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Abstract We propose a generalization of the Kuhn model of linear viscoelasticity. This gen-
eralization, which has four material parameters, is able to provide a near frequency indepen-
dent response over a wide range of frequencies. It is useful for highly dissipative materials
such as asphalt concrete. It is derived by generalizing Lubliner and Panoskaltsis’s modi-
fied Kuhn model, but we also show that it is closely related to fractional derivative models.
We show that the model admits a rheological approximation, that is, an approximation by
classical springs and dashpots. The model and rheological representation are compared to
experimental data.

Keywords Viscoelasticity · Logarithmic model · Rheological representation · Fractional
derivative model · Dissipative material · Asphalt concrete

1 The generalized Kuhn model

The creep function J (t) of a linear viscoelastic material is defined for t ≥ 0 to be the strain
response to a unit stress applied at t = 0 and held constant thereafter. In 1947, Kuhn et al.
(1947) proposed the creep function

J (t) = B

∫ t

0

1 − e−Cx

x
dx (1)
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as a model for rubber and other glassy solids. Here, B,C are material properties. This model
does not support instantaneous strain (since, J (0) = 0) present in many real structural mate-
rials. Lubliner and Panoskaltsis (1992) modified this model by adding a constant to account
for instantaneous strain response of real structural materials. They also applied a change of
variables τ = t/(Cx) to the integral in (1) to obtain the modified Kuhn model. As a result of
the change of variables, the creep function is written in retardation-time superposition form
as

J (t) = A + B

∫ ∞

λ

1 − e−t/τ

τ
dτ, (2)

where λ in (2) stands for 1/C in (1). This three-parameter model can better represent con-
crete and other structural materials with low dissipative properties.

We propose a further generalization of this model to account for highly dissipative ma-
terials such as asphalt concrete. The generalization is the introduction a fourth parameter
α ∈ [0,1), a fractional exponent, as follows:

J (t) = A + B

∫ ∞

λ

1 − e−t/τ

τ 1−α
dτ. (3)

The generalized Kuhn model (GKM) may also be obtained as an extension of the frac-
tional Maxwell model as explained in Sect. 2. As with the modified Kuhn model, it is possi-
ble to develop a family of rheological approximations to the GKM, which are described in
Sect. 3. These approximations are useful for finite element analysis. In Sect. 4, we show that
the GKM fits experimental data for asphalt concrete closely. The modified Kuhn model is
not able to fit the data as well. As discussed in Sect. 4 the data may also be fit with a series
Kelvin–Voigt model, but more parameters are needed to get a good fit, and at the expense of
physical meaning of the parameters.

1.1 Nomenclature

The following is a list of symbols used throughout the paper.

t = time, assumed to be nonnegative,
J (t) = creep function, or, equivalently strain as a function of time in response to

a step-function load,
ω = frequency of cyclic load (ω > 0),

J ∗(ω) = complex compliance, that is, Fourier transform of J (t),
A,B,λ,α = material parameters of generalized Kuhn model,

μ,N = parameters of first rheological approximation to J (t),
N,R = parameters of second rheological approximation to J (t),

L = logλ.

2 Comparison to fractional Maxwell model

A fractional dashpot is defined to be a viscoelastic object whose creep function has the
form μtα for some α ∈ (0,1) and some scalar μ. Fractional dashpots are much better able
to capture the properties of real materials than classical dashpots because their loss tangent
is relatively insensitive to frequency. A drawback of a plain fractional dashpot is that it lacks
instantaneous elasticity since the creep function is 0 at t = 0. This leads to consideration of
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the fractional Maxwell model (FMM), which consists of a classical spring in series with a
fractional dashpot. Its creep compliance is therefore J (t) = J0 +μtα . As shown in Papoulia
et al. (2008), this creep compliance may be rewritten as

J (t) = J0 + αμ

�(1 − α)

∫ ∞

0

1 − et/τ

τ 1−α
dτ. (4)

Comparison of (4) to (3) shows that the FMM is a special case of the GKM obtained by
taking λ = 0. Furthermore, the monotone convergence theorem (Royden 1988) implies that
for any t > 0, Jλ(t) → J0(t) as λ → 0, where Jλ(t) is notation for the GKM creep function
in which the dependence on parameter λ is explicitly indicated. This shows that the GKM
may be described as a generalization of the FMM as well as a generalization of the modified
Kuhn model.

