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Abstract
In the pre-training task of visible-infrared person re-identification(VI-ReID), two main chal-
lenges arise: i) Domain disparities. A significant domain gap exists between the ImageNet
utilized in public pre-trained models and the specific person data in the VI-ReID task. ii)
Insufficient sample. Due to the challenge of gathering cross-modal paired samples, there is
currently a scarcity of large-scale datasets suitable for pretraininge. To address the afore-
mentioned issues, we propose a new unified pre-training framework (UPPI). Firstly, we
established a large-scale visible-pseudo infrared paired sample repository (UnitCP) based on
the existing visible person dataset, encompassing nearly 170,000 sample pairs. Benefiting
from this repository, not only are training samples significantly expanded, but pre-training on
this foundation also effectively bridges the domain disparities. Simultaneously, to fully har-
ness the potential of the repository, we devised an innovative feature fusion mechanism(CF2)
during pre-training. It leverages redundant features present in the paired images to steer the
model towards cross-modal feature fusion. In addition, during fine-tuning, to adapt the model
to datasets lacking paired images, we introduced a center contrast loss(C2). This loss guides
the model to prioritize cross-modal features with consistent identities. Extensive experimen-
tal results on two standard benchmarks (SYSU-MM01 and RegDB) demonstrate that the
proposed UPPI performs favorably against state-of-the-art methods.
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1 Introduction

The significant progress [1, 2] achieved in object detection and image localization has
established a substantial empirical foundation and theoretical framework for person re-
identification (ReID) [3]. Currently, there is growing interest in visible-infrared person
re-identification (VI-ReID) [4]. VI-ReID strives to effectively retrieve person images exhibit-
ing maximal similarity amidst diverse illumination conditions. In light of diverse imaging
principles, images captured under varying lighting conditions manifest significant discrep-
ancies in their visual attributes. Moreover, within identical illumination settings, images
portraying individuals of the same identity showcase considerable intra-class diversity owing
to factors like posture and perspective.Hence,the pursuit of consistent inter modal embedding
under the same identity, exemplified in Fig. 1, emerges as a pivotal challenge in VI-ReID.

This challenge has garnered considerable attention, leading to the emergence of two
prominent approaches.One approach involves utilizing feature-based methods [5–12], which
employ single-path or multi-path deep neural networks (DNNs) to acquire cross-modal con-
sistent embeddings. These methods leverage sample labels to diminish the modal disparity
between cross-modal features.The alternative approach centers on image-based methods
[13–16], with the aim of bridging the substantial appearance disparities between different
modalities. For instance, GANs [17] facilitate image conversion from one mode to another,
mitigating cross-modality induced appearance differences. Despite their high effectiveness
and frequently superior performance, they come with certain limitations: (1) due to the
absence of involvement of the infrared mode, there are domain disparities in the pre-trained
modelsmentioned on ImageNet; (2) the scarcity of labeled samples acrossmodalities restricts
the matching performance of these networks.

To address the aforementioned issues, we havemade extensive efforts in terms of samples,
training paradigm, and loss functions outside the network. Consequently, we propose UPPI,
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(a).Feature Embedding without the proposed UPPI

(b).Feature Embedding with the proposed UPPI

+

UPPI

Fig. 1 The proposed UPPI framework generates consistent embeddings across diverse modal environments,
enabling the network to learn identity-representative features. This approach effectively reduces the modal
gap between VIS and IR images of the same identity
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as depicted in Fig. 2. Firstly, alongside visible and infrared images, we have assembled a
vast sample repository named UnitCP, which encompasses paired images possessing distinct
appearance styles: visible and pseudo-infrared. The pseudo-infrared images exhibit compa-
rable appearance styles to infrared imageswhilemaintaining consistent semantic information
with visible images. This effectively bridges the substantial disparities between ImageNet
and specific infrared datasets and also offers a solution for the scarcity of labeled infrared
samples. Secondly, within the pre-training phase, we propose the integration of a cross-modal
feature fusion module (CF2), strategically designed to compel the network to discern shared
features across diverse modalities by judiciously merging redundant features from paired
samples in an explicit manner.

