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Abstract. Two methodologies for identification of material functions in Schapery’s nonlinear vis-

coelastic material model are compared in context to their ability to deal with deviations from Heavi-

side stepwise load application and unloading in real test conditions where the time intervals for load

increase to plateau value and to unloading to zero are finite. In the first method the description of

the whole loading, creep, unloading and recovery process is given by one-step load application and

one-step unloading whereas in the second method the load increase and decrease intervals are approx-

imated by two-step load application with 0.5 of the load applied in the increase region. Vinyl ester

with known viscoelastic properties and incremental form of Schapery’s constitutive equation is used

to simulate “experimental data” for several length of load application and unloading. The two data

reduction methodologies are applied to these “data” and the accuracy of identified material functions

is compared with the true values (input data).
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1. Introduction

The most general thermodynamically consistent theory of nonlinear viscoelastic
and nonlinear viscoplastic materials was developed by Schapery (1997). It has
been used in simulations by several authors; see for example work by Guedes
et al. (1998) where laminate theory is developed for layers obeying the above
material model. The still unsolved problem is the definition of the set of needed
experiments to determine the stress dependent functions in the material model and
the development of reliable methodology for data reduction. User has to choose
between a general approach and material specific submodels which are efficient but
applicable only for a particular type of material.

One special branch of Schapery’s theory is based on so called free volume ap-
proach introduced by Knaus et al. (1981). The free volume which controls the molec-
ular mobility is a parameter describing the nonlinearity through the reduced time.
All other stress state dependent parameters in the constitutive law are assumed equal
to 1 as in linear case. Popelar et al. (1997) generalized this approach by introducing
distortional term additionally to dilatational term in the free volume. The method-
ology requires testing in the linear viscoelastic range to determine parameters in
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Prony series and linear loading and unloading ramp in tension and shear to deter-
mine the parameters in the expression relating the shift factor to the hydrostatic
stress and effective stress expressed through invariant of the deviatoric stress.

Experimental methodology for time dependent material characterization in case
of linear viscoelasticity and nonlinear viscoplasticity was given by Megnis et al.
(2003). It was demonstrated that the creep tests with a following strain recovery
tests render the necessary information. The observation that for the used material
the viscoelastic response is linear significantly simplified the data reduction.

Methodology to determine the viscoelastic nonlinearity parameters in
Schapery’s constitutive law for materials which obey the power law time depen-
dence was described by Lou et al. (1971). Both creep and strain recovery data at
different load levels are required in analysis. For materials with nonlinear time
dependence of creep strain in logarithmic axes the power law is not applicable and
expansion in Prony series has to be used. The method for data reduction in this case
assuming that the load is in form of a Heaviside step function was developed and
applied in Nordin et al. (2005). However, in real test conditions the load change
time intervals (time interval during which the load increases to the plateau value
and the time interval for load removal (unloading)) are not zero. For long creep
tests with evolving viscoelasticity during the whole creep interval the perturbations
due to abovementioned factors are considered to have a negligible effect on the
creep behavior in instants of time far away from these intervals. However, it is not
clear how these changes affect the accuracy of obtained nonlinearity parameters.

The objective of this paper is to inspect in a real test conditions the accuracy of
the methodology based on one-step loading as affected by the finite length of the
load change time intervals. In the analysis we will use the nonlinear viscoelastic
material model with parameters for vinyl ester obtained previously (Nordin et al.,
2005; Stahlberg et al., 2005) in compression tests. Material does not obey the
power law and the creep interval is rather short (1 hour). Even if the procedure
which was used for identification of these parameters is questioned here, we will
consider them as true material properties which will be used to simulate the strain
response in creep and strain recovery tests with a varying length of the load change
intervals. Incremental form of Schapery’s equation will be used in simulations.
The results will be in following treated as “experimental” data and used in data
reduction. The results of data reduction will be compared with input material data
(true properties) and the accuracy of the method will be evaluated. An explanation
for deviations will be given and a more accurate routine of data reduction based
on two-step approximation of the loading and unloading will be suggested.

