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Abstract In this study, we investigate the indentation of viscoelastic composites. The com-
posite is assumed to consist of two phases, i.e., the filler and the matrix, which are linear
elastic and linear viscoelastic material, respectively. Two cases are investigated: (1) hard
fillers are scattered in a very soft matrix; (2) the matrix is much harder than the fillers. Par-
ticular attention is paid to the correlation between the indentation relaxation loads and the
material and geometric parameters of the composite system. To this end, we perform a the-
oretical analysis which is followed by finite element analysis. Our main result is a simple
relation correlating the reduced relaxation modulus of the matrix, Em,r(t), with the indenta-
tion relaxation load P (t), i.e., Em,r(t) = P (t)/P (0), where P (0) represents the indentation
load at the starting point of the relaxation test. This result on one hand indicates that for the
two cases under study the relaxation feature of the indentation load is determined by the re-
duced relaxation modulus of the matrix. On the other hand, the result shows that the reduced
relaxation modulus of the matrix of the composites may be simply determined from the in-
dentation relaxation load without invoking the knowledge of both the indenter geometry and
the profile of indented solids.

Keywords Indentation · Viscoelastic composites · Finite element simulation

1 Introduction

Many natural biological materials, ranging from the articular cartilage, vasculars to cells,
are viscoelastic composites from the viewpoint of material science. Determining the me-
chanical properties of these viscoelastic biological materials is of great importance for the
tissue engineering as well as for understanding the responses of cells or tissues to the
mechanical stimuli (Levental et al. 2007; Lee et al. 2010). In addition, man-made bio-
composites have received much attention during the past decades, which may be formed
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by a matrix and the fillers (e.g. particles or fibers). Biocomposites find wide applications
such as in drug delivery, tissue engineering and cosmetic industry (Thomas et al. 2007;
Ramakrishna et al. 2004). Mechanical characterization of the composites as well as each
constituent in many cases is crucial not only for their practical use, but also for under-
standing the connection between the microstructures and properties of the materials, and
further optimizing the processing procedures. Instrumented indentation, which has been
proved to be a powerful tool for mechanical characterization of time-dependent materials
(e.g. Shimizu et al. 1999; Fischer-Cripps 2004; Lu et al. 2003; Cheng and Cheng 2004;
Cheng et al. 2006; Ngan et al. 2005; Ebenstein and Pruitt 2006; Huang and Lu 2006;
Cheng and Yang 2009; Oyen and Cook 2003; Oyen 2007; Herbert et al. 2009; Cao 2007;
Cao et al. 2009) in recent years, appears to be an efficient tool for evaluating the mechani-
cal properties of viscoelastic composite materials, especially at a local area and/or at small
scales.

In this study, we investigate the indentation of a typical composite system consisting of
two constituents, i.e., the matrix and the filler, which are linear viscoelastic and linear elas-
tic, respectively. The objective is to reveal the correlation between the relaxation feature of
the indentation loads and geometric and material parameters of the composite system. To
this end, a combination of theoretical and computational analysis has been carried out. The
results together with the conclusions made in this study may improve the current under-
standing of the indentation of viscoelastic composite materials.

2 Theoretical analysis

Figure 1 illustrates the indentation of a two-phase composite system using a rigid indenter.
In this study, it is assumed that the matrix and the fillers are perfectly bonded. Effects of the
interface phase are omitted although they may play important roles in many cases.

We first consider the indentation of a rigid indenter with arbitrary profile indenting into a
composite with arbitrary shape (Fig. 1), for which both phases are homogeneous, isotropic

Fig. 1 Schematic drawing of a
rigid indenter indenting into a
composite solid
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and linear elastic materials and the constitutive relations read

σij,(m) = 2Gmεij,(m) + λmδij εkk,(m) = Em

1 + vm

εij,(m) + Emvm

(1 + vm)(1 − 2vm)
δij εkk,(m), (1a)

σij,(f ) = 2Gf εij,(f ) + λf δij εkk,(f ) = Ef

1 + vf

εij,(f ) + Ef vf

(1 + vf )(1 − 2vf )
δij εkk,(f ), (1b)

where σij (i = 1,2,3; j = 1,2,3) and εij are the components of the stress and strain tensors,
respectively, εkk (k = 1,2,3) is the dilatational strain, λ is Lamé constant and G the shear
modulus. E is Young’s modulus, and v is Poisson’s ratio. δij represents Kronecker delta. The
subscripts ‘m’ and ‘f ’ represent the matrix and the filler and are not numbers, respectively.
Under given boundary conditions, the indentation load P may be a function of the following
independent parameters:

