[

ε11

ε22

]
=

[
1 − E13D13 −E13D23

−E23D13 1 − E23D23

]
·
[

σ11

σ22

]
, (27)

and inverting yields
[

1 − E13D13 −E13D23

−E23D13 1 − E23D23

]−1

·
[

E11 E12

E12 E22

]
·
[

ε11

ε22

]
=

[
σ11

σ22

]
, (28)
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which can be written in the form[
E∗

11 E∗
12

E∗
12 E∗

22

]
·
[

ε11

ε22

]
=

[
σ11

σ22

]
, (29)

where the coefficients of the 2D stiffness matrix are obtained from the matrix product in
Eq. (28).

Since the viscoelastic model in Sect. 2.2 has been given in terms of compliance coeffi-
cients, the 2D stiffness matrix in Eq. (29) is obtained by inversion of the 2 × 2 compliance
matrix obtained by removing rows and columns from Eq. (24).

After calculating all the coefficients of the Prony series for the relaxation modulus, the
2D version of Eqs. (21) and (22) is as follows:

dεjk i ·
(

E
∗jklm

i + μ
∗jklm

i

dt

)
− σ lm

t = −εjk i t−1 · E∗jklm

i , (30)

dεjk 0 t +
n∑

i=0

dεjk i t = εjk t − εjk 0 t−1 −
n∑

i=0

εjk i t−1, (31)

where j, k, l,m = (1,2).
The system of 2(n + 1) equations provided by Eqs. (30) and (31) is solved at each time

step to obtain the stress time history from the measured strain history.
Once the stress components σ11t , σ22t , σ12t have been obtained, ε33 is calculated from

(Kwok and Pellegrino 2011; Kwok 2012)

ε33t = D13t · σ11t + D23t · σ22t − f33 t−�t , (32)

where ft−�t is the hereditary parameter investigated by Lai and Bakker (1996):

f33 t−�t =
n∑

i=1

Dijk

(
e−�t ′/τi · qijk t−�t − 1 − e−�t ′/τi

�t ′/τi

)
, (33)

and

qijk t = e−�t ′/τi · qijk t−�t − (σjkt − σjk t−�t )
1 − e−�t ′/τi

�t ′/τi

. (34)

The final step in the analysis is the calculation of the elastic strain energy density and the
dissipated energy density at each time step. The elastic strain energy density is given by

WE
t =

n∑

i=0

εijk t · Ejklm · εlm
i t . (35)

Hence, the dissipated energy density is calculated as the difference between the total work
done and the strain energy density from Eq. (35). The total work is given by

Wt =
n∑

i=0

εijk t · σ jk

i t . (36)

The accuracy of this procedure has been confirmed for each uniaxial test by generating a
“control plot.” These plots, shown in Fig. 9, include the longitudinal average strain, obtained
from the strain measured along a transverse cross section located far away from the slit, and
the measured stress, obtained by dividing the applied force by the initial cross-sectional area
of the test sample and without considering the cross-sectional area reduction due to the slit
during the full duration of a particular uniaxial test. They also include the average computed
stress in the sample, obtained from the average strain described above, at a distance of 12
to 15 mm from the slit. The stress values were derived from the strain field measured with
DIC and were converted to stress using the constitutive model.
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Fig. 9 Control plots showing average longitudinal stress and strain in dogbone sample far away from the
slit. The tests were carried out at 253 K and rates of (a) 1.33 × 10−4 s−1 and (b) 1.33 × 10−5 s−1

6 J -integral diagrams

The calculation of the J -integral along a chosen path Γ , Eq. (18), requires the strain energy
and the stress components to be known along the path. The path Γ is chosen far from the slit
to avoid regions of high strain where the onset of plasticity may invalidate the constitutive
model. Note that Γ is required to intersect the edge of the slit (see Fig. 5), but the interpola-
tion functions used in standard DIC cannot measure strains close to a free edge. Fortunately,
in the present case, the strain and stress magnitudes near the slit edges are relatively small,
provided that Γ does not get too close to the tips of the slit and the length of the omitted
integration line is relatively short compared to the total length of Γ .