During the fine-tuning process, to facilitate themodel’s adaptation to the temporal absence
of paired images, we introduce a novel central contrast loss (C2). This loss function incen-
tivizes the prioritization of identity-consistent cross-modal features in scenarios where paired
samples are unavailable.

Our main contributions are summarized as follows. (1) To address the domain discrepan-
cies between ImageNet and specific infrared datasets, aswell as the absence of paired samples,
we aim to investigate the feasibility of pretraining and propose a Unified Framework for Pre-
training with Pseudo-Infrared Images (UPPI). (2)We establish a comprehensive cross-modal
sample repository(UnitCP), serving as the foundation for our pre-training endeavors. (3) We
propose a cross-modal feature fusion mechanism(CF2), strategically devised to maximize
the utilization of paired images. Moreover, to enhance the model’s adaptability during fine-
tuning in scenarios where paired images are lacking, we introduce a novel center contrast
loss (C2). (4) Extensive experimental results on two benchmark datasets, SYSU-MM01 and

Separate Reconstruct

Fig. 2 Illustrates the UPPI framework pipeline, encompassing cross-modal feature fusion module (CF2)
and Central contrast loss (C2) components. The distinctively colored arrows depict various training stages,
including pre-training and fine-tuning
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RegDB, validate the effectiveness and exceptional performance demonstrated by our pro-
posed method.

2 Related work

2.1 VI-ReID tasks

In tackling this formidable cross-modal challenge, two distinct approaches arise. One class
of methodologies endeavors to attain consistent embedding across diverse modalities [4–12].
For example, Wu et al. [4] constructed the largest visible near-infrared dataset SYSU-MM01
and proposed a zero-padding framework. TONE + HCML [5] have advanced the two-stream
cross-modal Re-ID framework by concurrently optimizing shared and specific metrics. Lu
et al. [6] endeavored to introduce modality-specific features. Mean-while, Wu et al. [7]
proposed a modal-gated extractor that integrated a similarity preservation loss. Ye et al.
[9] proposed an attention-based framework aimed at leveraging both local-level and image-
level contextual cues. FMCNet [12] devised a feature compensation structure to extract
additional discriminative features from shared ones. While these methods have achieved
notable advancements in performance, the inherent domain distinctions between ImageNet
and the specific datasets per-taining to VI-ReID impose constraints on further performance
enhancements. Unlike these methods, which use pre-trained models on ImageNet for direct
recognition, we first use pre-training tasks to reduce domain disparities for specific datasets
in VI-ReID tasks and ImageNet, and then recognize.

An alternative set of methodologies endeavors to mitigate the visual disparities among
cross-modal images through sample-based interventions [13–16], or through the develop-
ment of effective sample augmentation strategies [18–20]. For instance, Wang et al. [15]
decomposed the features extracted and decoded the shared modal features to produce high-
quality cross-modal paired images. X-modality [16] devised a lightweight network that learns
intermediate representations of visible and infrared images. Ye et al. [18] employed generated
grayscale images for training more robust networks. Ye et al. [19] proposed a data augmenta-
tion strategy that randomly selected color channels to generate single-channel samples.Our
pseudo-infrared image is similar to the latter category of methods; however, in order to avoid
introducing additional noise, we employ a pseudo-infrared approach similar to that described
in [19], while not being limited by it. We extensively leverage this pseudo-infrared technique
on the existing visible person datasets, yielding a substantial number of cross-modal sample
pairs.

2.2 Pre-training tasks

The practice of pre-training networks [21–23] on extensive corpora has exhibited significant
advantages in natural language processing tasks. In computer vision,networks supervised
pre-trained on ImageNet [24], such as AlexNet [25], ResNet [26], ViT [27], Swin Trans-
former [28], among others, have showcased substantial performance gains when applied to
other tasks.Models pre-trained on ImageNet significantly boost domain disparty retrieval
tasks within the same spectrum. However, this performance gain diminishes in cross-spectral
settings.From the sample perspective, the lack of infrared samples appears to result in the
pre-trained models lacking relevant prior knowledge. This absence is likely a key factor lim-
iting performance in cross-spectral scenarios.Therefore, we propose a pre-training task on
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a repository of visible-pseudo-infrared sample pairs, aiming to compensate for the missing
infrared prior knowledge by introducing pseudo-infrared samples. Considering the similari-
ties in the format of visible infrared samples, the unified pre-training framework resembles
a single-stream network [29–33]. However, to further enhance the network’s generalization
performance, we have incorporated elements from the pre-training paradigm discussed in
[34, 35].

