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Abstract. A model for viscoelastic–viscoplastic solids is incorporated in a micromechanical analysis
of composites with periodic microstructures in order to establish closed-form coupled constitutive
relations for viscoelastic–viscoplastic multiphase materials. This is achieved by employing the ho-
mogenization technique for the establishment of concentration tensors that relate the local elastic and
inelastic fields to the externally applied loading. The resulting constitutive equations are sufficiently
general such that viscoelastic, viscoplastic and perfectly elastic phases are obtained as special cases
by a proper selection of the material parameters the phase. Results show that the viscoelastic and vis-
coplastic mechanisms have significant effect on the global stress-strain, relaxation and creep behavior
of the composite, and that its response is strongly rate-dependent in the reversible and irreversible
regimes.
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1. Introduction

Although there is great amount of literature concerning the behavior of viscoelas-
tic and viscoplastic materials, models that deal with these combined two effects
are few. As is discussed by Frank and Brockman (2001), thermoplastics in the
glassy region exhibit both viscoelastic (reversible) and viscoplastic (irreversible)
response. At low strains these polymers exhibit linear or nearly linear viscoelastic
behavior, but at higher strains the viscoelastic response becomes nonlinear. After
yielding, the response becomes irreversible exhibiting viscoplastic behavior. In par-
ticular, these authors examined the response of polycarbonate which exhibits both
viscoelastic followed by viscoplastic behavior with rate dependency. Saleeb et al.
(2001) presented an extensive investigation of the behavior at elevated tempera-
ture of a titanium alloy (TIMETAL 21S), which is utilized as a matrix in titanium
matrix composites. This material exhibits both reversible and irreversible behav-
ior with pronounced rate dependency in each region. At low strains the response
of this metal is reversible and time-dependent, but at higher strains its response
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becomes irreversible and time-dependent as well, exhibiting both viscoelastic and
viscoplastic behavior. More recently, Saleeb and Arnold (2004) extended their anal-
ysis by considering the hardening saturation of the viscoelastoplastic material at
sufficiently large strains and its optimal parametric characterization.

Both Frank and Brockman (2001) and Saleeb et al. (2001) present multi-
axial modeling of the coupled reversible and irreversible effects in viscoelas-
tic/viscoplastic (VE/VP) materials. This allows the modeling of a wide spectrum
of material responses under various loading conditions.

Frank and Brockman (2001) based their VE/VP model on the concept of in-
termolecular cooperativity which states that the meshing between polymer chain
segments limits the rate at which the segments can move under the influence of
applied load. Certain types of motion can occur in small regions and have short
relaxation time. Other types require motion of large regions and have a long relax-
ation time. The total strain is decomposed into VE and VP components every one
of which is different in the various domains. The nonlinear viscoelastic mechanism
is modeled by hereditary representation, and nonlinearity in the relaxation func-
tions is introduced through the concept of reduced time. The irreversible effects
are represented by the unified viscoplasticity theory of Bodner and Partom (1972)
equations. The two mechanisms are coupled and include the effects of hydrostatic
pressure, strain rate and isotropic strain hardening.

Saleeb et al. (2001) based their modeling of VE/VP materials on the introduction
of Gibbs potential function which is decomposed into reversible and irreversible
portions, both of which depend on external and internal state variables. The total
strain is also decomposed into VE and VP components. In its final form, the re-
versible effects are modeled by a hereditary representation with several relaxation
times, whereas the irreversible effects are based on a single viscoplastic mechanism
that includes nonlinear kinematic hardening.

Due to the numerous number of material parameters involved in the VE/VP
constitutive equations, Frank and Brockman (2001), Saleeb et al. (2001) and Saleeb
and Arnold (2004) employed nonlinear optimization techniques to estimate these
parameters. These estimates are based on objective functions that minimize the
difference between measured and the correlated responses that are generated under
various types of loading.

Micromechanical prediction of the response of rate-dependent inelastic com-
posites have been considered by several investigators as discussed below. The ho-
mogenization theory has been employed by Wu and Ohno (1999) to investigate
the time-dependent field in viscoplastic composites with periodic microstructure.
The analysis of the resulting repeating unit cell of the composite was performed
in conjunction with the finite element method. Results for the transverse creep
of a continuously reinforced metal matrix composite are presented. Viscoplastic
composite materials have been analyzed by Fish and Shek (1998) by employing the
homogenization technique in conjunction with their eigenstrain approach according
to which all inelastic strains are regarded as eigenstrains in elastic body. The finite
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element method is used to carry out the computations. The viscous effects were
represented either by the power-law or by the Bodner–Partom (Bodner, 2002) uni-
fied viscoplastic model. The homogenization method has been also used by Van der
Sluis et al. (1999, 2000) to establish the response of elastic–viscoplastic compos-
ites, in conjunction with the finite element technique. The Perzyna’s viscoplastic
constitutive equations (Perzyna, 1966) have been used to represent the inelastic
phase behavior.

Walker et al. (1994) and Fotiu and Nemat-Nasser (1996) investigated rate-
dependent elastoplastic composites with periodic microstructure by considering
the repeating unit cell which was discretized and analyzed by the development of
multiple Fourier series in order to obtain the Green’s function. The latter investi-
gators employed several strategies in order to reduce the numerical computational
effort.

The transformation field analysis, which is based on the assumption of a piece-
wise uniform strain field, has been developed by Dvorak (1992). This approach has
been generalized by Chaboche et al. (2001) and applied to investigate, in conjunction
with Mori and Tanaka (1973) procedure, the behavior of viscoplastic metal matrix
composites. Damage effects are included and the solution is obtained by the finite
element scheme.