3 Rheological representation of the GKM

A difficulty with the GKM is that its representation via the creep function (3) is not eas-
ily incorporated into finite element analysis. Viscoelastic models composed of springs and
dashpots, i.e., rheological models, are easily incorporated into computation because they
can be described via a system of ordinary differential equations relating state variables and
external stress and strain. To bridge this gap, we develop a family of rheological models
whose viscoelastic behavior converges to that of the GKM. Our technique is to approximate
the integral in (3) by a quadrature rule. We refer to the resulting network as a rheologi-
cal representation of the GKM. We propose two such representations in this section. Both
have the form of a series composed of N classical Kelvin–Voigt units and one spring. These
representations were proposed for the FMM in Papoulia et al. (2008).

The first technique is based on a piecewise-constant quadrature rule and is based directly
on a technique in Lubliner and Panoskaltsis (1992). The approximation has two parameters,
N,μ such that μ > λ. Parameter N is the number of Kelvin–Voigt units in the representation
while parameter μ controls the range of frequencies for which the approximation is accurate.
Let r = (μ/λ)1/N . Let τ0, . . . , τN be defined according to the formula τm = λ(N−m)/Nμm/N .
With this definition, the following properties hold: τ0 = λ, τN = μ, and for each intermediate
m, τm = rτm−1, i.e., the τm’s are geometrically spaced with ratio r . Define

Jμ,N(t) = A + B ln r

N−1∑
m=0

ξα
m

(
1 − e−t/τm

)
. (5)

Observe that Jμ,N(t) is the creep function of N Kelvin–Voigt units in series.
A second technique uses midpoint quadrature as in Papoulia et al. (2008) and is therefore

expected to be more accurate (since midpoint quadrature is higher order than piecewise
constant approximation). Let R > 0 be a parameter such that eR > λ. More details about R

will be provided below. Break up (3) into three terms:

J (t) = A + J (i)(t) + J (ii)(t)

where

J (i)(t) = B

∫ eR

λ

1 − e−t/τ

τ 1−α
dτ (6)
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and

J (ii)(t) = B

∫ ∞

eR

1 − e−t/τ

τ 1−α
dτ. (7)

Perform a change of variables on (6) given by τ = eθ to obtain

J (i)(t) = B

∫ R

L

(1 − exp(−t/eθ ))eαθ dθ,

where L = lnλ. Let N be the number Kelvin–Voigt units in the rheological approximation,
and assume now that R depends on N in such a way that as N → ∞, R → ∞ while R/N →
0, e.g., R = LN1/2. To approximate the preceding formula for J (i)(t), subdivide [L,R] into
N −1 equal subintervals [L,L+ (R −L)/(N −1)], . . . , [L+ (N −2)(R −L)/(N −1),R].
Use a compound midpoint quadrature rule based on these subintervals:

J
(i)
N,R(t) = B

N−1∑
m=1

(1 − exp(−t/exm))eαxm(R − L)/(N − 1)

where xm is the midpoint of the mth interval, i.e., xm = L + (m − 1/2)(R − L)/(N − 1).
For J (ii)(t), we develop an approximation in terms of a single Kelvin–Voigt unit by trans-

forming this integral into the frequency domain, carrying out an approximation in that do-
main under the assumption that ω � e−R (valid in the limit since R → ∞ as N → ∞), and
then transforming back to the time domain. In particular, the Fourier transform of (7) yields

J (ii)∗(ω) = B

∫ ∞

eR

dτ

(1 + iωτ)τ 1−α
.