For each test, the J -integral was calculated along an approximately elliptical path with
a horizontal semiaxis approximately 4-mm long and vertical semiaxis approximately 6-mm
long; see Fig. 10. Note that for the example shown in this figure, the maximum longitudinal
strain component along the chosen path is < 5 %, which is well below the limit of validity
of the large-strain viscoelastic model. The calculation was repeated for each time step, and
the results are shown for each test by means of two different types of plots. The first is the
standard plot of J vs. �a, defined as the change in distance between the two opposite ends
of the tear, and the second is a plot of J vs. the Area enclosed by the slit. Because in soft
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Fig. 10 Normal strain
components in vertical direction
around the slit, from uniaxial test
at T = 253 K at a rate of
1.33 × 104 s−1. The rounded
rectangle at the center has been
excluded from the strain
calculation

and highly ductile materials, such as LLDPE film, it is sometimes difficult to identify the
onset of crack propagation only from the plot of J vs. �a, the second plot is in some cases
useful to better find the critical value of J . Here, Area is an additional parameter that better
takes into account the expansion of the slit in the direction perpendicular to the original
slit direction. The slit was assumed to be elliptical in shape, and its area was obtained by
measuring the two axes of the ellipse and computing the resulting area. Both diagrams were
used to identify Jc , as explained later on.

The value of the J -integral has been computed from experimentally obtained data around
the tips of the tear, denoted as A-side and B-side; both the elastic strain energy density
(obtained from Eqs. (35) and (36)) and the total work are plotted. The reason why the J -
integral on both the A- and B-sides is needed is because a small asymmetry in the test
arrangement or variability in the film thickness or material properties leads to more en-
ergy being accumulated on one side and then the tear propagates asymmetrically. Typi-
cally, the start of the propagation on one side will trigger propagation also on the other
side, but the critical value of the J -integral is associated with the more heavily strained
side.

To understand the J -integral plots presented in this section, consider the idealized di-
agram of J vs. �a in Fig. 5. This diagram consists of a vertical line, corresponding to
an accumulation of the deformation energy around the tear, followed by a smooth curve
with finite initial slope. The point at the top of the line, labeled C, marks the sudden prop-
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Fig. 11 (a) Initial tear, (b) blunted tear begins to propagate, and (c) propagating tear for uniaxial test at 253 K
and 1.33 × 10−4 s−1

agation of the tear. Point C corresponds to a sudden decrease in the rate of energy accu-
mulation and a sudden increase in the expansion of the tear; it corresponds to the critical
value Jc . In viscoplastic materials, this transition is less sharp, as shown in Fig. 11. The
tear blunting phase has the effect of shifting the vertical line since local deformation in
the tip region causes the tear length to vary during the accumulation phase. In thin films,
the situation is even more complicated since additional shifting of the originally vertical
line may be caused by wrinkling of the film. In such cases, the J vs. �a diagram may
turn back since the tear appears to become shorter and thus no longer lies in a plane. The
alternative plot of J vs. Area is useful in resolving situations where the main plot is con-
fusing.

In all cases, though, the transition from the accumulation phase to the propagation phase
is defined by an inflection point in the experimentally obtained data, and hence point C in
the J -integral curve was determined by carrying out successive polynomial fits and looking
for a sign-change in the second-order coefficient. Figures 12 and 13 present representative
results from uniaxial tests respectively at faster and slower rates. For the faster test, the
point of inflection C is clearly visible in the plot of J vs. �a in Fig. 12(a); the critical
value is Jc = 700 J/m2. Note that in this case, finding point C in the area plot, Fig. 12(b),
is harder since the graph shows a region of clearly positive curvature followed by an almost
straight trend line. For the slower test, the standard plot, Fig. 13(a), is less clear due to the
extensive turn back, whereas the area plot, Fig. 13(b), shows a clear point of inflection; here
Jc = 1100 J/m2.

It is interesting to note that in the faster test, Fig. 12, there is practically no difference be-
tween elastic strain energy and total work, whereas in the slower test, Fig. 13, the difference
is clearly visible and is on the order of 20 % of Jc .