A different approach for the analysis elastic–viscoplastic composites has been
followed by Li and Weng (1998). It is based on the transition from elasticity to
viscoelasticity, in conjunction with the correspondence principle, and then to vis-
coplasticity by adopting a secant-viscosity approach. The Mori and Tanaka (1973)
micromechanical model has been used in this investigation, and results were given
in the form of time-dependent creep response of a particulate composite.

Another different approach for the analysis of nonlinear composites has been
presented by Ponte Castañeda (1996). This investigator proposed a second-order
method which has the capability of generating nonlinear estimates that are exact to
second order in the contrast between the phases. This method has been applied to
study the response of two-phase composites with power-law constitutive behavior.

Finally, by using variational principles, Talbot and Willis (1996) established
bounds for the overall response of a certain class of nonlinear two-phase compos-
ites. This approach has been applied on a composite in which every constituent
is isotropic, incompressible and is described by a power-law relation between the
equivalent stress and the equivalent strain rate.

A micromechanical model, referred to as “high-fidelity generalized method of
cells” (HFGMC), that is based on the homogenization procedure for periodic multi-
phase materials has been recently developed for the prediction of the effective ther-
moelastic moduli of unidirectional composites (Aboudi et al., 2001). The predicted
moduli have been shown to be in excellent agreement with several finite element
solutions. In addition, the accuracy of the local field which is predicted by this
micromechanical theory, was demonstrated in Aboudi et al. (2001) by comparisons
with elasticity solution for an inclusion in an infinite matrix. This micromechanical
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theory has also been employed by Aboudi (2001) to predict the effective moduli
of electro-magneto-thermo-elastic composites, and extensive comparisons with the
results of Li and Dunn (1998) exhibit excellent agreement.

More recently, the new micromechanical theory has been extended by Aboudi
et al. (2002, 2003) to include inelastic behavior of the constituents, and by Bednar-
cyk et al. (2004) for the incorporation of the effect of imperfect bonding between the
phases. The reliability and accuracy of the predicted inelastic response have been
verified by performing extensive comparisons with analytical and finite element
solutions under various circumstances (e.g., composites under normal, axial shear
and thermal loadings) in the presence and absence of inelastic effects. A recent
review by Aboudi (2004) summarizes this micromechanical theory (and its prede-
cessor: the “generalized method of cells” (GMC)) and its applications under various
circumstances. It should be mentioned that this micromechanical theory has been
incorporated by NASA Glenn Research Center into an extensive micromechanics
analysis code referred to as MAC/GMC which has many user-friendly features and
significant flexibility (see Bednarcyk and Arnold (2002) for the most recent version
of its user guides).

In the present paper the aforementioned micromechanical analysis is extended
and applied to establish the effective constitutive equations of multiphase materials
in which any one of the phases can behave as VE/VP material. This has been ac-
complished by adopting the VE/VP model of Frank and Brockman (2001) in which
VE, VP and perfectly elastic materials can be obtained merely as special cases by a
proper choice of the material’s parameters. The micromechanical analysis is based
on the homogenization technique of composite materials with periodic microstruc-
tures. The analysis proceeds by identifying a repeating unit cell which is descritized
into several subcells. By imposing the equilibrium equations and the continuity of
displacement and tractions as well as the periodic boundary conditions, the con-
centration tensors of the multiphase composite (which relate the local field to the
externally applied one) are generated. The latter establish the global inelastic con-
stitutive relations of the multiphase material. The resulting constitutive equations
predict, in particular, the behavior of a VE/VP matrix reinforced by unidirectional
fibers. As a result, these equations model the behavior of anisotropic VE/VP which
forms a further generalization of the monolithic VE/VP isotropic model. The result-
ing micromechanical analysis is comprehensive since it can handle various types
of phases all of which form the multiphase material.

Results are presented at two rates of loading in order to illustrate the VE/VP
behavior of a monolithic (unreinforced) material by comparison with the response
of a VE material (in which the VP effects have been neglected), and with the
response of a VP material (in which the VE effects have been neglected). The
response to monotonic and cyclic loadings are shown, as well as relaxation and
creep curves. Similarly, response curves are shown for a VE/VP matrix rein-
forced by elastic boron fibers that is subjected to transverse loading (perpen-
dicular to the fiber direction), and to axial shear loading. Relaxation and creep
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curves for the composite and the unreinforced matrix are exhibited under various
circumstances.

2. Viscoelastic–Viscoplastic Constitutive Relations

The modeling of viscoelastic–viscoplastic (VE/VP) materials that has been pre-
sented by Frank and Brockman (2001) (which is briefly summarized here) is based
on the assumption that the distribution of domain sizes surrounding a particular
point in a medium are characterized by N + 1 discrete ranges. The stress and strain
states in the vicinity of a particular point are assumed to vary gradually enough that
all sizes of domains about that point can be considered to have the same state.