Since we assume ω � e−R , the approximation 1 + iωτ ≈ iωτ is valid, in which case the
integral can be evaluated in closed form:

J (ii)∗(ω) ≈ B

∫ ∞

eR

dτ

(iωτ)τ 1−α

= B

iωe(1−α)R(1 − α)

= BeαR

iωeR(1 − α)

≈ BeαR

(1 + iωeR)(1 − α)
.

The quantity on the last line is seen to be the frequency domain representation of a Kelvin–
Voigt unit. Transforming back to the time domain yields the corresponding creep function:
J (ii)(t) ≈ J

(ii)
R (t) where

J
(ii)
R (t) = BeαR(1 − exp(t/eR))/(1 − α).

Therefore, the complete rheological approximation to (3) is given by

JN,R(t) = A + J (i)(t) + J (ii)(t)
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≈ A + J
(i)
N,R(t) + J

(ii)
R (t)

= A + B

N−1∑
m=1

(1 − exp(−t/exm))eαxm(R − L)/(N − 1)

+ BeαR(1 − exp(t/eR))/(1 − α). (8)

A very slight modification to Theorem 1 of Papoulia et al. (2008) shows that for a fixed
t , Jμ,N(t) → J (t) as N → ∞ and μ → ∞, provided that (μ/λ)1/N → 1. (Here, Jμ,N refers
to the first rheological approximation scheme.) For example, one could select μ = λe

√
N .

In this work, we will show instead that J ∗
N,R(ω) → J ∗(ω) for any ω → 0, as N → ∞

and R → ∞ provided that R/N → 0 (e.g., R = L
√

N ). Here, J ∗
N,R refers to the frequency-

domain transformation of the second approximation scheme. Note that a convergence proof
for a fixed t as in the previous paragraph does not imply convergence of the Fourier trans-
form for a fixed ω (unless the convergence argument additionally establishes uniformity of
the limits). Therefore, the theorem that follows is not a consequence of results from Papoulia
et al. (2008) although the proof technique is similar.

Theorem 1 Consider a specification of the parameters λ,α,A,B in the generalized Kuhn
model (3). Let L = lnλ. Let N be a positive integer parameter, and let R > L be a scalar
depending on N such that R → ∞ and R/N → 0 as N → ∞ (e.g., R = LN1/2). Then for
any ω > 0, J ∗

N,R(ω) → J ∗(ω) as N → ∞.

Proof It follows from (3) and well-known theory of Fourier transforms (see, e.g., Golden
and Graham 1988) that

J ∗(ω) = A + B

∫ ∞

λ

dτ

τ 1−α(1 + iωτ)
. (9)

On the other hand, by (8),

J ∗
N,R(ω) = A + B

(
N−1∑
m=1

yα
mδ

1 + iωym

+ eαR/(1 − α)

1 + iωeR

)
, (10)

where ym = exp(xm) and δ = (R − L)/(N − 1). Let us explicitly denote the dependence
of these parameters on N by writing yN

m , RN and δN . Partition the interval [λ,∞) into N

subintervals IN
1 = [λ,λeδN

), IN
2 = [λeδN

, λe2δN
), . . . ,IN

N−1 = [λe(N−2)δN
, λe(N−1)δN

), IN∞ =
[λe(N−1)δN

,∞). Recall that xm is the midpoint of the interval [L + (m − 1)δN ,L + mδN ]
for m = 1, . . . ,N − 1. This means that yN

m lies in the interval [eLe(m−1)δN
, eLemδN

), which
is the same as IN

m since λ = eL.
Notice also that the right endpoint λe(N−1)δN

of IN
N−1, which is also the left endpoint of

IN∞, simplifies to eR since δN = (RN − L)/(N − 1) and eL = λ.
Given some arbitrary τ ∈ [λ,∞), let m(N,τ) be the value of m such that τ lies in IN

m .
Note that for N sufficiently large, m < ∞ since the right endpoint of IN

N−1 tends to ∞ as

N → ∞. This is because the right endpoint is equal to eRN
, and we have assumed that