2. Material Model

The nonlinear viscoelastic nonlinear viscoplastic response of the material to applied
stress σk , k = 1,2, . . . 6 may be described by the very general thermodynamically
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consistent material model presented by Schapery (1997). We will use this con-
stitutive law in form presented in Megnis et al. (2003). Since for the analyzed
material irreversible strains after recovery period were not observed we neglect the
viscoplastic term in the constitutive equation and obtain

εi = εel
i + b

∫ ψ

o
�Sik(ψ − ψ ′)

d

dψ ′ (a42σk)dψ ′ (1)

Repeating indexes here and in following mean summation. In (1) the first term rep-
resents the elastic strain which may be nonlinear with respect to stress. Integration
in the second term is over “reduced time” ψ which is introduced as follows

ψ =
∫ t

0

a21dt ′ and ψ ′ =
∫ τ

0

a21dt ′ (2)

Here a21 is function dependent on stress invariants ( = 1 in the linear region). The
stress dependent function b in the front of the integral depends on the current stress
level. Analyzing creep and following strain recovery test this function becomes
equal to one in the strain recovery part. Function a42 is also stress dependent ( = 1
in the linear region).

The viscoelastic time dependence is given by functions �Sik(ψ) which are
usually chosen in form of Prony series with unknown coefficients Cm

ik

�Sik(ψ) =
∑

m

Cm
ik

(
1 − exp

(
− ψ

τm

))
(3)

The same set of retardation times τm is used for all strain components.

3. Material Properties

The intrinsic time dependent material properties of the vinyl-ester were obtained
using data reduction according to the methodology described in Appendix. Analysis
was performed using the experimental results from the compressive creep-recovery
tests on cylindrical specimens with the axial size of 25 mm and radius of 6 mm; see
Nordin et al. (2005) and Stahlberg et al. (2005) for details. The coefficients in Prony
series are given in Table I. Since the material is isotropic and strain response only
in load direction in uniaxial loading will be considered, only Cm

11 are of relevance
for the following.

The dimensionless stress dependent functions in the material model have fol-
lowing approximations (stress is in MPa)

εel
i = 3.539 · 10−7σ 2

1 + 2.465 · 10−4σ1 (4)
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Table I. Coefficients Cm
11 in the

Prony series

m τm (s) Cm
11 (1/Pa)

1 3 8.14 10−13

2 10 5.38 10−12

3 30 −7.50 10−13

4 100 8.63 10−12

5 300 1.90 10−12

6 1000 7.43 10−12

7 3000 −1.10 10−12

8 10000 1.81 10−11

b =
{

1 σ1 ≤ 30 MPa

0.01912σ1 + 0.4208 σ1 > 30 MPa
(5)

a21 =
(

1 σ1 ≤ 30 MPa

2.657 · 10−4σ 2
1 − 0.04777σ1 + 2.195 σ1 > 30 MPa

(6)

a42 =
⎛⎝1 σ1 ≤ 30 MPa

1.171 · 10−6σ 4
1 − 2.25 · 10−4σ 3

1

+1.631 · 10−2σ 2
1 − 0.5095σ1 + 6.755 σ1 > 30 MPa

(7)

4. Simulation of Strain Response in Creep-Strain Recovery Test

To reduce the number of used indexes we will in following take k = 1 (thus assum-
ing that only σ1 acting). Two loading cases shown in Figure 1 will be considered.

The first case shown in Figure l(a) corresponds to real loading conditions in
compression test when the load is increasing linearly during time interval tl until
the plateau value for the creep test is reached. Then follows the creep period of
length tc. Unloading is also linear with respect to time and takes time tu . After the
unloading the strain recovery is analyzed (t > 0tl + tc + tu).

The second case is a simplified description of the real test assuming that the
load application and unloading time periods (tl and tu) are small as compared to
the length of the creep test and the strain recovery. Then it is assumed that the
strain perturbations caused by the particular time dependence of load increase and
decrease may be neglected and the loading and unloading is described by Heaviside
step function, see Figure (1b). This case corresponds to very fast load change during
loading and unloading. The 3rd case is a two-step approximation of the linear stress
change.
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Figure 1. Schematic showing of the three cases of load application and removal in creep-strain

recovery test: (a) real case with linear increase and decrease of stress; (b) one-step Heaviside

loading and unloading; (c) two-step loading and unloading.

4.1. LINEAR LOADING AND UNLOADING

Stress is considered as a known function of time σ1 = σ1(t).