The stress tensor σ(k) in the k-th domain (k = 0, . . . , N ) is decomposed into
deviatoric and dilatational parts as follows:

σ(k) = σ̂(k) + p(k)I (1)

where I is the unit 2nd order tensor and the mean normal stress is given by

p(k) = 1

3
trace [σ(k)] (2)

The total stress at a point is given by the sum of contributions from each of the
N + 1 domains:

σ =
N∑

k=0

σ(k) (3)

The strain tensor ε is the same for each domain and it can be decomposed into
deviatoric and dilatational parts as follows:

ε = ε̂ + 1

3
eI (4)

where the dilatation is given by

e = trace[ε] (5)

It is assumed that at the domain level the strain tensor can be divided into VE
and VP portions:

ε = εve
(k) + ε

vp
(k) (6)
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for any k = 0, . . . , N . It should be noted that since the viscoplastic strain is
incompressible, it follows that:

ε̂ = ε̂ve
(k) + ε̂

vp
(k) (7)

Frank and Brockman (2001) present the nonlinear viscoelastic relations in the
k-th domain at time t as follows:

p(k)(t) =
∫ t

−∞
K(k)[t

′(t) − t ′(ξ )]
∂

∂ξ
e(ξ ) dξ (8)

σ̂(k)(t) = 2
∫ t

−∞
G(k)[t

′(t) − t ′(ξ )]
∂

∂ξ
ε̂ve

(k)(ξ ) dξ (9)

where K(k) and G(k) are the bulk and shear relaxation functions, respectively, and
the nonlinearity in the relaxation functions is introduced through the reduced time
function

t ′(t) =
∫ t

0

dx

ϕ(k)
(10)

where ϕ(k) is a non-negative shift function that depends on the stress and strain in
the domain.

In order to derive the micromechanical analysis (as presented in the following
section), we need to extract the instantaneous response from Equations (8)–(9) by
defining the following relaxation functions:

φ(k)(t) = 1 − K(k)(t)

K(k)(0)
(11)

ψ(k)(t) = 1 − G(k)(t)

G(k)(0)
(12)

where φ(k)(t) = 0 and ψ(k)(t) = 0 for t ≤ 0. Consequently, the constitutive relations
(8)–(9) take the form

p(k)(t) = K(k)(0)e(t) − pI
(k)(t) (13)

σ̂(k)(t) = 2G(k)(0)ε̂(t) − σ̂ I
(k)(t) (14)

where the inelastic contributions are given by

pI
(k)(t) = K(k)(0)

∫ t

0
φ(k)[t

′(t) − t ′(ξ )]
∂

∂ξ
e(ξ ) dξ (15)

σ̂ I
(k)(t) = 2G(k)(0)

[
ε

vp
(k)(t) +

∫ t

0
ψ(k)[t

′(t) − t ′(ξ )]
∂

∂ξ
ε̂ve

(k)(ξ ) dξ

]
(16)

such that pI
(k)(0) = σ̂ I

(k)(0) = 0.
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Let the bulk and shear relaxation functions be represented in the form of expo-
nents in time:

K(k)(t) = K(k) exp[−t/τk] (17)

G(k)(t) = G(k) g(k)
(
J2(k), Z(k)

)
exp[−t/τk] (18)

where K(k), G(k), and τk are material parameters, and the function g(k) introduces
the nonlinear VE effects. It is given, according to Frank and Brockman (2001), by

g(k)
(
J2(k), Z(k)

) = 1 − Cg
3J2(k)

[
Z(k) + CwWp(k)

]2 (19)

where Z(k) is the flow resistance of the material, Wp(k) is the plastic work, Cg, Cw are
material constants, and J2(k) = 1

2 σ̂(k)σ̂(k) is the second invariant of the deviatoric
stress. The constants τk form the relaxation time of the k-th domain with τ0 = 0.

The shift function ϕ(k) in Equation (10) has been chosen as follows:

ϕ(k) = exp

[
b

(
1

f(k)(t)
− 1

f0

)]
(20)

with

f(k)(t) = f0 + Cv

3J2(k)
[
Z(k) + CwWp(k)

]2 (21)

where b, f0, and Cv are material constants.
Frank and Brockman (2001) used the Bodner and Partom (1972) power-law

model to represent the viscoplastic effects in the material. Accordingly, the rate of
the viscoplastic strain is given as follows:

ε̇
vp
(k)(t) = D0√

J2(k)

[
3J2(k)

Z2
(k)

]n

σ̂(k) (22)

where D0 and n are material constants. The power-law given by Equation (22)
models a viscoplastic material with isotropic hardening. However, it is possible to
generalize this law by introducing an exponential law with directional hardening
in order to account for the Bauschinger effect (Bodner, 2002).

To accommodate the effect of pressure on the flow resistance, the following
relation is employed:

Z(k) = Z ′
(k) exp[−p(k)/P0(k)] (23)
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with

P0(k) = P0
K(k)∑N

k=0 K(k)

(24)

where P0 is a parameter. The evolution equation of Z ′
(k) is taken as

Ż ′
(k)(t) = m

[
Z ′

(k)(t) − (1 − α)Z0(k)

Z0(k)

]
Ẇp(k) (25)

where m, α are additional parameters,

Z0(k) = Z0
G(k)∑N

k=0 G(k)

(26)

and Z0 is a constant.
The rate of plastic work is determined from

Ẇp(k) = σ(k)ε̇
vp
(k) (27)

Extensive discussion of the viscoelastic and viscoplastic mechanisms and the physi-
cal interpretation of the aforementioned parameters is given by Frank and Brockman
(2001).

3. The Recursive Form of the Constitutive Relations

In order to compute the field quantities at a given time t + �t (�t being a time
increment), it appears from Equations (15)–(16) that it is necessary to store all their
values from t = 0 to t . However, recursive formulas are developed herein that
necessitate the storage of some field quantities just at time t .