P = g(h,Em,Ef , vm, vf , c0, c1, c2, . . . , cM, d0, d1, d2, . . . , dN , e0, e1, e2, . . . , eK), (2)

where h is indenter displacement. c0, c1, c2, . . . , cM (M is a finite integer) are the geo-
metric parameters used to describe the profile of the indenter in the contact region, and
d0, d1, d2, . . . , dN (N is a finite integer) are the parameters describing the shape of the in-
dented solid that affect the indentation responses. e0, e1, e2, . . . , eK (K is a finite integer) are
the parameters representing the positions and geometric shapes of the fillers. The geometric
parameters cξ (0 ≤ ξ ≤ M), dη (0 ≤ η ≤ N) and eς (0 ≤ ς ≤ K) should have the following
dimensions

[cξ ] = [h]Rξ , (3a)

[dη] = [h]rη , (3b)

[eς ] = [h]bς , (3c)

where Rξ , rη and bς are real numbers. Among the governing parameters in (2), the inden-
ter displacement h and the modulus of the matrix Em have the independent dimensions.
Applying Pi-theorem in dimensional analysis (Barenblatt 1996) to (2) leads to

P = Emh2	

(
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)
, (4)

where 	 is a dimensionless function.
In this study, we are interested in two cases: (1) hard fillers are embedded in a very soft

matrix; and (2) the matrix is much harder than the fillers. For both cases, it is assumed that
the dimensionless parameter Em/Ef may drop out of (4), the physics behind this assumption
will be addressed in detail below, and the indentation load-depth relation may be given by
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We further investigate the above indentation problem by assuming that the matrix mate-
rial is linear viscoelastic instead of linear elastic, and the stress-strain relation given by

σij,(m)(t) =
∫ t

0

[
2Gm(t − τ)

∂εij,(m)(τ )

∂τ
+ λm(t − τ)δij

∂εkk,(m)(τ )

∂τ

]
dτ, (7)

Gm and λm in the time domain are related to the relaxation modulus Em(t) and Poisson’s
ratio vm(t) by

Gm(t) = Em(t)

2(1 + vm(t))
, (8)

λm(t) = Em(t)vm(t)

(1 + vm(t))(1 − 2vm(t))
. (9)

Assuming a time-independent Poisson’s ratio, invoking the elastic-viscoelastic correspon-
dence principle (Christensen 1982), the indentation load-depth relation obtained from (5)
by replacing the elastic modulus Em with Ēm(s)s can be given by

P̄ (s) = Ēm(s)s
(h̄(s)) (10)

where Ēm(s) is the Laplace transform of the relaxation modulus Em(t), s is the transform
variable. P̄ (s) and h̄(s) represent the Laplace transform of the indentation load P (t) and the
indenter displacement h(t), respectively. The inverse Laplace transform of (10) gives

P (t) =
∫ t

0
Em(t − τ)d
. (11)

The traditional elastic-viscoelastic correspondence principle is limited to the case where
boundary conditions are time-independent, although the extended correspondence principle
may attack the problems with moving boundaries (Christensen 1982). This study focuses on
the indentation relaxation test in which the indenter displacement is kept as constant. Our
finite element analysis shows that contact area in this case basically does not change and
thus, indeed, the elastic-viscoelastic correspondence principle may be reliably adopted. For
a spherical, conical or Berkovich indenter indenting into a homogeneous half-space, (11)
degenerates to the results reported in the literature (Graham 1965; Giannakopoulos 2006).