3 Methodology

Let xk represent a sample of mode k,where k ∈ v, i (v denotes the visible mode, i denotes the

infrared mode). The dataset consists of visible and infrared samples V =
{
x j
v , y j

v

}Nv

j=0
,I =

{
x j
i , y j

i

}N j

j=0
, respectively, where Nv and Ni are the number of samples for each mode in the

dataset. Here, y j
k represents the identity label of the j th sample in mode k. VI-ReID aims

to match samples with identical identities across modes. The proposed unified framework
structure is illustrated in Fig. 2, with further details discussed in subsequent sections.

3.1 UnitCP: a repository of visible pseudo-infrared samples

In transfer learning, domain disparty refers to the difference between the data distribution
learned by the model and the data distribution encountered during actual application or
testing. Existing works [36–38] have explored the mechanisms and adjustment methods
for domain disparty. In VI-ReID, due to the lack of cross-modality source datasets, many
efforts [6–8] have focused on leveraging the large-scale single-spectrum dataset ImageNet to
acquire prior knowledge. However, we argue that domain disparty remains a significant issue
in these approaches. Standard domain disparty problems focus on inter-domain differences
caused by factors such as different scenes and camera viewpoints within a single spectrum. In
contrast, our identified domain disparty issue focuses on differences between datasets under
different spectral settings. Specifically, since the target dataset comprises visible-infrared
cross-spectrum samples, the source dataset should maintain a consistent setting. Therefore,
we explored a cross-spectrum setting consistent with the target dataset in the source dataset.

Several GAN-based works [13–15] have successfully transformed visible images into
infrared images, while some channel-related works [18, 19] have simulated infrared styles in
visible images. As depicted in Fig. 3, the images generated by the former significantly differ
in quality from those generated by the latter, even though the former successfully produced
infrared-style images. Hence, we constructed UnitCP: a visible-to-pseudo-infrared sample
repository based on the latter approach.

Initially, we gathered training and test samples from various datasets including Mar-
ket1501 [39], DukeMTMC-reID [40], MSMT17 [41], and others. These samples were then
organized based on labels to obtain approximately 180,000 visible person samples represent-
ing 7,250 unique identities. To ensure optimal generalization performance of the network, all
these 180,000 samples were utilized for training while a distinct dataset called SYSU-MM01
was used as the test set. After thoroughly examining the merits and demerits of pseudo-
infrared technologies, we synergistically integrated these techniques through a randomized
selection process to establish a diversified sample-based pseudo-infrared scheme, as outlined
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Fig. 3 Illustrates a comparison between pseudo-infrared images in UnitCP and infrared images generated by
GANs.The leftmost column depicts the original image, while the upper and lower right columns showcase the
images generated by the GAN network and the pseudo-infrared images, respectively. Our results demonstrate
that the pseudo-infrared images exhibit superior visual credibility, semantic consistency, and detail compared
to those generated by GANs

below: ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xv
i = (

x Ri , x Ri , x Ri
)
, n = 0

xv
i = (

xGi , xGi , xGi
)
, n = 1

xv
i = (

x Bi , x Bi , x Bi
)
, n = 2

xv
i = (

xδ
i , x

δ
i , x

δ
i

)
, 2 < n ≤ 5

xδ
i = α · x Ri + β · x Bi + γ · xGi

(1)

Where v and r represent the visible mode and infrared mode respectively, R,G, B denote
the three channels of the image. The variable n is a random number employed to enhance
sample diversity, while α, β, γ are correlation coefficients utilized in gray technology.