From Equation (10) we have

t ′(t + �t) = t ′(t) + θ(k) (28)

where

θ(k) =
∫ t+�t

t
exp

[
b

(
1

f0
− 1

f(k)(x)

)]
dx (29)

Equation (15) provides in conjunction with (11) and (17)

pI
(k)(t + �t) = K(k)e(t + �t) − I(k)(t + �t) (30)
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where

I(k)(t + �t) = K(k)

∫ t+�t

0
exp

[
− t ′(t + �t) − t ′(ξ )

τk

]
ė(ξ ) dξ

= exp

(
−θ(k)

τk

)
I(k)(t) + K(k)

∫ t+�t

t

exp

[
− t ′(t) − t ′(ξ ) + θ(k)

τk

]
ė(ξ ) dξ (31)

The integral on the right-hand side of (31) can be approximated as follows:
∫ t+�t

t
exp

[
− t ′(t) − t ′(ξ ) + θ(k)

τk

]
ė(ξ ) dξ

≈ 1

2
[e(t + �t) − e(t)]

[
1 + exp

(
−θ(k)

τk

)]
(32)

Consequently, the following recursive formula can be established:

I(k)(t + �t) = exp

(
−θ(k)

τk

)
I(k)(t)

+1

2
K(k)[e(t + �t) − e(t)]

[
1 + exp

(
−θ(k)

τk

)]
(33)

Similarly, Equation (16) provides in conjunction with (12) and (18)

σ̂ I
(k)(t + �t) = 2G(k)ε̂(t + �t) − J(k)(t + �t) (34)

where

J(k)(t + �t) = 2G(k)

∫ t+�t

0
g(k) exp

[
− t ′(t + �t) − t ′(ξ )

τk

]
ˆ̇ε

ve
(k)(ξ ) dξ (35)

The recursive formula for J(k) is given by

J(k)(t + �t) = exp

(
−θ(k)

τk

)
J(k)(t)

+ G(k) g(k)
[
ε̂ve

(k)(t + �t) − ε̂ve
(k)(t)

][
1 + exp

(
−θ(k)

τk

)]
(36)

Once I(k)(t + �t) and J(k)(t + �t) have been determined at time t + �t , the
inelastic pressure pI

(k) and the inelastic stress deviator σ̂ I
(k) can be readily obtained

from Equations (30) and (34), respectively. The latter quantities determine p(k)

and σ̂(k) at this time by employing Equations (13)–(14). The stress σ(k)(t + �t) is
determined from Equation (1). Finally, the total stress σ(t +�t) is computed from
Equation (3).
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The above incremental procedure establishes the constitutive relation of the
VE/VP material at any time. These relations can be presented at time t in the
compact form

σ(t) = λ e(t) I + 2Gε(t) − σ I (t) (37)

where

λ = K − 2

3
G, K =

N∑

k=0

K(k), G =
N∑

k=0

G(k) (38)

and

σ I (t) =
N∑

k=0

[
σ̂ I

(k)(t) + pI
(k)(t)I

]
(39)

which represents the total inelastic stress, with σ I (0) = 0. The special cases of
modeling VE, VP and perfectly elastic materials can be obtained from Equation
(37) by a proper selection of the material constants.

In the presence/absence of viscoplasticity and for very fast loading the constitu-
tive relation (37) describes a viscoplastic/elastic material whose stiffness is given
by λ and G, whereas in the limit of long time it describes a viscoplastic/elastic
material whose stiffness is given by λ(0) and G(0), where λ(0) = K(0) − 2G(0)/3.

It can be easily shown that in the special case of g(k) = 1, ϕ(k) = 1 and the
assumption that the viscoplastic strain tensor is the same in all regions, Equation
(37) can be represented in the form

σ(t) = λ(0) e(t) I + 2G(0)
[
ε(t) − εvp(t)

] +
N∑

k=1

[
I(k)(t)I + J(k)(t)

]

which coincides in this special case with Equations (22) and (25) of Saleeb et al.
(2001).

4. Homogenization of Periodic Composites

Consider a multiphase composite in which the microstructures are distributed pe-
riodically in the plane x2 − x3 that is given with respect to the global coordinates
(x2, x3), see Figure 1. In the framework of the homogenization method the dis-
placement is asymptotically expanded as follows:

u(x, y) = u0(x, y) + δ u1(x, y) + · · · (40)
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Figure 1. A multiphase composite with a periodic microstructure in the x2 − x3 plane charac-
terized by a repeating unit cell (highlighted).

where x = (x1, x2, x3) are the macroscopic (global) coordinate system, and y =
(y1, y2, y3) are the microscopic (local) coordinates that are defined with respect to
the repeating unit cell. The material’s periodicity imposes the constraint uα(x, y) =
uα(x, y + npdp) on the different-order terms uα(α = 0, 1, . . .) in Equation (40),
where np are arbitrary integers and the constant vectors dp characterize the material’s
periodicity. The size of the unit cell is further assumed to be much smaller than
the size of the body so that the relation between the global and local systems is
y = x/δ where δ is a small scaling parameter characterizing the size of the unit
cell. This implies that a movement of order unity on the local scale corresponds to
a very small movement on the global scale.

Due to the change of coordinates from the global to the local systems the fol-
lowing relation must be employed in evaluating the derivative of a field quantity

∂

∂xi
→ ∂

∂xi
+ 1

δ

∂

∂yi
(41)

The quantities u0 are the displacements in the homogenized region and hence
they are not a function of y. Let

u0 = u0(x) ≡ ū (42)

and

u1 ≡ ũ(x, y) (43)
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where the latter are the fluctuating displacements which are unknown periodic
functions with respect to y, and they arise due to the heterogeneity of the medium.