σ1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σ10

t

tl
, t < tl

σ10, t1 < t < tl + tc

−σ10

t − tl − tc − tu
tu

, t1 + tc < t < tl + tc + tu

0, t > tl + tc + tu

(8)
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In case of uniaxial loading in direction 1, considering only the strain component 1
constitutive Equations (1) and (3) may be rewritten in a different form more suitable
for calculations. Substitute (3) in (1) and integrate. The result is

ε1(t) = εel
1 (σ ) + b(σ1)a42σ1

∑
m

Cm
11 − b(σ1)

∑
m

εm
1 (t) (9)

where

εm
1 (t) =

∫ ψ

0

Cm
11e

ψ − ψ ′

τm

d

dψ ′ (a42σ1)dψ ′ (10)

The integral (10) is calculated in a time instant tk using the value of this function
in the time instant tk−1 in a recursive expression. Both time instants are related by
tk = tk−1 + �t . The increment of time may be related to the increment of ψ using
differential of (2) dψ = a21dt which we replace by a finite difference �ψ = a21�t .

The recursive expression correlating εm
1 (tk) to εm

1 (tk−1) is as follows

εm
1 (tk) = e

�ψ

τm
εm

1 (tk−1)

+ Cm
11

(
1 − e

�ψ

τm

)
τm

�t

d(a42σ1)k−1

dσ1

1

ak−1
21

�σ k−1
1

k = 1, 2 . . . . (11)

with t0 = 0, εm
1 (0) = 0.

The simulations were made by implementing the Equations (9)–(11) and the
nonlinearity functions εel

1 , b, a21, a42 from Section 3 in MATLAB functions. The
output of data was with a step of 1s, whereas �t in (11) was reduced until converging
results were obtained. The value of 0.001s was found as the most suitable for
accurate calculation.

4.2. HEAVISIDE STEP LOADING AND UNLOADING

4.2.1. Creep Test
In creep test, the stress σ1 is applied as a step function at t = 0, see Figure l(b)

σ1 = σ10 H (ψ − 0) (12)

In creep test from (2) follows

ψ = a21t (13)
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Using (12) and (13) in (1) and using the property of Dirac delta function we obtain

ε
creep
i (t) = εel

i + b a42σ10�Si1(a21t) (14)

Using (3) Equation (14) can be rewritten in form

ε
creep
i (t) = εel

i + b a42σ10

∑
m

Cm
i1

(
1 − exp

(
− a21

t

τm

))
(15)

4.2.2. Strain Recovery After Creep Test
Simulating the strain recovery, the removal of the load in the time instant t1 = tc,
see Figure 1, can be described as a superposition of the previously applied step
function and a step function with an opposite sign applied at instant of time t1.
Corresponding value of ψ for this time instant is denoted ψ1.

σ1 = σ10(H (ψ − 0) − H (ψ − ψ1)) (16)

Substituting (16) in (1) and considering time region t > t1 we obtain

εrec
i = 0 + �Si1(ψ) a42σ10 − �Si1(ψ − ψ1) a42σ10 (17)

We remind that a42 as well as a21 are unknown functions of stress level σ10 applied
in the creep test. Since stress is constant during the loading period, ψ in strain
recovery stage is easily obtained using (2)

ψ = (a21 − 1)t1
+ t (18)

Using (3) and (18) in Equation (17) we obtain

εrec
i = a42σ10

∑
m

Cm
i1exp

(
− t − t1

τm

)(
1 − exp

(
− a21

t1
τm

))
(19)

Introducing strains normalized with respect to stress σ10 (notation ε̃rec
i ) and intro-

ducing new unknown time independent but stress dependent parameters

Am
ik = a42Cm

ik

(
1 − exp

(
−a21

t1
τm

))
(20)

expression (19) when rewritten for normalized strains becomes

ε̃rec
i =

∑
m

Am
i1exp

(
− t − t1

τm

)
(21)
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4.3. TWO-STEP LOADING AND UNLOADING IN CREEP TEST

In this case we assume that the specimen loading to the stress level σ10 used in
the creep test is in two steps. First constant stress σ10/2 is applied and tl seconds
later an additional stress σ10/2. After the creep period tc the load is removed also
in two steps: first the load is reduced to σ10/2 and tu seconds later even this load
is removed in one step. The strain response during creep and strain recovery for
two-step loading can be described by simple expressions. The described sequence
may correspond to real load application scenario in creep test. However, here we
want to analyze this case as a possible analytical approximation of the linear load
application case. In this model the creep strain at t > tl may be expressed as

ε
creep
i (t, σ10) = εel

i (σ10) + b(σ10)σ10

{
�S(ψ)

1

2
a42(σ10/2)

+�S(ψ − ψl)

[
a42(σ10) − 1

2
a42(σ10/2)

