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Abstract The applicability condition of the time–temperature superposition principle
(TTSP) to a multi-phase system is analytically discussed assuming a mixture law. It was
concluded that the TTSP does not hold for a multi-phase system in general but does hold
for a multi-component system in which some components have the same temperature de-
pendence and the others have no temperature dependence. On the basis of the results, the
application of the TTSP to plant materials such as wood and bamboo was examined using a
mixture law and a stretched-exponential function having a characteristic relaxation time τ0

and a stretching parameter β. Wood can be treated as a multi-phase system consisting of a
framework (f) and matrix (m). In this case, it was expected that the TTSP holds for the matrix
in the shorter time region t � τ0f under T < Tgf , while the TTSP holds for the framework
in the longer time region t � τ0m under T > Tgm, where t and Tg is a measurement time and
the glass transition temperature, respectively.

Keywords Time–temperature superposition principle · Relaxation · Multi-phase · Wood

1 Introduction

In this work, the applicability of the time–temperature superposition principle (TTSP) to
a multi-phase system is analytically discussed. The TTSP is applicable only under limited
conditions (Fesko and Tschoegl 1971; Nakano 1995; Tschoegl et al. 2002). According to
Tschoegl et al. (2002), the TTSP definitely does not apply to multi-phase materials such
as graft copolymers, hybrid materials, and some other systems. In this study, we analyti-
cally identified both applicable and non-applicable conditions and applied the TTSP to plant
materials considered as multi-phase systems.

The TTSP has been widely applied. However, most of the studies have not strictly consid-
ered thermorheological simplicity. In order for the TTSP to be applicable, two requirements
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must be satisfied: curves measured at different temperatures can be superimposed, and all
system responses are equally dependent on temperature. It should be noted that just a smooth
curve established by superimposing curves at different temperatures does not validate the
TTSP.

Fesko and Tschoegl (1971) found that the TTSP does not hold for multi-phase systems
and that the shift factor is time-dependent. Kaplan and Tschoegl (1974) applied the TTSP to
two-phase polyblends and concluded that the master curve could not be constructed using
just one shift factor. Tschoegl et al. (2002) reviewed the effect of temperature and pressure
on the mechanical properties of polymeric materials and again pointed out limitations of the
TTSP. Nakano (1995) also reported non-applicability of the TTSP to wood when viewed
as a multi-phase system. Nevertheless, rigorous application of the TTSP for multi-phase
systems is highly desirable because it would enable the prediction of relaxation properties
over longer and shorter time intervals and at lower and higher frequencies.

The relaxation behavior of wood has been examined extensively. Samarasinghe et al.
(1994) reported that the relaxation curve obtained over a long time interval agreed with a
master curve derived from curves at various temperatures. Bond et al. (1997) reported that
the TTSP holds for creep in compression and tension for yellow poplar, Douglas fir, and
southern pine. Irvine (1980) and Salmén (1984) reported that the Williams–Landel–Ferry
(WLF) equation (Williams et al. 1955) held for isolated lignin and in situ lignin, respec-
tively. Stephen et al. (1987) claimed that the TTSP should be restricted to the amorphous
components of wood. Dlouhá et al. (2009) examined five wood species and did not defini-
tively conclude that the TTSP was applicable. In an analytical study, Nakano (1995) indi-
cated that the TTSP was not applicable for wood as a multi-phase system. The TTSP has also
been applied to various multi-phase systems (e.g., Simon and Ploehin 1999; Brostow and
D’Souza 1999; Akinay et al. 2002; Macaúbas and Demarquette 2002; Barbero and Julius
2004; Tajvidi et al. 2005; Liu et al. 2009; Barbero and Ford 2004; Nakada et al. 2011).

The application of the TTSP requires that all relaxation processes depend equally on
temperature. This requirement has not been rigorously considered in the literature. Thus, the
validity of the TTSP must be strictly considered before applying it to a multi-phase system.
In some cases, authors have pointed out the non-applicability of the TTSP to multi-phase
systems but did not suggest conditions that might make it applicable.