RN → ∞ as N → ∞. Thus, for N sufficiently large, m(N,τ) < ∞.
Consider only those values of N sufficiently large so that m(N,τ) < ∞, and define

y(N, τ) to be yN
m(N,τ). We claim that y(N, τ) → τ as N → ∞. This is because y(N, τ) and
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Fig. 1 The solid curve shows the best fit of a GKM to Dietrich’s asphalt data using the procedure described
in the text. Since the data being fit, J ∗(ω) is complex, the quality of the fit is depicted via four real quantities:
(a) |J ∗|; (b) tan(δ); (c) Real(J ∗); and (d) Imag(J ∗). In each plot, the asterisks are the data and the solid
line is the GKM. In addition the rheological representation given by (10) is shown as a dashed line using
parameters N = 15, R = 4

yN
m (where, here, m is shorthand for m(N,τ)) both lie in the same subinterval, namely IN

m ,
but the width of this subinterval, which is λ(emδN − e(m−1)δN

), i.e., λe(m−1)δN
(eδN − 1), is

bounded above by τ(eδN − 1), and eδN − 1 → 0 as N → ∞ since δ → 0 (by the assumption
that RN/N → 0 as N → ∞).

Therefore, y(N, τ) → τ . Now, for a fixed ω > 0 and N ≥ 1, consider the piecewise
constant function fω,N : R → R given by

fω,N(τ ) =
⎧⎨
⎩

yα
mδ

(1 + iωym)λe(m−1)δ(eδ − 1)
for τ ∈ Im, m = 1, . . . ,N − 1,

0 for τ /∈ [λ, eR),
(11)

where now we have written again ym, δ, etc., for yN
m , δN , etc. Observe that

∫ ∞

λ

fω,N(τ ) dτ =
N−1∑
m=1

yα
mδ

1 + iωym
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Fig. 2 This figure is identical to Fig. 1 except the rheological representation (dashed line, which is mostly
hidden by the solid line) is now based on N = 30, R = 6 and hence is much closer to the GKM (solid line)

because the left-hand side can be written as
∫

I1
+ ∫

I2
+· · ·, a sum of integrals of constant

functions, and the length of interval Im which is a factor in the mth such term, is exactly
cancelled out by the factor λe(m−1)δ(eδ − 1) appearing in the denominator of (11). Note that
the right-hand side of the previous equation is the second term (except for the scalar B) of
(10).

Next, we claim that for a fixed ω and τ , fω,N(τ ) → fω(τ) as N → ∞, where fω(τ) is
the integrand of (9), i.e.,

fω(τ) = 1

τ 1−α(1 + iωτ)
.

To show this, observe that δ → 0 as N → ∞, hence δ/(eδ − 1) → 1. As argued above,
ym → τ . Since ym and τ both lie in [λe(m−1)δ, λe(m)δ), an interval whose width is tending
to zero, λe(m−1)δ → τ as N → ∞. Thus, the limiting value of fω,N(τ ) is τα/((1 + iωτ)τ ),
which is fω(τ).

Next, consider only those values of N sufficiently large so that δ ≤ 1. Note that ym, τ ∈
Im, and the endpoints of Im differ by a multiplicative factor eδ , which is at most e by as-
sumption, we can claim that τ/e ≤ ym ≤ eτ and λe(m−1)δ ≥ τ/e. Also, δ/(eδ − 1) ≤ 1 for all
δ > 0. Finally, |1 − iωym| ≥ ωym since the imaginary part of a complex number is bounded
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Fig. 3 This figure is analogous to Fig. 1; the data in this figure is from Cerni, and the rheological represen-
tation uses N = 15, R = 7

by its modulus. Therefore, for τ ∈ [λ, eR),

|fω,N(τ )| = yα
mδ

|1 + iωym| · λe(m−1)δ(eδ − 1)

≤ (eτ )α

ω(τ/e)(τ/e)

= eα+2τα−2/ω.