]}
(22)

which for the simplified case tl = tu may be rewritten as

ε
creep
i (t, σ10) = εel

l (σ10) + b(σ10)σ10

×
∑

m

Cm
i1

{
a42(σ10)

[
1 − exp

(
− a21(σ10)(t − t1)

τm

)]
+ a42(σ10/2)

2

[
1 − exp

(
−a21(σ10/2)t1

τm

)]
exp

(
−a21(σ10)(t − t1)

τm

)}
(23)

The strain recovery (t > tl + tc + tu) can be described as

εrec
i = 1

2
σ10a42(σ10/2)�S(ψ) + σ10

[
a42(σ10) − 1

2
a42(σ10/2)

]
�S(ψ − ψl)

− σ10

[
a42(σ10) − 1

2
a42(σ10/2)

]
�S(ψ − ψc)

− 1

2
σ10a42(σ10/2)�S(ψ − ψu) (24)

Here ψl, ψc and ψu correspond to time instants tl, tl + tc and t1 = tl + tc + tu
respectively. The last equation may be rewritten as

εrec
i = σ10

∑
m

Am
i1exp

(
− t − t1

τm

)
(25)
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where

Am
i1 = Cm

i1φm (26)

and assuming tl = tu

φm = a42(σ10) exp

(
−a21(σ10/2)tu

τm

)[
1 − exp

(
−a21(σ10)tc

τm

)]
+ 1

2
a42(σ10/2)

[
1 − exp

(
−a21(σ10/2)tu

τm

)]
×

[
1 + exp

(
−a21(σ10)tc + a21(σ10/2)tu

τm

)]
(27)

In the linear region

φm = 1

2

[
1 + exp

(
− tu

τm

)][
1 + exp

(
− tc + tu

τm

)]
(28)

5. Results and Discussion

The incremental formulation of the stress – strain relationship (1)–(3) for nonlinear
viscoelastic materials given by Equation (9) to (11) was used together with material
data for the considered material given in Section 3 to generate creep–strain recovery
test data.

Four cases with different load change intervals were considered: (a) infinite rate
which corresponds to Heaviside step function type of load application, tl = tu = 0s;
(b), with tl = tu = 10s and (c) with tl = tu = 20s and with tl = tu = 30s, see Fig-
ure (1a) for used notation. The generated data are in following considered as test
data.

5.1. ACCURACY OF THE METHODOLOGY BASED ON ONE-STEP LOADING

ASSUMPTIONS

In this subsection the methodology described in Appendix is used to obtain material
properties from these tests. Comparing the results with the true values we will
draw conclusions regarding the applicability and accuracy of the data reduction
methodology which is based on one-step load application expressions. An example
of the nonlinear creep and strain recovery curves is shown in Figure 2.

The one-step model exactly describes strain development in test with Heaviside
step type of load application and removal, see Figure 1(b). Hence, the results in this
loading case exactly coincide with the input data.

The elastic strain εel
1 which according to Appendix is equal to the total strain in

the time instant t = tl is given in Table II. The error is increasing with tl and stress.
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Table II. εel
1 (%) determined as ε1(tl ) and its accuracy with varying rates of load increase.

One-step model.

σ10 (M Pa) Input tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s

(%) (%) (%) (%)

30 0.771 0.771 0.0 0.780 1.1 0.785 1.8 0.788 2.2

60 1.606 1.606 0.0 1.632 1.6 1.646 2.5 1.656 3.1

90 2.505 2.505 0.0 2.546 1.7 2.569 2.6 2.589 3.4

Figure 2. Creep and strain recovery curves at three load levels.

The difference is due to viscoelastic strains developing during the load increase
interval tl . The viscoelastic constants Cm

11 from test at σ10 = 30 MPa are presented
in Table III.It appears that only constants corresponding to τm which are at least 10
times larger than tu have sufficient accuracy and hence the viscoelastic description
in short time region is inaccurate. The obtained results for b(σ10) are presented in
Table IV. The error is rather large even if tl , is only 10s (about 20% at 90 MPa). It
rapidly increases with increasing tl and stress. The calculated a21 and a42 in Table V
and Table VI tab demonstrate that the values may be rather erroneous at higher loads
and increasing tl . The obtained values are higher than the input data. The error in
a42 values is not that big as for a21. The trend in differences is opposite than for a21:
the values of a42 determined from tests with a finite loading rate are lower than the
input data.

The difference between the total strain just before and after the unloading is
sometimes used for elastic strain determination. The introduced error is shown in
Table VII.