In this work, the applicability of the TTSP to a multi-phase system has been formulated
using a mixture law (Voight 1889). The analytical conditions for applicability are discussed.
The stretched-exponential function has been applied to analysis of wood as a multi-phase
system.

2 Results and discussion

2.1 Time–temperature superposition principle (TTSP)

The TTSP implies that time or frequency is equivalent to temperature. That is, time or fre-
quency at temperature T1 is related to that at temperature T0 by the following equations:

t (T1) = t (T0)

aT

, (1)

ω(T1) = ω(T0)aT , (2)

where t (T0) and t (T1) are times and ω(T1) and ω(T0) are frequencies at temperatures
T0 and T1. These relationships make it possible to establish a curve (“master curve”) as
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Fig. 1 Shift of the relaxation
modulus along a logarithmic time
axis and correction along a
logarithmic vertical axis for the
application of the
time–temperature superposition
principle (TTSP)

a function of the logarithm of the time or frequency by superimposing the curves mea-
sured at various temperatures. Rouse theory predicts the TTSP and indicates that it should
be applied to the glass transition and rubbery regions where relaxation processes relate to
the free volume (Williams et al. 1955, Bueche 1956). Application of the TTSP to poly-
mers in the glassy state and to crystalline polymers has been reported (Faucher 1959;
Nagamatsu and Yoshitomi 1959; Yoshitomi et al. 1958). The authors reported different
mechanisms having different temperature dependencies. It should be stressed that Eqs. (1)
and (2) imply that all relaxation processes depend equally upon temperature.

Time at temperature T1, t (T1), is reduced to that at temperature T0, t (T0), using Eqs. (1)
and (2). Figure 1 shows how a relaxation curve measured at temperature T1 can be superim-
posed on one measured at temperature T0 using a small vertical shift.

Using Eqs. (1) and (2), we have

E(t/aT , T0) = T0ρ0

Tρ
E(t, T1), (3)

E′(ωaT , T0) = T0ρ0

Tρ
E′(ω,T1), (4)

E′′(ωaT , T0) = T0ρ0

Tρ
E′′(ω,T1), (5)

where E(t, T ), E′(ω,T ), and E′′(ω,T ) are the relaxation modulus, storage modulus, and
loss modulus at temperature T . The factor T0ρ0/Tρ is related to thermal expansion and is
almost unity. Equations (3) to (5) show that two curves can be superimposed on a logarithmic
scale by shifting on the basis of lnaT . Similar equations can also be derived for viscosity,
static compliance, and dynamic compliance.

Equations (1) and (2) require that all relaxation processes depend equally on temperature.
A smooth curve established by superimposing curves at different temperatures does not nec-
essarily validate the TTSP and is rheologically nonsensical if the above requirement does not
hold. The TTSP implies equivalence between time and temperature but not superimposition
of curves simply by shifting.

The applicability of the TTSP to multi-phase systems for stress relaxation processes is
discussed below. A thermal correction factor T0ρ0/Tρ = 1 is used to simplify the analysis.
The same analysis should be valid for dynamic behavior.
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2.2 Applicability of the TTSP to a multi-phase system

Fesko and Tschoegl (1971) theoretically examined the application of the TTSP to a ther-
morheologically complex system and found that the shift factor was a function of both tem-
perature and time. Subsequently, Kaplan and Tschoegl (1974) derived the master curve for
a two-phase system using the master curve of each component and Takayanagi’s mixture
law. They estimated the time dependence of the shift factor using the distance between the
obtained master curve of each component and an experimental curve. Their results showed
that the master curve cannot be established from relaxation curves at various temperatures
simply by shifting on a logarithmic scale. Here, we analytically determine the conditions of
applicability of the TTSP for a multi-phase system by extending the work of Kaplan and
Tschoegl (1974).

Assuming a mixture law that is independent of temperature, a situation that holds for
most multi-phase polymers, the relaxation modulus at temperature T of a multi-phase sys-
tem is represented by

En(t, T ) =
∑

i

θiE
n
i (t, T ), (6)

where θi and Ei are the volume fraction and the relaxation modulus for component i, re-
spectively, and n is the mixture state parameter and −1 ≤ n ≤ 1.