Define g(τ) to be the right-hand side of the preceding inequality, that is, eα+2τα−2/ω. Since
0 < α < 1, g(τ) is integrable on the interval [λ,∞) for any λ > 0. Since fω,N → fω point-
wise and since |fω,N | is bounded by an integrable function for all N sufficiently large, the
Lebesgue convergence theorem implies that

∫ ∞

λ

fω,N (τ ) dτ →
∫ ∞

λ

fω(τ ) dτ

as N → ∞. This proves the second term of (10) converges to the corresponding term of (9).
The third term of (10) tends to 0 as N → ∞ since RN → ∞ as N → ∞. This proves the
theorem. �
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Fig. 4 This figure is identical to Fig. 3 except the rheological representation uses N = 20, R = 10

4 Asphalt experiments

In this section, we fit two sets of asphalt creep data with the generalized Kuhn model. In
both cases, the data consists of ordered pairs of the form (ωi, J

∗
i ), i = 1, . . . , n, measured in

the laboratory.
Our data-fitting procedure is as follows. We loop over a list of 60 exponentially spaced

candidate values for λ. These candidate values are generated geometrically spaced in the
interval [10−11,102]. This range is chosen because parameter λ has the units of time, and
the relevant range of timescales for a given data set are no larger than 102.

Nested with the λ loop, we also loop over 60 values of α spaced evenly in [0,1). Once
λ and α are fixed, it remains to select A and B . Observe that (3) is linear in A and B , so
this amounts to solving a linear least-squares problem. The fitting is done on the Fourier
transform given by (9). Computing the coefficients of the least-squares problem requires
evaluation of the integral in (9); this is done numerically with Matlab’s quad function after a
change of variables given by τ = (σ/(1−σ))1/(1−α), which makes the interval of integration
finite and also makes the integrand nonsingular.

We solve the following weighted version of the linear least squares problem

min
A,B

[
n∑

i=1

(�J ∗(ωi)

�J ∗
i

− 1

)2

+
n∑

i=1

(�J ∗(ωi)

�J ∗
i

− �J ∗(ωi)

�J ∗
i

)2
]

.
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Fig. 5 This figure shows the best fit to the Dietrich data by a 3-unit SKVM model using the procedure
described in the text. The four plots are the four representations of the complex fit used in the previous figures

In this expression, J ∗(ωi) denotes (3) evaluated at ωi , in which α and λ are fixed while A

and B are the scalars to be optimized, and J ∗
i denotes the experimental data correspond-

ing to ωi . The first summation expresses the objective that the real part of J ∗(ω) should
be close to the real part of J ∗

i . This way of writing the term (as opposed to the more obvi-
ous formulation (�J ∗(ωi) − �J ∗

i )2) ensures that the experimental values with a large value
of �J ∗

i do not dominate those with small values. The second term in the summation ex-
presses the objective that the loss tangent of J ∗(ωi) should be close to the experimental
loss tangent. (The loss tangents are obtained by cross-multiplying the two quotients in sec-
ond term; the more obvious way to express the goodness of the loss-tangent fit, namely,
((�J ∗

i )/(�J ∗
i ) − (�J ∗(ωi))/(�J ∗(ωi)))

2, is nonlinear in A and B .) Thus, our fitting pro-
cedure involves solving 3600 linear least squares problems and keeping the best overall
solution, that is, the solution with the smallest residual. It was checked that 60 candidate
values for λ and 60 for α were adequate by trying refinements of both numbers and noting
that a significantly better fit was not obtained.

Figure 1 shows Dietrich et al.’s (1998) asphalt data (asphalt D100 with 15% of rub-
ber flower) plotted against the best fitting GKM. The optimal parameters found using the
search procedure described above are A = .03693/GPa, B = .09143/(GPa · sα), λ = 0 s,
α = .36667. As can be seen from the figure, the fit to the data seems quite good. This figure
also shows the series Kelvin–Voigt rheological representation of this GKM defined by (10)
with N = 15, R = 4. The rheological representation is close to the true GKM (indeed, the
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Fig. 6 This figure shows the best fit to the Cerni data by a 3-unit SKVM model using the procedure described
in the text. The four plots are the four representations of the complex fit used in the previous figures

difference is not much larger than the difference between the GKM and true data). A more
accurate rheological representation is shown in Fig. 2.