The results presented in this section convincingly prove that the simple method-
ology based on one-step model in many cases fails to give true material properties.
It does not correspond to the real test conditions. The common assumption that this
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Table III. Cm
11 values from tests with varying rates of load increase. One-step model.

τm Input tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s
(s) (1/Pa) (1/Pa) (1/Pa) (1/Pa) (1/Pa)

3 8.145 10−13 8.156 10−13 3.293 10−13 1.706 10−13 1.143 10−13

10 5.379 10−12 5.378 10−12 3.757 10−12 2.570 10−12 1.882 10−12

30 −7.458 10−13 −7.449 10−13 −6.547 10−13 −5.624 10−13 −4.869 10−13

100 8.630 10−12 8.630 10−12 8.295 10−12 7.900 10−12 7.531 10−12

300 1.900 10−12 1.900 10−12 1.875 10−12 1.844 10−12 1.814 10−12

1000 7.429 10−12 7.428 10−12 7.397 10−12 7.358 10−12 7.324 10−12

3000 −1.076 10−12 −1.076 10−12 −1.073 10−12 −1.070 10−12 −1.070 10−12

10000 1.807 10−11 1.807 10−11 1.80210−11 1.797 10−11 1.800 10−11

Table IV. b(σ10) values from tests with varying rates of load increase. One-step

model.

σ10 Heaviside

(MPa) Input tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s

30 1.000 1.000 0.979 0.983 0.986

60 1.568 1.568 1.654 1.735 1.783

90 2.142 2.142 2.554 2.967 3.283

Table V. a21 values from tests with varying rates of load increase. One-step model.

σ10 Heaviside

(MPa) Input tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s

30 1.000 1.000 1.000 1.000 1.000

60 0.285 0.285 0.325 0.360 0.385

90 0.048 0.048 0.065 0.080 0.088

Table VI. a42 values from tests with varying rates of load increase. One-step model.

σ10 Heaviside

(MPa) Input tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s

30 1.000 1.000 1.000 1.000 1.000

60 1.460 1.460 1.389 1.342 1.311

90 5.781 5.779 5.067 4.561 4.296

discrepancy may affect the creep behavior only in the short time region appears to
be incorrect when dealing with nonlinear materials, because not only the constants
related to first terms of Prony series are affected but also the whole set of stress
dependent material functions.
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In the following subsection we will inspect the details of the strain variations
just after the load has reached its plateau value and also in the region just after
the load is removed considering the loading rate as a variable. This discussion will
motivate an introduction of a more reliable (but also more complex) data reduction
methodology.

5.2. LOADING RATE EFFECTS ON STRAIN CURVES

First we consider in details the simulated strain curves during the load increase from
zero to the plateau value and a short time interval after that, shown in Figure 3.
Four different load cases specified with the value of tl as discussed in Section 5.1
are presented.

The values at t = 0 in one-step loading test shown as H in Figure 3 corre-
spond to true elastic response of the material. Obviously it is lower than the value
of ε1(tl) tests with finite value of tl . Therefore the value ε1(tl) can not be used
as an accurate estimate for elastic strain εel

1 as it was done in Section 5.1. The
difference is increasing with an increase of tl . The difference is due to viscoelas-
tic strain developed during the time interval tl . However, this strain increment is
smaller than the viscoelastic creep strain developed during tl in the one-step load-
ing with σ10 and the latter can not be used as a correction. More likely the average
value of the stress during the interval tl is governing the value of the viscoelastic
strain.

Analyzing the strain recovery after the load has been removed (t = 0 in Figure 4
corresponds to this time instant) we see large differences in the time dependency
for tests with different tu . First of all the value of strain at t = 0 is very dependent
on the way of load removal. Since the strain at t = 0 in Figure 4 is rather different
the “elastic strain” calculated using it leads to errors previously shown in Table VII.
The sensitivity of the time dependence to tu in the time interval shown in Figure 4
unavoidably leads also to non reliable values of first coefficients in Prony series
describing the time dependence.

The above analysis shows that the observed differences between strain curves
and the resulting error in identified viscoelastic material parameters are due to linear
time dependence of the load change in test in contrast to the one-step loading and
unloading model used in data reduction.