Assuming that the TTSP is valid for each component i, the relationship between moduli
at different temperatures T0 and T1 is described by Eq. (7):

Ei(t, T1) = Ei(t/aTi
, T0) (T0ρ0/Tρ = 1). (7)

If the temperature dependence of all components is equal, that is, aT 0 = aT 1 = · · · = aT i =
· · · ≡ aT , then the modulus of the entire system is:

En(t, T1) =
∑

i

θiE
n
i (t, T1) =

∑

i

θiE
n
i (t/aT , T0). (8)

This equation is equal to En(t/aT , T0).
The above result means that the TTSP holds for a multi-phase system when the TTSP is

valid for all components and moreover they have the same shift factor. This is the simplest
case that can be used to validate the TTSP. Our interest is the applicability of the TTSP to
a multi-phase system when the temperature dependence of at least one component differs
from the others, even though the TTSP is valid for each component.

In such a case, when the component that differs from the others is represented by the
subscript p, Eq. (8) can be rewritten as

En(t, T1) = θpEn
p(t/aTp, T0) +

∑

i �=p

θiE
n
i (t/aT , T0), (9)

where aTp and aT are the shift factors of the different component and the others, respec-
tively. Equation (9) means that a curve for T1 does not superimpose on that for T0 by the
same shift factor because the shift factors aTp and aT differ in the first term and the second
term on the right-hand side in the equation. This argument is equally valid when more than
two components differ from each other and moreover have shift factors that differ from the
others.

Equation (9) indicates that curves at different temperatures cannot be superimposed using
a common shift factor. However, they can be superimposed using the procedure of Kaplan
and Tschoegl (1974). That is, we first establish a master curve for each component using a
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shift factor for the pure component and then calculate the master curve of the entire system
using a mixture law. This procedure is acceptable only when the volume fraction, relaxation
properties, and shift factor for each component are known, and the interaction between the
components is negligible. That is, Eq. (9) indicates that superimposition using a single shift
factor is impossible for a multi-phase system. The above discussion implies that the TTSP
is not valid for a multi-phase system containing components having different temperature
dependencies.

To date, the applicability of TTSP has been discussed for a multi-phase system in which
the components had different temperature dependencies, although the TTSP is not valid
for a multi-phase system containing components having different temperature dependencies
(Fesko and Tschoegl 1971; Kaplan and Tschoegl 1974; Nakano 1995). Some studies have
shown that the TTSP holds completely or partially for some multi-phase systems, for exam-
ple, polymer liquid crystal and natural products such as wood. This fact appears to suggest
a restrictive condition for applicability to a multi-phase system of TTSP. Thus, we aimed to
identify the condition for which the TTSP is valid. We examined a multi-phase system in
which some components had slight or no temperature dependence.

When the 0th to qth components do not have temperature dependencies, relaxation pro-
cesses are frozen or completed, and the other components have equal temperature depen-
dencies, the relaxation modulus at T1 is given by

En(t, T1) =
q∑

i=0

θiE
n
i (t, T1) +

∑

i>q

θiE
n
i (t, T1). (10)

Here, because the 0th to qth components do not have temperature dependencies, the first
term of the right-hand side in Eq. (10) is constant. Thus, Eq. (10) reduces to

En(t, T1) = const. +
∑

i>q

θiE
n
i (t, T1).

As the other components have equal temperature dependencies,

En(t, T1) = const. +
∑

i>q

θiE
n
i (t/aT , T0). (11)

This is equal to En(t/aT , T0). That is, the TTSP is valid.
The above discussion shows that, in general, the TTSP holds for a multi-phase system

when the TTSP is valid for all components and their shift factors are identical. The TTSP
is not valid for a system that contains at least one component having different tempera-
ture dependence. Moreover, the TTSP holds for a multi-phase system in which some of the
components have no or nearly no temperature dependencies and the others have the same
temperature dependence.