The accuracy of the constitutive model at the time at which the tear began to propagate
in the two uniaxial tests can be assessed from the control plots. It can be seen from these
plots, shown in Fig. 9, that the stress estimate is better than 10 % in correspondence of Jc .

Figures 14 and 15 present results from two bubble tests. In this type of test, only the
pressure rate is controlled, not the strain rate. The test presented in Fig. 14 had a much faster
pressure rate (on the order of 50 times faster) than the test presented in Fig. 15. For the first
test, both of the J -integral plots presented in Fig. 14 are quite clear, although the point of
inflection is particularly clear in Fig. 14(b), from which Jc = 750 J/m2. For the second test,
Fig. 15, the plot of J vs. �a shows an initial region of clearly positive curvature followed
by a region of (rather small) negative curvature; hence, we obtain Jc = 1300 J/m2 from this
plot. The plot of J vs. Area, Fig. 15(b), follows an almost straight line, making it difficult to
spot JC . Note that in Figs. 14 and 15, there is practically no difference between stored strain
energy and total work, probably because the local strain rate was at least as high as in the
first uniaxial test.
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Fig. 12 Variation of J -integral with (a) tear length change and (b) tear enclosed area for uniaxial test at
253 K and 1.33 × 10−4 s−1

7 Discussion and conclusion

The objective of this study was to establish a simple and direct technique to obtain the
critical values of the J -integral for Stratofilm 420 from direct measurements.

A 2-mm-wide central slit perpendicular to the direction of loading in a 12.7-mm-wide
by 75-mm-long dogbone sample was found the best initial defect to trigger failure in a
known region of the sample while also avoiding widespread plastic deformation. Tear prop-
agation experiments were carried out with two test configurations, namely the uniaxially
loaded dogbone sample already described before, and a flat circular diaphragm with diam-
eter of 125 mm and a central 2-mm-wide slit. This sample was inflated into a spherical
bubble by applying a uniform pressure loading. A standard 3D DIC experimental setup
was used to measure the strain field in the tear region, and the large-strain viscoelastic
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Fig. 13 Variation of J -integral with (a) tear length change and (b) tear enclosed area for uniaxial test at
253 K and 1.33 × 10−5 s−1

model summarized in Sect. 2.2 was used to compute the corresponding time-dependent
stress fields.

We found that the large-strain viscoelastic model provides predictions of the average
stress across the dogbone samples, accurate to better than 10 % at the point where the critical
value of J is reached.

From these stress and strain fields we evaluated the J -integral along closed paths that sur-
round each end of the tear, and thus we were able to construct plots of the J -integral vs. two
different measurements of the tear, namely the tear length and the enclosed area. Some of
these plots did not show a clear transition from the initial phase, involving the accumulation
of strain energy in the region surrounding the tear, to the second phase, involving propaga-
tion of the tear through the film. However, for each test, at least one type of plot provided
conclusive information from which the critical value of the J -integral could be evaluated.
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Fig. 14 Variation of J -integral with (a) tear length change and (b) tear enclosed area for bubble test #1 at
253 K

The effects of the film orthotropicity, although accounted for in the material model, were
not investigated in detail.

The resulting values of Jc , all obtained at a temperature of 253 K, were 700 J/m2 and
1100 J/m2, respectively, for strain rates of 1.33 × 10−4 s−1 and 1.33 × 10−5 s−1.

The values of Jc obtained from bubble tests, in which the strain rate cannot be controlled
directly, were 750 J/m2 and 1300 J/m2 in the faster and slower tests, respectively. These
values closely match the values from uniaxial tests, suggesting that the simpler test config-
uration could be used in the future for more extensive studies of strain-rate and temperature
sensitivity of the tearing of StratoFilm.

It is concluded thats the approach investigated in this paper appears to capture the com-
bination of nonlinear effects (time dependency, plasticity, wrinkling) that occur near a tear
in a thin film.
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Fig. 15 Variation of J -integral with (a) tear length change and (b) tear enclosed area for bubble test #2 at
253 K
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