To understand the nature of the modified data analysis methodology suggested
in the next section we have to realize that linear loading ramp as any other ramp
can be approximated by a large number of small stepwise load increments. Since
an exact solution exists for strain response to each load step, the solution can be
written for any number of approximation steps. This more exact description of the
loading leads to more exact description of the strain response but on the expense of
more complex expressions. A first step in this direction, which still leads to reason-
able complexity of the data treatment, is the two-step approximation described in
Section 4.3.
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Figure 3. Simulated creep strain curves in the initial part of the creep test considering the time

interval tl as a parameter.

The results presented in Figures 5 ans 6 show that the two-step model is a
much better approximation of the linear loading application and unloading than the
one-step approximation used before. Considering the linear loading and unloading
cases as real test situations, these promising results motivate to develop data re-
duction methodology based on two-step description which is presented in the next
section.
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Figure 4. Details of the strain recovery after the load has reached zero value at t = 0. Effect

of the time interval tu and the stress level in creep test.

5.3. TWO-STEP MODEL FOR DATA REDUCTION

Since most of the parameters are stress dependent functions the procedure described
below has to be repeated for all stress levels used in creep and strain recovery tests
starting with the lowest one.

(1) We find, using experimentally measured strain εrec
i and (25), values of Am

i1.
Applying first the procedure in the linear region (a42 = a21 = 1) the coefficients
in Prony series Cm

i1 can be directly obtained from (26), (28).
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Table VII. Error (%) when ε1(tl + tc + tu) is used to determine

the elastic strain. One-step model.

σ10/(MPa) tl = tu = 10s tl = tu = 20s tl = tu = 30s

30 1.1 1.8 2.2

60 8.8 9.7 10

90 42 45 47

Figure 5. Creep strain development in linear load application case with tl = 20s and approxi-

mation by the two-step model.

(2) Creep strain in two step loading, see (23) in the time instant t = t2 = tl + tc is

ε
creep
i (t2, σ10) = εel

i (σ10) + b(σ10)σ10

×
∑

m

Cm
i1

{
a42(σ10)

[
1 − exp

(
−a21(σ10)(tc)

τm

)]



274 L.-O. NORDIN AND J. VARNA

Figure 6. Strain recovery after total removal of load (σ10 = 0 when t = 0) and approximation

by a two-step unloading model.

+ a42(σ10/2)

2

[
1 − exp

(
−a21(σ10/2)tl

τm

)]
exp

(
−a21(σ10)tc

τm

)}
(29)

Expression in { } in (29) can be expressed as

{} =
[
φm − a42(σ10/2)

2

(
1 − exp

(
−a21(σ10/2)tl

τm

))]
× exp

(
−a21(σ10/2)tl

τm

)
(30)
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After simple rearrangements we obtain expression for the accumulated creep
strain

ε
creep
i (t2, σ10) = εel

i (σ10) + b(σ10)σ10

×
{ ∑

m

Am
i1 exp

(
a21(σ10/2)tl

τm

)

− a42(σ10/2)

2

∑
m

Cm
i1

[
exp

(
a21(σ10/2)tl

τm

)
− 1

]}
(31)

The elastic strain εel
i may be expressed as the difference between the total strain

measured in the instant t = tl and the accumulated viscoelastic strain at that
instant. According to (23)

εel
i (σ10) = εi (tl)

− b(σ10)σ10

a42(σ10/2)

2

∑
m

Cm
i1

[
1 − exp

(
−a21(σ10/2)tl

τ

)]
(32)

The experimental value of ε
creep
i (t2) is known from the creep test. Obviously

one can use (31) and ( 32 ) to determine parameter b for the considered stress
level

b(σ10)

= ε
creep
i (t2, σ10) − εi (tl, t10)

σ10

{ ∑
m Am

i1 exp
( a21(σ10/2)tl

τm

) − a42(σ10/2)
∑

m Cm
i1 sinh

( a21(σ10/2)tl
τm

)}
(33)

The accuracy of terms with lowest m in (33) is not good and therefore the first
two terms were considered explicitly from (29) without involving procedures
given by (30) and (31).
However immediate application of (33) in this form to calculate b(σ10) is not
possible because these first two terms contain an unknown value of a42(σ10).