Equation (11) may be further written as

P (t) =
∫ t

0
E(t − τ)

d


dh

dh

dτ
dτ. (12)

As aforementioned, we consider a relaxation test, in which the indenter displacement is
described via a Heaviside step function,

h =
{

h0 (t ≥ 0),

0 (t < 0).
(13)

Inserting (13) into (12) reads

P (t) =
∫ t

0
Em(t − τ)

d


dh
h0δ(τ )dτ, (14)
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where δ is the Dirac delta function. According to the integral property of the Dirac delta
function, (14) becomes

P (t) = Em(t)h0
d


dh

∣∣∣∣
h=h0

. (15)

It is noted that the parameter h0(d
/dh)|h=h0 in (15) is independent of time for a time-
independent Poisson’s ratio. The relaxation modulus of the matrix may be written in the
following form (Fung 1993)

Em(t) = Em,0Em,r(t), (16)

where Em,0 is the instantaneous modulus, representing the stiffness of a viscoelastic material
at the instantaneous time when the external load acts, and Em,r(t) is the reduced relaxation
modulus (normalized relaxation modulus) which indicates the relaxation property of a vis-
coelastic material.

Inserting (16) into (15) leads to

Em,r(t) = P (t)

P (0)
, (17)

where P (0) is the indentation load at the starting point of relaxation. Equation (17) and the
analysis above contain the following interesting and insightful information.

(i) The results indicate that when a direct problem is considered, the indentation loads
depend on the material properties of both the matrix and the fillers, the geometric para-
meters of the system as well as the indentation depth. However, the relaxation feature
of the contact loads may only depend on the reduced relaxation modulus of the matrix
material and is independent of other geometric and material parameters.

(ii) From the viewpoint of inverse analysis, (17) shows that the reduced relaxation modulus
of the matrix material can be measured simply from the indentation relaxation loads.
It is not necessary to invoke the knowledge of the geometric parameters of the system
(including the profiles of the indenter and the indented solids as well as the positions
and shapes of the fillers) and the material properties of the fillers.

It should be noted that the derivation of (5) from (4) contains a key assumption, i.e., the
dimensionless function 	 in (4) is independent of Em/Ef when Em/Ef is sufficiently large
or sufficiently small. Here, we provide an explanation on the physics behind this assumption.
(1) When Em/Ef is sufficiently large, i.e., the fillers are very soft compared to the matrix,
the contribution of the fillers to the total strain energy of the system can be negligible and
in this sense the fillers resemble the voids. (2) In the case that Em/Ef is sufficiently small,
indentation induced deformation is mainly accommodated by the matrix and the role played
by fillers resembles that of rigid inclusions (Liu et al. 2005). Effects of both the voids and
rigid inclusions on the indentation responses can be represented by the geometric parameters
and the parameter Em/Ef may be dropped out from (4). For the indentation of porous
substrates (Ef = 0), which represents a limit of the case of Em,l � Ef as investigated in
this paper, we have demonstrated the applicability of (17) (Cao et al. 2010). Here, Em,l is the
long-term modulus of the matrix material. In next section, we will examine our theoretical
result and the explanation above using finite element analysis.
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Fig. 2 Indentation displacement
history used in the simulation of
the indentation relaxation tests

Fig. 3 Indentation of a
cylindrical indenter into a
composite substrate with uniform
distribution of fibres.
(a) Computational model;
(b) Deformation of the substrate
corresponding to the maximum
indentation depth
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Fig. 4 Indentation of a
cylindrical indenter into a
composite substrate with random
distribution of the fibres.
(a) Computational model;
(b) Deformation of the indented
solid at the maximum indentation
depth

3 Finite element analysis

Finite element analysis is performed using the commercial software ABAQUS (2008). De-
tail information involved in the simulations is given as follows.

3.1 Details of the computational modelling

In the simulations, the matrix material of the composite is assumed to be linear viscoelastic
for which the relaxation modulus and Poisson’s ratio are taken as Em(t) = 900[1 − 0.4(1 −
e−t/100s)] MPa and vm = 0.4, respectively (the material properties taken here are used for
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Fig. 5 Indentation of a
cylindrical indenter into a
composite substrate in which the
fibres directly contact with the
indenter. (a) Computational
model; (b) Deformation of the
indented solid at the maximum
indentation depth

illustration, but the conclusions may apply to realistic systems). In this case, the matrix ma-
terial has an instantaneous modulus Em,0 = 900 MPa, long-term modulus Em,l = 540 MPa
and the characteristic relaxation time of tc = 100 s. The modulus of the fillers varies from
540 Pa to 100 GPa and vf is taken as 0.3. The loading protocol adopted in the simulations
is shown in Fig. 2, which is an approximation of the step function as given by (13). A good
approximation requires that tl at which the indentation displacement reaches its maximum
value should be much smaller than tc . Here we take tl = 0.05tc = 5 s. The relaxation time
tr is taken as 1000 s, which is much larger than the characteristic relaxation time of the
material.