2.3 Application of TTSP to wood as a multi-phase system

Wood has a complex high-order structure and consists of multiple components, e.g., cel-
lulose, hemicellulose, and lignin. The cell wall of wood contains these three compo-
nents. Cellulose is a rigid polymer and is the primary component. It is semi-crystalline
and constitutes the framework of the cell wall; the cellulose is embedded in a ma-
trix consisting of hemicellulose and lignin. That is, wood is made up of both a frame-
work and matrix having longer and shorter relaxation times. The relaxation process
of a multi-phase system with such components thus consists of two processes. Wood
and bamboo have characteristic relaxation behaviors, e.g., “mechano-sorptive behaviors”



444 Mech Time-Depend Mater (2013) 17:439–447

which is the peculiar relaxation behavior under changing moisture content and whose
mechanism has not been elucidated (Armstrong and Christensen 1961; Gibson 1965;
Grossman 1976). The relaxation properties of wood have been examined extensively,
and those of bamboo recently, via microstructural analysis (Aoyagi and Nakano 2009;
Tsubaki and Nakano 2010; Kanzawa et al. 2011).

Wood can be regarded as a multi-phase system consisting of a framework (subscript f )
and a matrix (subscript m). The temperature dependencies of their relaxation properties are
expected to be quite different, that is, aT m �= aTf . In general, the TTSP does not hold for
wood, according to the above discussion. However, Irvine (1980), Back and Salmén (1982),
Salmén (1984), Stephen et al. (1987), and Laborie et al. (2004) reported that lignin, the
main component of the matrix, obeys the WLF equation. The shift factor of the framework
is expected to obey the Arrhenius equation because of local contributions to the relaxation
of microfibrils (Ferry 1980). In the following discussion, we examine the applicability of
the TTSP to wet wood because in this state, the relaxation properties of a framework and
matrix are expected to be very different.

Wood is a porous biomaterial which consists of vacant space and wood cell substance.
Thus, the high-order structure will affect Young’s modulus. Its contribution is represented
by the front factor in the following equation obtained by using a mixture low (Ohgama and
Yamada 1974; Gibson and Ashby 1997; Nakao and Nakano 2011):

E(t) = Φ(θ, ξ)Es(t), (12)

where Φ(θ, ξ) is the front factor related to the shape factor ξ and the volume fraction of
wood substance θ , and Es is Young’s modulus of the wood substance. Below 100 ◦C,
Φ(θ,m) is almost independent of time and temperature. Accordingly, E(t) reduces to Es(t).

Reports have stated that the TTSP holds totally or partially for wood, although the above
discussion stated that the TTSP generally does not hold for a multi-phase system. We resolve
this discrepancy below.

In the following discussion, Young’s moduli of the wood components are represented
by a stretched-exponential function having characteristic relaxation time τ0 and stretching
parameter β . This function is appropriate because relaxation properties are characterized
by two parameters. This approach has been applied to the analysis of the effects of water
adsorption on the stress relaxation of wood (Nakao and Nakano 2011). The equivalence be-
tween a stretched-exponential function and the formulation by the linear viscoelastic theory
has been clarified by Lindsey and Patterson (1980).

Now, consider wet wood as a two-phase system consisting of a framework and a ma-
trix: the former is cellulose and the latter is hemicellulose plus lignin. Using the stretched-
exponential function, Young’s moduli of the framework and the matrix are represented by

Em(t) = Em(0) exp

[
−

(
t

τ0m

)βm
]

+ Em(∞), (13)

Ef (t) = Ef (0) exp

[
−

(
t

τ0f

)βf
]

+ Ef (∞), (14)

where subscripts f and m are the framework and the matrix, respectively, Ei(0) and
Ei(∞)(i = f,m) are the instantaneous Young’s modulus and the long-time asymptote
(equivalent Young’s modulus), respectively. Then, according a mixture law, Young’s modu-
lus of wood is represented by

En
s (t) = θmEn

m(t) + θf En
f (t). (15)
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Relaxation properties of both the framework and matrix are expected to differ remarkably
under the wet condition. This is because the glass transition temperatures of wet wood com-
ponents are much more than 100 ◦C, less than room temperature, and about 60 ◦C for cel-
lulose, hemicellulose, and lignin, respectively (Goring 1963; Irvine 1980, 1984; Back and
Salmén 1982, Salmén and Olsson 1998), so that Tgf and Tgm differ from each other.