The strain components are determined from the displacement expansion (40)
yielding, in conjunction with Equation (41), the following expression

ε = ε̄(x) + ε̃(x, y) + O(δ) (44)

where

ε̄(x) = 1

2
(∇ū + ū∇) (45)

and

ε̃(x) = 1

2
(∇ũ + ũ∇) (46)

This shows that the strain components can be represented as a sum of the average
strain ε̄(x) in the composite and a fluctuating strain ε̃(x, y). It can be easily shown
that

1

Vy

∫
ε dVy = 1

Vy

∫
(ε̄ + ε̃) dVy = ε̄

where Vy is the volume of the repeating unit cell. This follows directly from the
periodicity of the fluctuating strain, implying that the average of the fluctuating
strain taken over the unit repeating cell vanishes. For a homogeneous material it is
obvious that the fluctuating displacements and strains identically vanish.

For a composite that is subjected to homogeneous deformation, one can use
Equation (44) to represent the displacement in the form

u(x, y) = ε̄ · x + ũ + O(δ2) (47)

where ε̄ ·x represents the contribution of the average strain to the total displacement
field.

5. Method of Solution

In this section we present a solution methodology of the inelastic field in the repeat-
ing unit cell. For two-dimensional multiphase composites, the repeating unit cell
extends over 0 ≤ y2 ≤ H , 0 ≤ y3 ≤ L in terms of the local coordinates (y2, y3) as
stated above. The microstructure in the y2 − y3 plane of the composite is modeled
by discretizing the cross section of the repeating cell into Nq and Nr cells in the
intervals 0 ≤ y2 ≤ H and 0 ≤ y3 ≤ L , respectively, see Figure 2(a). In addition,
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Figure 2. (a) Discretization of the repeating unit cell employed in the present model, (b) generic
cell within the repeating unit cell.

every cell consists of four subcells designated by the pair (βγ ) where each index
takes the values 1 or 2 which indicate the relative position of the given subcell along
the y2 and y3 axis, respectively, see Figure 2(b). The indices q and r , whose ranges
are q = 1, 2, . . . , Nq and r = 1, 2, . . . , Nr , identify the cell in the y2 − y3 plane.
The dimensions of the repeating unit cell along the y2 and y3 axes are h(q)

1 , h(q)
2 and

l (r )
1 , l (r )

2 , such that

H =
Nq∑

q=1

(
h(q)

1 + h(q)
2

)

L =
Nr∑

r=1

(
l (r )
1 + l (r )

2

)

Given an applied mechanical loading, an approximate solution for the displace-
ments field is constructed based on volumetric averaging of the field equations
together with the imposition of the periodic boundary conditions and continuity
conditions in an average sense between the subcells used to characterize the ma-
terials’ microstructure. This is accomplished by approximating the fluctuating dis-
placements in each subcell using a quadratic expansion in terms of local coordinates
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ȳ(β), ȳ(γ ) centered at the subcell’s midpoint. A higher order representation of the
fluctuating displacement field is necessary in order to capture the local effects
created by the mechanical field gradients and the microstructure of the composite.

Equation (37) represents the constitutive relation of the VE/VP material filling
subcell (βγ ). Let us write this equation in the following compact form:

σ(βγ ) = C(βγ )ε(βγ ) − σ I (βγ ) (48)

where C(βγ ) is the elastic stiffness tensor of the phase filling subcell (βγ ). The
elements of C(βγ ) can be expressed in terms of the Lame’ constants λ(βγ ) and
G(βγ ) given by Equation (38). For a perfectly elastic anisotropic phase the inelastic
term in this equation should be omitted, while C(βγ ) represents its anisotropic
stiffness tensor. Thus the present analysis is quite general as it can consider elastic
anisotropic, as well as VE, VE/VP, or VP isotropic phases. It should be noted that
no summation is implied by repeated Greek letters in the above and henceforth.

The equilibrium equations of the material occupying the subcell (βγ ) in the
region |ȳ(β)

2 | ≤ h(q)
β /2, |ȳ(γ )

3 | ≤ l (r )
γ /2 can be written in the form

∇ · σ(βγ ) = 0 (49)

where ∂1 = 0, ∂2 = ∂/∂ ȳ(β)
2 and ∂3 = ∂/∂ ȳ(γ )

3 .
As stated before, the fluctuating displacement field in the subcell (βγ ) of the

(q, r )th cell is approximated by a second-order expansion in the local coordinates
system. Thus (the cell label (q, r ) has been omitted)

u(βγ ) = ε̄ · x + W(βγ )
(00) + ȳ(β)

2 W(βγ )
(10) + ȳ(γ )

3 W(βγ )
(01)

+ 1

2

(
3ȳ(β)2

2 − h(q)2
β

4

)
W(βγ )

(20) + 1

2

(
3ȳ(γ )2

3 − l (r )2
γ

4

)
W(βγ )

(02) (50)

where W(βγ )
(00) , which are the fluctuating volume-averaged displacements, and the

higher-order terms W(βγ )
(mn) must be determined from the equilibrium Equations (49)

and the periodic boundary conditions that the fluctuating displacements must ful-
fill, as well as the interfacial continuity conditions of displacements and tractions
between subcells. The number of unknowns that describe the fluctuating displace-
ments in the cell (q, r ) is 60.