Subsequently, we employed pseudo-infrared technology to convert 180,000 samples
into an equivalent number of visible pseudo-infrared sample pairs. The abundance of vis-
ible pseudo-infrared sample pairs in UnitCP significantly mitigates the domain disparities
between ImageNet and VI-ReID datasets, thereby maximizing the model’s potential. To vali-
date this, we visualize the performance curve of AGWacross various scenarios. As illustrated
in Fig. 4, the network pre-trained on UnitCP not only demonstrates faster convergence but
also significantly enhances performance. It is noteworthy that the zero-shot mAP of AGW
baseline on SYSU-MM01 surpasses the best performance without pre-training by more than
10 percentage points and exceeds that of AGW pre-trained on ImageNet by over 20 per-
centage points. This indicates that through exposure to simulated visible pseudo-infrared
environments, the network effectively adapts to cross-modal settings.
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>12%

>20%

>13%

Fig. 4 Illustrates the performance curves of the network under different pre-training scenarios. α demonstrates
the performance difference between zero-shot learning with UnitCP pre-training and the saturated training
performance without pre-training. β represents the performance gap between zero-shot learning pre-trained
on UnitCP and that pre-trained on ImageNet. Finally, γ indicate the difference in fine-tuning performance
post pre-training on UnitCP versus pre-training on ImageNet

Notice that our proposed UnitCP serves as not only a static sample repository but also a
dynamic cross-modal sample augmentation strategy. In future research, we intend to apply
this sample augmentation strategy to larger datasets, such as ImageNet, which effectively
addresses the domain disparities issue and significantly mitigates the scarcity of cross-modal
samples.

3.2 CF2: Cross-modal feature fusionmodule

After introducing a substantial collection of visible pseudo-infrared sample pairs, we thor-
oughly harness the potential of cross-modal pairwise semantics.Among the high-dimensional
features extracted by the network, a significant portion of these features exhibit negligible
impact on identity discrimination or even have adverse effects, as demonstrated in previous
studies [42]. Motivated by this, we propose a module that exploits redundant features to alle-
viate disparities in cross-modal features. As il-lustrated in Fig. 2(b), we initially segregate
the feature map into dense and sparse information components. Subsequently, we perform
cross-reconstruction to establish fusion features for enhancing inter-feature imformationflow.

Specifically, the correlation coefficients in the group normalization (GN) layer are initially
utilized to evaluate the information density of individual channels. Given a feature map
x ∈ R

N×C×H×W at an intermediate layer, where N represents batch size, C denotes channel
count, and H × W denotes spatial dimensions of the feature, we proceed by normalizing
input feature X using the subsequent formula:

Xout = GN (X) = γ
X − μ√
σ 2 + θ

+ β (2)

where μ and σ are the mean and standard deviation in X , θ is a small positive number that
guarantees division, and γ and β are trainable affine transforms.

The trainable parameter γ in the GN layer is utilized to quantify the spatial pixel variance
of the channel during the standardization process, where a larger value of γ indicates a richer
representation of spatial information. The weight Wγ , which determines the significance of
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each channel, can be derived from (3).

Wγ = {wi } = γi
C∑
j=1

γ j

, i, j = 1, 2, ...,C (3)

The weights of the reweighted feature map Wγ are subsequently normalized to the range
(0,1) through the application of the sigmoid function. We assign 0 to weights below the
threshold and 1 to weights above the threshold, resulting in two weight matrices W1 and W2

that have the same scale as the feature map. In summary, the process for calculating weights
to distinguish sparse feature maps from dense feature maps is as follows:

W = Gate
(
Sigmoid

(
Wγ (GN (X))

))
(4)

We respectively replicate and weight the features of different modes to obtain a feature
map that encompasses dense information, as well as a feature map that captures sparse in-
formation. Finally, the process for calculate ing the reconstructed features of both modes is
outlined as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Xv
11 = W1 ⊗ Xv, Xv

12 = W2 ⊗ Xv

Xi
11 = W1 ⊗ Xi , Xi

12 = W2 ⊗ Xi

Xv = Xv
11 ⊕ Xi

12

Xi = Xi
11 ⊕ Xv

12

(5)

where ⊕ denotes element-wise addition and ⊗ denotes element-wise multiplication.
The effect comparison before and after CF2 is illustrated in Fig. 5. The red-boxed area in

(a) is severely affected by the background, leading to feature loss in the corresponding area
in (b). In contrast, the corresponding area in (c) shows effective feature compensation. This
improvement can be attributed to the efficient inter-modal information reciprocity channel
constructed byCF2,which significantly alleviates the issue of feature loss in infrared samples.