The above discussion concluded that the TTSP holds for a multi-phase system when one
phase obeys the relaxation process while the others scarcely contribute to the relaxation.
Define category (i) as the condition under which the matrix obeys the relaxation process
while the framework scarcely contributes to the relaxation and category (ii) as the opposite
condition. For our system,

(i) T < Tgf and t � τ0f ,

(ii) T > Tgm and t � τ0m.

Previous work (Irvine 1980; Salmén 1984; Stephen et al. 1987) indicated that the TTSP
is valid for lignin in the matrix of the cell wall. The matrix consists of hemicellulose and
lignin. There are approximately equal amounts of each, although the ratio differs somewhat
between hardwoods and softwoods. As mentioned before, the glass transition temperature
Tg of hemicellulose is lower than those of the other components and well below room tem-
perature when wet. On the other hand, the Tg of lignin is about 60 ◦C even when wet. Thus,
lignin is the phase that obeys the relaxation process of the matrix from room temperature to
100 ◦C, while hemicellulose does not.

Now, we consider the condition t � τ0f . Considering t/τ0f ≈ 0 in the exponential term
in Eq. (14), Eq. (14) becomes

Ef (t) ≈ Ef (0) + Ef (∞) = const. ≡ Kf . (16)

Thus, Eq. (15) reduces to

En
s (t) = θmEn

m(t) + θf Kn
f . (17)

Equation (17) shows that the matrix obeys the relaxation process for wood and the frame-
work does not contribute. The relaxation modulus measured at two temperatures T0 and T1

under T0 < T1 � Tgf is represented by

En
s (t, T0) = θmEn

m(t, T0) + θf Kn
f , (18)

En
s (t, T1) = θmEn

m(t, T1) + θf Kn
f . (19)

Now, considering t (T1) = t (T0)/aT m because TTSP is valid for the matrix,

Em(t, T1) = Em(t/aT m,T0). (20)

Thus, Eq. (19) reduces to En
s (t, T1) = θmEn

m(t/aT m,T0) + θf Kn
f . Accordingly,

En
s (t, T1) = En

s (t/aT m,T0). (21)

This equation implies that the TTSP is applicable for wood.
When the framework follows the relaxation process after the relaxation process of the

matrix is complete, that is, under the condition t � τ0m,

Em(t) ≈ Em(∞) = const. ≡ Km. (22)

Thus,

En
s (t) = θmKn

m + θf En
f (t). (23)
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Accordingly,

En
s (t, T1) = En

s (t/aTf , T0). (24)

Equation (24) also shows the validity of the TTSP.
It is clear from the above discussion that the TTSP holds for wood as a multi-phase

system if condition (i) or (ii) is satisfied, in other words, in a limited temperature region or
time period. The same discussion is also valid for dynamic behavior. Moreover, even if the
TTSP is not valid for the framework, the TTSP is applicable for wood under the conditions
T0 < T1 � Tgf and t � τ0f . This is because wood consists of components having very
different relaxation properties. This result supports reports stating that the TTSP is partially
valid. It should be noted that the above discussion has not been applied to materials made of
similar components.

3 Conclusion

The applicability of the TTSP to multi-phase systems was analytically discussed assum-
ing a mixture law. It was concluded that the TTSP does not hold for multi-phase systems
in general but does hold for the two-phase system when both components have the same
temperature dependence and when both have no temperature dependence. The applicability
of the TTSP to wet wood was examined using a mixture law and a stretched-exponential
function having characteristic relaxation time τ0 and stretching parameter β . Wood can be
considered as a multi-phase system made up of a framework (f) and a matrix (m); at less than
100 ◦C, the framework (microfibrils) is rigid while the matrix (hemicelluloses and lignin)
is flexible, because their glass transition temperatures Tgf and Tgm under wet condition are
much more than 100 ◦C and near or less than 60 ◦C, respectively. As a result, the TTSP
holds for the matrix in the shorter time region t � τ0f under T < Tgf , while the TTSP holds
for the framework in the longer time region t � τ0m under T > Tgm.
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