In the perfectly elastic case, the quadratic displacement expansion, Equation
(50), produces linear variations in strains and stresses at each point within the sub-
cell. In the presence of inelastic effects, however, a linear strain generated by Equa-
tion (50) does not imply the linearity of the stress field due to the path-dependent
deformation. Thus, the displacement field microvariables must depend implicitly
on the inelastic strain distributions, giving rise to a higher-order stress field than the
linear strain field generated from the assumed displacement field representation. In
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the presence of inelastic effects, this higher-order stress field is represented by a
higher-order Legendre polynomial expansion in the local coordinates. Therefore,
the strain field generated from the assumed displacement field, and the resulting
mechanical field, must also be expressed in terms of Legendre polynomials:

ε(βγ ) =
∞∑

m=0

∞∑

n=0

√
(1 + 2m)(1 + 2n)η(βγ )

(m,n) Pm
(
ζ

(β)
2

)
Pn

(
ζ

(γ )
3

)
(51)

σ(βγ ) =
∞∑

m=0

∞∑

n=0

√
(1 + 2m)(1 + 2n)τ (βγ )

(m,n) Pm
(
ζ

(β)
2

)
Pn

(
ζ

(γ )
3

)
(52)

where the non-dimensional variables ζ
(.)
i , defined in the interval −1 ≤ ζ

(.)
i ≤ 1,

are given in terms of the local subcell coordinates as ζ
(β)
2 = ȳ(β)

2 /(h(q)
β /2), and

ζ
(γ )
3 = ȳ(γ )

3 /(l (r )
γ /2). For the given displacement field representation, Equation (50),

the upper limits on the summations in Equation (51) become 1. The upper limits on
the summations in Equation (52) are chosen so that an accurate representation of the
stress field (which depends on the amount of the inelastic flow) is obtained within
each subcell. The coefficients η(βγ )

(m,n), τ
(βγ )
(m,n) in the above expansions are determined

as described below.
The strain coefficientsη(βγ )

(m,n) in the subcell of cell (q, r ) are explicitly determined
in terms of the displacement field (50), using the orthogonal properties of Legendre
polynomials. The non-zero components are given as follows (omitting (q, r ))

η
(βγ )
11(0,0) = ε̄11

η
(βγ )
22(0,0) = ε̄22 + W (βγ )

2(10)

η
(βγ )
22(1,0) =

√
3

2
h(q)

β W (βγ )
2(20)

η
(βγ )
33(0,0) = ε̄33 + W (βγ )

3(01)

η
(βγ )
33(0,1) =

√
3

2
l (r )
γ W (βγ )

3(02)

η
(βγ )
23(0,0) = ε̄23 + 1

2

(
W (βγ )

2(01) + W (βγ )
3(10)

)

η
(βγ )
23(1,0) =

√
3

4
h(q)

β W (βγ )
3(20)

η
(βγ )
23(0,1) =

√
3

4
l (r )
γ W (βγ )

2(02)

η
(βγ )
13(0,0) = ε̄13 + 1

2
W (βγ )

1(01)

η
(βγ )
13(0,1) =

√
3

4
l (r )
γ W (βγ )

1(02)
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η
(βγ )
12(0,0) = ε̄12 + 1

2
W (βγ )

1(10)

η
(βγ )
12(1,0) =

√
3

4
h(q)

β W (βγ )
1(20) (53)

The stress coefficients τ (βγ )
(m,n) in the subcell of cell (q, r ) are expressed in terms

of the strain coefficients and the unknown inelastic strain distributions, by first
substituting the Legendre polynomial representations for the total strain and stress
into the constitutive equations, Equation (48), and then utilizing the orthogonality
of Legendre polynomials:

τ
(βγ )
(m,n) = C(βγ )η

(βγ )
(m,n) − R(βγ )

(m,n) (54)

The R(βγ )
(m,n) terms represent the inelastic stress distributions calculated in the

following manner

R(βγ )
(m,n) =

1

2

√
(2m + 1)(2n + 1)

∫ 1

−1

∫ 1

−1
σ I (βγ ) Pm

(
ζ

(β)
2

)
Pn

(
ζ

(γ )
3

)
dζ

(β)
2 dζ

(γ )
3

(55)

Note that in both Equations (54) and (55) the cell labeling (q, r ) has been omitted.
By imposing on an average basis (integral sense):

(1) the equilibrium equations (49),
(2) the continuity of tractions between subcells and neighboring cells,
(3) the continuity of displacements between subcells and neighboring cells,
(4) the periodic boundary conditions of tractions and displacements, a system of

60Nq Nr algebraic equations in the unknown coefficients W (βγ )
i(mn) is obtained,

Aboudi et al. (2003). This system of equations is symbolically represented by

KU = f + g (56)

where the structural stiffness matrix K contains information on the geometry
and properties of the materials within the individual subcells (βγ ) within the
cells comprising the multiphase periodic composite. The displacement vector
U contains the unknown displacement coefficients in each subcell, i.e.,

U = [
U(11)

11 , . . . , U(22)
Nq Nr

]
(57)

where in subcell (βγ ) of cell (q, r ) these coefficients are

U(βγ )
qr = [

W(00), W(10), W(01), W(20), W(02)
](βγ )

qr
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The mechanical force f contains information on the applied average strain ε̄, and the
inelastic force vector g appearing on the right-hand side of Equation (56) contains
the inelastic effects given in terms of the integrals of the inelastic stress distributions
that are represented by the coefficients R(βγ )

(m,n). These integrals depend implicitly on
the elements of the displacement coefficient vector U, requiring an incremental
procedure for the solution of Equation (56) at each point along the loading path.

6. Global Constitutive Relations

Once the solution U(t) for a given set of average strains ε̄(t) has been established,
we can determine, in particular, the average strains [η(βγ )

(0,0)]
(q,r ) in subcell (βγ ) of

the cell (q, r ) given by (53).
The average stress [σ̄(βγ )](q,r ) in subcell (βγ ) of the cell (q, r ) is given by

[
σ̄(βγ )

](q,r ) = [
C(βγ )η

(βγ )
(0,0) − R(βγ )

(0,0)

](q,r )
(58)

The equation relating the average total strains and inelastic strains in the subcells
to the macroscopically applied strains is given by Aboudi et al. (2003),

[
η

(βγ )
(0,0)

](q,r ) = [
A(βγ )ε̄ + D(βγ )

](q,r )
(59)

where [A(βγ )](q,r ) is the strain concentration tensor of the subcell (βγ ), and
[D(βγ )](q,r ) is a vector that involves the current inelastic effects in the subcell. In
the absence of inelastic effects this vector vanishes, and we can readily determine
from (59) the strain concentration tensor [A(βγ )](q,r ) by solving the system (56)
six consecutive times at everyone of which a single non-zero component of ε̄ is
imposed.