The following representative examples of practical interest are investigated.
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Fig. 6 A cylindrical indenter
with irregular profile indenting
into a linear viscoelastic substrate
containing elastic fibres.
(a) Computational model;
(b) Deformation at the maximum
indentation depth

(1) Indentation of a cylindrical indenter into a composite substrate with uniform distribu-
tion of fibres

In this example, a cylindrical indenter is assumed to indent into a linear viscoelastic sub-
strate containing elastic fibres. Figure 3(a) gives our two-dimensional computational model.
The bottom of the indented solid is fixed with other boundaries traction free. The fibres are
uniformly distributed in the matrix. A total of 36264 four-node bilinear plane strain quadri-
lateral elements with reduced integration and hourglass control (CPE4R) are used to model
the fibres and the matrix. The deformed indented solid is shown as Fig. 3(b).
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Fig. 7 A spherical indenter
indenting into a fibre reinforced
composite substrate.
(a) Computational model;
(b) Finite element mesh

(2) Indentation of a cylindrical indenter into a composite substrate with random distribu-
tion of the fibres

This example represents a cylindrical indenter indenting into a linear viscoelastic sub-
strate containing non-uniform distribution of elastic fibres. The volume ratio of the fibres in
this example is the same as that in Example (1). Figure 4(a) gives the computational model
together with the boundary conditions. The finite element model contains 30544 CPE4R
elements. The bottom of the indented solid is fixed with other boundaries traction free.
Figure 4(b) represents the deformation of the indented solid at the maximum indentation
depth.

(3) Indentation of a cylindrical indenter into a composite substrate in which the fibres di-
rectly contact with the indenter
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Fig. 8 A comparison of the identified matrix reduced relaxation modulus Em,r (t) with actual solutions.
(a) Example (1); (b) Example (2); (c) Example (3); (d) Example (4)

In the previous two examples, the elastic fibres are embedded in the matrix. Here we
investigate the case in which the fibres may directly contact with the indenter. Figure 5(a)
shows our two-dimensional computational model consisting of 36816 four-node bilinear
plane strain quadrilateral elements with reduced integration and hourglass control. The
boundary conditions are the same as those given in Examples (1) and (2). The deformed
indented solid is shown as Fig. 5(b).

(4) Indentation of a indenter with irregular shape into a composite substrate

In the Examples (1), (2) and (3), the fibres with circular cross-section and the indenter
with regular profile are investigated. In this example, we study the case in which a indenter
with irregular profile is assumed to indent into a linear viscoelastic substrate containing
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Fig. 8 (Continued)

elastic fibres with elliptical cross-section. Figure 6(a) illustrates the computational model
containing 27165 CPE4R elements. The bottom of the indented solid is fixed with other
boundaries traction free. Figure 6(b) shows the deformed indented solid.

(5) A spherical indenter indenting into a fibre reinforced composite substrate

The examples above represent two dimensional indentation problems. A three-dimensio-
nal example is further considered. We investigate a spherical indenter indenting into a fibre-
reinforced composite. Figure 7 illustrates the computational model which contains a total of
160 371 linear tetrahedral elements (C3D4). Very fine mesh is used in the contact region in
order to guarantee the convergence of the computational results. The boundary conditions
used in the analysis are given in Fig. 7(a).

In all the examples above, the mesh qualities are checked to avoid extreme distortions
and the convergences are ensured. The relaxation loads-time relations are recorded, which
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Fig. 9 A comparison of the
identified matrix reduced
relaxation modulus Em,r (t) with
actual solution for Example (5)

will be used together with (17) to determine the reduced relaxation modulus of the matrix
as discussed in detail below.

3.2 Results and discussions

For the examples above, we focus on the displacement-controlled indentation. The reduced
relaxation moduli of the matrix materials are determined from the computed relaxation
load-time relation and (17). Figure 8 shows a comparison of the identified results with the
actual solutions for Examples (1)∼(4). Figure 9 represents the comparison of the identi-
fied matrix reduced relaxation modulus based on (17) to the actual solution for Example
(5). The results in these figures show that when Em,l/Ef or Ef /Em,0 is sufficiently large,
e.g. larger than 10, (17) as given by the theoretical analysis works well for all the exam-
ples.