Figure 3 shows Cerni’s asphalt data plotted against the best fitting GKM. Cerni (2001)
conducted several experiments; the experiment depicted here is for modified bitumen SBS-
R using 80/100 bitumen as base and tested at 35 °C. The optimal parameters for this fit are
A = 0.1459/MPa, B = 1.0529/(GPa · sα), λ = 2.0 ·10−8 s, α = 0.8. Again, the plot shows a
fairly good fit. This figure also shows a rheological representation of this GKM with N = 15,
R = 7, and a more accurate rheological representation is shown in Fig. 4.

In order to assess the quality of these fits, it is helpful to fit other models to the same data.
Recall that the rheological representation used to approximate the GKM is a series Kelvin–
Voigt model (SKVM). Therefore, it is natural to ask whether a SKVM can be fit directly
to the data. We attempted to fit a 3-unit SKVM directly to the data. In frequency space, the
creep function for an N -unit SKVM is given by

J ∗(ω) = j0 +
N∑

i=1

ji

1 + iωτi

.

The fitting procedure was as follows. Observe from the preceding equation that once
τ1, . . . , τN are specified, fitting the data is a linear least-squares problem for j0 . . . , jN .
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Fig. 7 This figure shows the best fit to the Dietrich data by a modified Kuhn model (MKM) using the
procedure described in the text. The four plots are the four representations of the complex fit used in the
previous figures

Therefore, our fitting procedure makes a predefined list of 50 exponentially spaced possi-
ble values of τi and tries all

(50
3

)
combinations. For each combination, a linear least-squares

problem is solved to obtain the ji ’s. The results of this process for this data are presented in
Figs. 5 and 6. It can be observed that these fits are quite good—comparable to the quality
of the GKM fit. On the other hand, a disadvantage of this model is that there is no obvious
physical interpretation of the seven parameters that describe the model. A second disadvan-
tage is that the model is prone to overfitting. Indeed, it is observed from the two figures that
there is oscillation in the fitting of tan δ that appears to be caused by noise in the data.

A final point to make about fitting an SKVM model is that there is no guarantee that the
N + 1 parameters j0, . . . , jN emerging from our procedure will be positive (since we used
classical rather than nonnegative least-squares fitting, the latter being a much more expen-
sive computation). Indeed, it turned out that the optimal j0 parameter found for the Dietrich
data was negative, which is physically impossible. Therefore, a more careful SKVM fitting
algorithm would need to impose nonnegative constraints on the parameters. Since our usage
of SKVM is merely to compare the results to GKM, and since nonnegativity constraints
would necessarily decrease the quality of the SKVM fit (since the space of feasible parame-
ter values is diminished), we did not attempt a fit based on nonnegative least squares.

A final kind of model to try for this data is the modified Kuhn model (MKM) of Lubliner
and Panoskaltsis, since the GKM has been introduced in this paper to improve on MKM in
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Fig. 8 This figure shows the best fit to the Cerni data by a modified Kuhn model (MKM) using the procedure
described in the text. The four plots are the four representations of the complex fit used in the previous figures

the case of data with larger values of tan δ. Our fitting procedure for GKM can obviously be
used also to fit an MKM model simply by imposing α = 0 during the fitting. The results are
illustrated in Figs. 7 and 8. Clearly this fit is inferior to the GKM fit and misses important
features of the data.

In the MKM model, the parameter λ is quite important, whereas it is less important for
GKM. Indeed, the parameters for the best GKM fits described above have values of λ close
to 0. The reason for this difference in behavior between MKM and GKM is that the integral
in (3) is finite when λ = 0 provided α > 0, whereas it is infinite when α = 0 (the MKM) and
λ = 0. Thus, MKM is expected to be much more sensitive to the choice of λ than GKM.
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