The VE/VP analysis is performed in conjunction with an incremental procedure
according to which the applied loading ε̄ is imposed in a stepwise manner. Thus
for a given value of applied loading, the average strains [η(βγ )

(0,0)]
(q,r ) in the subcell

can be obtained from the solution of Equation (56). Hence from the already known
concentration tensors [A(βγ )](q,r ), we can determine [D(βγ )](q,r ) from (59) at the
current loading level.

Substitution of (59) into (58) yields

[
σ̄(βγ )

](q,r ) = [
C(βγ )(A(βγ )ε̄ + D(βγ )) − R(βγ )

(0,0)

](q,r )
(60)

The average stress in the multiphase periodic composite is determined from

σ̄ = 1

HL

Nq∑

q=1

Nr∑

r=1

2∑

β,γ=1

h(q)
β l (r )

γ

[
σ̄(βγ )

](q,r )
(61)
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Consequently, Equations (60)–(61) establish the effective closed-form constitutive
law of the multiphase VE/VP composite at time t as follows

σ̄(t) = C∗ ε̄(t) − σ̄ I (t) (62)

where C∗ is the effective elastic stiffness tensor of the composite which is given by

C∗ = 1

HL

Nq∑

q=1

Nr∑

r=1

2∑

β,γ=1

h(q)
β l (r )

γ

[
C(βγ )A(βγ )

](q,r )
(63)

and σ̄ I denotes the overall (macroscopic) inelastic stress in the composite. It is
given by

σ̄ I = −1

HL

Nq∑

q=1

Nr∑

r=1

2∑

β,γ=1

h(q)
β l (r )

γ

[
C(βγ )D(βγ ) − R(βγ )

(0,0)

](q,r )
(64)

7. Computational Procedure

The incremental procedure for carrying out the micromechanical analysis is de-
scribed as follows. Suppose that the material filling subcell (βγ ) is VE/VP which is
governed by Equation (37). It is assumed that at time t the following field quantities
ε, εvp

(k), Wp(k), Z ′
(k), I(k), and J(k), σ I

(k), and R(m,n) are available (superscript (βγ ) has
been omitted), and it is required to compute all field variables at time t + �t .

At time t + �t either all components of ε̄ are known, or some have been
determined from the conditions of uniaxial stress loading (say).

1. The system of equations (56) is solved and its solution provides the strain
coefficients η(m,n) by using Equations (53).

2. The stress coefficients τ (m,n) are computed from Equation (54).
3. The stress σ is determined from (52).
4. The total strain ε is determined from Equation (48).
5. The stress σ(k) is computed by employing Equations (13)–(14).
6. The evolution equations (22), (25), and (27) are integrated to calculate εvp

(k), Z ′
(k)

and Wp(k), respectively, at time t + �t .
7. Functions g(k), f(k) and ϕ(k) are computed from Equations (19), (21) and (20),

respectively.
8. The quantities I(k), and J(k) are calculated from Equations (33) and (36), re-

spectively, at the new time.
9. Compute pI

(k) and σ̂ I
(k) by using Equation (30) and (34), respectively.
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10. The latter are employed to determine the inelastic stress σ I by using Equation
(39).

11. The inelastic stress coefficients R(m,n) are computed by performing the inte-
gration in Equation (55).

12. The micromechanics analysis described in Section 6 is employed to determine
the global inelastic stress from Equation (64). This establishes the constitutive
equations (62) at the current time.

This procedure can be repeated at the next time step.

8. Applications

In the following, we apply the developed micromechanical constitutive relations
(62) to investigate the behavior of a VP/VP matrix reinforced by unidirectional
circular elastic fibers oriented in the one-direction. The properties of the inelastic
matrix are based on those reported by Frank and Brockman (2001) for polycarbonate
at 22 ◦C and are summarized in Table I, whereas the elastic fibers are characterized
by a Young’s modulus of 379 GPa and Poisson’s ratio 0.1, simulating boron fibers.
In all cases, the volume ratio of the fibers was taken as 0.25.

The accuracy and reliability of the computational procedure has been checked
and verified in the following cases:

1. When the matrix is linearly viscoelastic and subjected to a uniaxial strain load-
ing, its response (given by Equation (37)) can be expressed by closed-form
expressions without the need to employ recursion formulas (33) and (36). It
was verified that the response calculated from these closed-form expressions
coincides with aforementioned computational procedure in which the recursion
formulas are involved.

2. By neglecting the VE effects and employing an exponential evolution law for the
viscoplastic strain (Bodner, 2002), the response of the unidirectional composite
computed according to the above computational procedure (in which recursion
formulas (33) and (36) are operative) coincides with the results based on the
procedure that was presented by Aboudi et al. (2003) for inelastic composites,
whose accuracy and reliability were extensively checked and verified by com-
parison with several analytical and finite element solutions.