In our theoretical analysis, the elastic-viscoelastic correspondence principle is adopted
assuming that the contact area does not change during the indentation relaxation test. We
carefully examine this assumption by examining the variation in the contact area throughout
the indentation relaxation procedure. We find that for all the examples under study, indeed,
the contact areas basically do not change as illustrated in Fig. 10. The figure shows the
deformation of the indented solid near to the indenter corresponding to different relaxation
time for Example (4).

The representative examples presented above demonstrate the validity of our theoretical
analysis to the indentation problems of practical interest. Nevertheless, the limitations in the
theoretical analysis should be emphasized.

First, the constitutive law of the matrix involved in this study is limited to the linear
viscoelastic model. For the indentation of nonlinear viscoelastic materials, the theoretical
analysis and conclusions drawn herein may be invalid. In addition, the present study is lim-
ited to the case where the Poisson’s ratio is time-independent and the instantaneous modulus
and characteristic relaxation time do not change with loading. It is noted that these assump-
tions have been adopted in quite a few previous publications (e.g. Shimizu et al. 1999;
Cheng et al. 2006; Oyen 2005) and are indeed reasonable for various viscoelastic materials
in engineering.
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Fig. 10 Variation of the contact area with the indentation relaxation time for Example (4) and the case of
Ef = 9000 MPa. (a) t = 0 s; (b) t = 302 s; (c) t = 602 s; (d) t = 1000 s

Second, it is pointed out that in this study we focus on the circumstances where the
fillers are much softer or harder than the matrix so that their effects on the indentation re-
sponses can be represented by the geometric parameters. It is important to mention a very
critical situation, i.e., indentation is performed on single fibre or particle. In this case, de-
termining the relaxation property of the matrix from the indentation responses and (17)
appears to be unreliable especially when the deformation is mainly confined at a local
area of the fibre/particle. In order to illustrate this point, we investigate an axisymmet-
ric rigid cone indenting into a particle surrounded by the matrix, Fig. 11(a). Figure 11(b)
gives the deformation of the indented solid at the maximum indentation depth. The relax-
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Fig. 10 (Continued)

ation loads together with (17) are adopted to determine the reduced relaxation modulus
of the matrix and the results given in Fig. 12. It is seen that the identified results are far
from the actual solution. This is because that in this case the particle makes major con-
tribution to the strain energy of the system although the particle is much softer than the
matrix as shown in Fig. 11(b). Thus assumption made in the derivation of (5) from (4) is
invalid.

Finally, it is emphasized that the theoretical analysis performed here is restricted to the
two phase composite system. When the interface phase plays a key role in a system, cau-
tion should be taken when using the results as well as the conclusions achieved in this
study.
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Fig. 11 A conical indenter
indenting into a single particle
embedded in a linear viscoelastic
matrix. (a) Computational model;
(b) Deformation of the indented
solid for the case of
Ef = 54 MPa

4 Conclusions

In this study, we address the indentation of a two-phase composite system in which the
matrix material is a linear viscoelastic and the fillers are a linear elastic material. In summary,
the following contributions have been made.

Our theoretical analysis performed on a rigid indenter with arbitrary profile indenting
into a composite with arbitrary shape reveals a simple correlation between the indentation
relaxation loads and the reduced relaxation modulus of the matrix Em,r(t). On one hand, the
relation indicates that the relaxation feature of the contact loads is determined by Em,r(t)

and basically independent of other geometric and material parameters of the system pro-
vided that the fillers are much harder or softer than the matrix. On the other hand, our
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Fig. 12 A comparison of the
identified reduced relaxation
modulus of the matrix to the real
solution (the indent is on the
filler, Ef = 54 MPa)

analysis shows that Em,r(t) may be measured using indentation relaxation loads and the
simple relation reported here. Numerical experiments based on finite element analysis have
been carried out to identify the extent to which the theoretical result is effective. The results
reported in this study together with the discussions provide insightful information and may
help understand instrumented indentation of viscoelastic composites, which may include
some biological soft tissues and man-made biocomposites.
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