(3) In order to determine a42 and a21 for a given stress level σ10 we analyze the
creep strain data ε

creep
i (t). From Equation (23) follows that we have to fit these

data with function

fi (t, a21) = εel
i (σ10) + b(σ10)σ10

×
∑

m

Cm
i1

{
a42(σ10)

[
1 − exp

(
−a21(σ10)(t − tl)

τm

)]
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+ a42(σ10/2)

2

[
1 − exp

(
−a21(σ10/2)tl

τm

)]
exp

(
−a21(σ10)(t − tl)

τm

)}
(34)

The unknown a21(σ10) is used to optimize the fit. Value of a42(σ10) correspond-
ing to a given value of a21(σ10) is calculated using

a42(σ10)

=
∑M

m=2 Am
i1 − a42(σ10/2)

2

∑M
m=2 Cm

i1

[
1 − exp

(
− a21(σ10/2)tu

τm

)][
1 + exp

(
− a21(σ10)tc+a21(σ10/2)tu

τm

)]
∑M

m=2 Cm
i1 exp

(
− a21(σ10)tu

τm

)(
1 − exp

(
− a21(σ10)tc

τm

))
(35)

Thus, for any value of a21(σ10) we have corresponding values of a42(σ10), b(σ10)
and εel

i (σ10) given by (32), (33) and (35). To find a21(σ10) we consider several
instants of time denoted tn n = 1, 2 . . . N . The choice of these points depends
on the region in which the simulated time dependence should be adjusted. The
difference between the experimental and the calculated value is

�i (tn) = ε
creep
i (tn) − fi (tn, σ21)n = 1, 2 . . . N (36)

The sum of squares of these differences is

Si (a21) =
N∑

n=1

�2
i (tn) (37)

It depends on the chosen value of a21 and it may be minimized with respect
to this parameter. An interesting feature is that calculations require values of
material functions at stress level σ10/2 which must be analyzed before.

5.4. RESULTS USING THE TWO-STEP MODEL

The two-step model based methodology described in Section 5.3 was applied to “test
data” corresponding to the values of tl and tu used in Section 5.1. The coefficients
Cm

11 determined using strain recovery data are given in Table VIII. Obviously the
accuracy is better than using one-step loading analysis, see Table III. They are
satisfactory starting with m = 3 even for the slow load increase with tu = 30.

The calculated values of b(σ10), εel
1 (σ10), a21(σ10) and a42(σ10) are presented in

Tables IX to XII. The b values presented in Table IX are much closer to the true
values than using the one-step model, see Table IV. A noticeable error was observed
only for 90 MPa load with tl = tu = 20s and 30s.

The a21 values are the most sensitive and unreliable from all characteristics of
the nonlinear viscoelastic material. Fortunately the predicted creep strains are rather
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Table VIII. Cm
11 values from tests with varying rates of load increase. Two-step model.

τm Input tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s
(S) (1/Pa) (1/Pa) (1/Pa) (1/Pa) (1/Pa)

3 8.145 10−13 8.156 10−13 6.358 10−13 3.407 10−13 2.285 10−13

10 5.379 10−12 5.378 10−12 5.493 10−12 4.527 10−12 3.586 10−12

30 −7.458 10−13 −7.449 10−13 −7.629 10−13 −7.433 10−13 −7.119 10−13

100 8.630 10−12 8.630 10−12 8.709 10−12 8.687 10−12 8.652 10−12

300 1.900 10−12 1.900 10−12 1.906 10−12 1.906 10−12 1.904 10−12

1000 7.429 10−12 7.428 10−12 7.436 10−12 7.436 10−12 7.436 10−12

3000 −1.076 10−12 −1.076 10−12 −1.076 10−12 −1.076 10−12 −1.076 10−12

10000 1.807 10−11 1.807 10−11 1.807 10−11 1.80710−11 1.807 10−11

Table IX. b(σ10) values from tests with varying rates of load increase. Two-step

model.

σ10 tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s
(MPa) Input (1/Pa) (1/Pa) (1/Pa) (1/Pa)

30 1.000 1.000∗ 1.000∗ 1.000∗ 1.000∗

60 1.568 1.569 1.564 1.636 1.686

90 2.142 2.166 2.201 2.516 2.704

∗Obtained assuming linearity.

Table X. a21 values from tests with varying rates of load increase. Two-step model.

σ10 tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s
(MPa) Input (1/Pa) (1/Pa) (1/Pa) (1/Pa)

30 1.000 1.000∗ 1.000∗ 1.000∗ 1.000∗

60 0.285 0.286 0.290 0.384 0.526

90 0.048 0.050 0.054 0.080 0.106

∗Obtained assuming linearity.

insensitive to this parameter. Results presented in Table X have the same degree
of accuracy (rather bad) as the ones presented in Table IV. Results for a42 in Table
XI are approximately with the same accuracy as the ones obtained using one-step
loading methodology, see Table VI.