3. Convergence of the VE/VP response computed with sufficiently small �t has
been verified.

Figure 3 exhibits the response of the VE/VP matrix to a uniaxial stress loading
at two values of applied strain rates: ε̇ = 5 s−1 and 0.005 s−1. By neglecting the
VP mechanism effects in the matrix, a linear VE matrix is obtained. Similarly, by
neglecting the VE effects a VP matrix is obtained. The responses in both these two
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Table I. Material constants for the VE/VP matrix.

Property Value

N 24

D0 1×1011 s−1

n 6.5

m 50

α 9.14×10−6

Z0 186 MPa

P0 914 MPa

Cg 0.99

Cw 0.125

f0 0.2

b 2.64

Cv 0.301

G 1.92 GPa

G(0) 0.581 GPa

K 5.96 GPa

K(0) 1.64 GPa

τk 2×10−13–1×108 s

Note. The detailed values of G(k), K(k) and τk are
given in Frank and Brockman (2001).

Figure 3. Response of the unreinforced VE/VP matrix to uniaxial stress loading generated
at two strain rates. The responses in the special cases of VE and VP materials are shown for
comparison.

special cases are included in the figure for comparison. As is expected, the initial
slopes of VE/VP and VE curves coincide. The initial slope of the VP curves is the
time-independent Young’s modulus (5.21 GPa) of the material, and the decreas-
ing response is due merely to the VP effects. It is noted that the rate of loading
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Figure 4. Response of the unreinforced VE/VP and VP matrix to uniaxial stress cyclic loading.

has a significant effect on the response, and the presence/absence of the various
mechanisms is pronounced.

Figure 4 presents the response of the matrix to a uniaxial stress cyclic loading.
Here the rate of strain loading has been kept constant: ε̇ = 0.005 s−1, and response
of the VE/VP matrix is compared to a VP matrix in which the VE effects have been
neglected. Again, the presence of the VE effects is seen to be significant.

So far the behavior of the VE/VP matrix has been investigated. In Figure 5 the
response of the unidirectional composite is shown when it is uniaxially loaded in
the transverse two-direction (perpendicular to the fibers). Just like Figure 3, the
strain loading has been applied at two rates, and the effect of including/discarding
the VE and VP mechanisms is shown. Due to the present type of loading, the matrix

Figure 5. Response of the VE/VP composite to uniaxial stress loading applied in a direction
perpendicular to the fiber direction, generated at two strain rates. The responses in the special
cases of VE and VP materials are shown for comparison.
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Figure 6. Response of the VE/VP and VP composites to uniaxial stress cyclic loading applied
in the transverse 2-direction.

Figure 7. Response of the VE/VP and VP composites to axial shear stress cyclic loading.

dominates the response of the composite. Figures 6 and 7 , just like Figure 4 show
the composite response to a uniaxial transverse and axial shear cyclic loadings
applied at a constant rate of 0.005 s−1. Both figures contrast the VE/VP and VP
responses.

The relaxation curves of the VE/VP matrix and composite are shown in Figure 8.
These curves have been generated by the sudden application of a constant strain
ε̄22 = 0.005 in the transverse direction to the fibers. Also shown in this figure are
the corresponding relaxation behavior when the VP effects are ignored.

Similarly, Figure 9 exhibits the creep curves of the composite and the unre-
inforced matrix due to the application of a constant stress σ̄22 = 25 MPa in the
transverse direction. Both Figures 8 and 9 indicate that the combined effect of the
VE and VP mechanisms is significant. The effect of the fibers in reducing the strain
in the matrix is pronounced.
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Figure 8. Relaxation curves of the unreinforced VE/VP and VE matrix and unidirectional
VE/VP and VE composites caused by the sudden application of a constant strain of 0.5%. In
the latter two cases the constant strain is applied in the transverse 2-direction.

Figure 9. Creep curves of the unreinforced VE/VP and VE matrix and unidirectional VE/VP
and VE composites caused by the sudden application of a stress of 25 MPa. In the latter two
cases the constant stress is applied in the transverse 2-direction.

9. Conclusions

A VE/VP model that has been recently developed by Frank and Brockman (2001)
for polymeric materials, is implemented for the establishment of the global (ef-
fective) closed-form constitutive relations of VE/VP multiphase composites in
which any constituent can behave as a VE/VP solid. This has been achieved by
a micromechanical analysis that is based on the homogenization procedure of com-
posites with periodic microstructure. In the framework of this micromechanics
analysis, the concentration tensors that relate the local strain and inelastic strain
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in a phase to the externally applied strain are established by imposing the equilib-
rium, interfacial and periodic boundary conditions. The resulting micromechanics
analysis is sufficiently general since viscoelastic, viscoplastic and perfectly elas-
tic constituents are obtained as special cases by a proper selection of material
parameters. Anisotropic constitutive laws of VE/VP materials can be directly es-
tablished by employing the proposed micromechanical modeling. The present mi-
cromechanical model has been developed for VE/VP composites with continuous
reinforcement (doubly-periodic). Extension to the modeling of VE/VP composites
with discontinuous reinforcement (triply-periodic) can be performed by adopting
the homogenization procedure that has been presented by Aboudi (2001).

It should be mentioned that the periodicity of microstructures assumption is not
a limitation, since repeating unit cells with relatively small size (with respect to the
heterogeneity) provide reasonable estimates of the behavior of the composite, even
if the medium does not have actual geometrical periodicity, Terada et al. (2000).

Alternatively, by adopting the VE/VP material modeling approach of Saleeb
et al. (2001) which has been employed to investigate the VE/VP behavior of a
metallic alloy, the present micromechanical analysis can be easily modified in
order to establish the corresponding global constitutive laws of VE/VP composites.

The derived constitutive relations for VE/VP multiphase materials can be readily
employed as a “driver” to analyze VE/VP composite structures.
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