The elastic strain values are obtained from ε1(tl) correcting them for the vis-
coelastic strain from the two-step model (Equation (32)). They are much closer to
the true values, see Table XII, than the values in Table II.
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Table XI. a42 values from tests with varying rates of load increase. Two-step

model.

σ10 tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s
(MPa) Input (1/Pa) (1/Pa) (1/Pa) (1/Pa)

30 1.000 1.000∗ 1.000∗ 1.000∗ 1.000∗

60 1.460 1.458 1.452 1.345 1.233

90 5.781 5.630 5.445 4.613 4.229

∗Obtained assuming linearity

Table XII. εel (%) as ε(tl ) with varying rates of load increase. Two-step model.

σ10 tl = tu = 0 tl = tu = 10s tl = tu = 20s tl = tu = 30s
(MPa) Input (1/Pa) (1/Pa) (1/Pa) (1/Pa)

(%) (%) (%) (%)

30 0.771 0.771 0.0 0.773 0.2 0.776 0.6 0.779 1.0

60 1.606 1.606 0.0 1.609 0.2 1.617 0.7 1.626 1.2

90 2.505 2.505 0.0 2.502 −0.1 2.506 0.0 2.519 0.6

6. Conclusions

Two data reduction methodologies are compared in their ability to handle the “dis-
turbances” in nonlinear creep and recovery strains caused by deviations of real
loading conditions from Heaviside stepwise loading and unloading. One method
is based on the common one-step loading and unloading model whereas the other
one considers loading and unloading as a two-step processes.

The effect of the time interval tl of the linear load increase and the unloading
time interval tu on the introduced error in results is analysed. Known nonlinear
viscoelastic material is used to simulate the strain response in creep-strain recovery
tests. The simulated creep – strain recovery curves are used as “experimental data”.
The results show significant increase of the error with increasing tl and tu . It appears
that the length of the load increase and decrease interval is effecting not only the
accuracy of first terms in Prony series but also the accuracy of the whole set of
nonlinearity parameters.

The accuracy of data reduction is higher using two-step approximation data
reduction method. This methodology gives much better values of coefficients in
Prony series Cm

11 for small relaxation times and the values of non-linearity function
b(σ10). The elastic strain determined as the strain at the instant t = tl corrected
for viscoelastic strains according to two-step loading methodology is obtained with
1% accuracy as compared with 3% using the old methodology. This difference
may be crucial when analysing nonlinearity parameters. Values of the rest of the
non-linearity functions are rather sensitive to tl but the accuracy does not depend
on the used data reduction methodology.
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Appendix: Material Properties Derivation Using One-Step Model

The expressions in Section 4.2 for creep and strain recovery test description by
one-step loading and unloading model are used. 30 MPa was chosen as the upper
stress limit for linear behavior. The methodology has to be used for each considered
stress level.

(1) The creep strain at the time instant when the plateau value of load has been
reached is used as the elastic strain value εel

1 .
(2) The strain recovery data points ε̃rec

1 were fitted by the method of the least squares
to obtain the constants Am

11, see Equation (21). The coefficients in Prony series
Cm

11 could be directly obtained from (20) using data in the linearity region.
(3) The creep strain (15) for time instant t1 = tl + tc after simple rearrangements

may be written as

ε
creep
1 (t1) = εel

1 + bσ10

∑
m

Am
11. (A1)

The experimental value of ε
creep
1 (t1) is known. Hence, (A1) may be used to

determine parameter b for the considered stress level

b(σ10) = ε
creep
1 (t1, σ10) − εel

1 (σ10)

σ10

∑
m Am

11(σ10)
(A2)

(4) To obtain the values of a21 and a42 for a given stress level we analyze creep
strain. Expressing a42Cm

11 from (20) and substituting in (15), we obtain for the
creep strain

ε
creep
1 (t) = εel

1 + bσ10

∑
m

Am
11

1 − exp
(−a21

t
τm

)
1 − exp

(−a21
t1
τm

) (A3)

According to (A3) creep strain at the time instant t ′
1 < t1 can be written as

ε
creep
1 (t ′

1) = εel
1 + bσ10

∑
m

Am
11

1 − exp
(−a21

t ′
1

τm

)
1 − exp

(−a21
t1
τm

) (A4)

a21 is determined by numerically finding the value which best satisfies (A4).
Finally a42 is calculated as average of values obtained using (20).
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