3.3 C2: Central contrast loss

In the fine-tuning phase, the challenging conditions characterized by a scarcity of paired
images and substantial intra-class variations compel the model to redirect its focus from
images towards identity. Hence, it is crucial to establish intermodal identity consistency
constraints for alignment purposes. Previous works [11, 43, 44] have introduced cross-modal
distance constraints to effectively reduce modal distances between cross-modal features and
achieved remarkable outcomes. However, these additional hard distance constraints may
potentially result in the loss of essential discriminative features.

Instead, we propose a similarity-based center contrast loss. First, we use the Euclidean
center of feature semantics to represent the same identity of each modality.

Cv
i = 1

Nv

Nv∑
j=1

f v
j=1,C

r
i = 1

Nr

Nr∑
j=1

f rj=1 (6)

where Nv , Nr represent the number of visible samples and the number of infrared samples
under the same batch of the same identity. Compared with the hard distance constraint based
on samples, we use a soft identity constraint in order to maintain higher quality image
discriminant features.
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(a). Cross-modal 

original sample

(b). Primary feature (c). Fusion feature

Fig. 5 Illustrates the comparative analysis of feature representations before and after the incorporation of
the CF2 framework. The integration of CF2 has facilitated enhanced information exchange across multiple
modalities, thereby significantly augmenting the fidelity and discriminative power of the resultant feature
set. This improvement in feature quality is attributed to the synergistic interplay between the diverse data
modalities, which collectively contribute to a more robust feature learning process

Assuming a batch size Nb and a sample size m for each modality and identity, the number
of identities in a batch can be calculated as N = Nb/2m. The contrast loss plays a crucial
role in maximizing the cross-modal center cosine similarity within the same identity while
minimizing it between different identities. The corresponding formula is presented below.

Lv
c2

= 1
N

N∑
n=1

− log

⎛
⎜⎜⎝

exp(sim(Cv,Cr+))
Ncr−∑
i=1

exp(sim(Cv,Cr−))

⎞
⎟⎟⎠ ,

Lr
c2

= 1
N

N∑
n=1

− log

⎛
⎜⎜⎝

exp(Cr ,Cv+)
Ncv−∑
i=1

exp(sim(Cr ,Cv−))

⎞
⎟⎟⎠ ,

Lc2 =
(
Lv
c2

+ Lr
c2

)
/2

(7)

Where + and − respectively denote the feature centers sharing the same identity as the
anchored identity center, and those with different identities; sim (a, b) = a�b/ ‖ a ‖ · ‖ b ‖
represents the cosine similarity between a and b.
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In addition, in order to provide the network with basic semantic signals, the two general
loss functions in (8) are also adopted.

Lid = − 1
N

N∑
i=1

log

(
P

(
yi
xi

))

Lwr t = 1
N

N∑
i=1

log
(
1 + exp

(∑
i j w

p
i j d

p
i j − ∑

ik wn
ikd

n
ik

))

w
p
i j = exp

(
d p
i j

)

∑
d
p
i j∈pi

exp
(
d p
i j

) , wn
ik = exp(−dnik)∑

dnik∈ni exp(d
n
ik)

(8)

where Lid denotes cross-entropy loss, Lwr t denotes weighted regularization triple loss, and
(i, j, k) denotes a triple in each training batch for each anchored sample xi . For xi , P is
the corresponding positive sample set and N is the corresponding negative sample set. d p ,
dn denotes pairwise distances of positive and negative sample pairs, respectively. di j is the
Euclidean distance between two sample features. Using softmax weighting strategy to obtain
two weights, w p , wn can force the network to pay more attention to distance optimization
of difficult samples.

The overall objective function of UPPI can be expressed as (9), where ω represents the
hyperparameter utilized for balancing Lc2 with the two base losses.

L = Lid + Lwr t + ωLc2 (9)

4 Experiment

4.1 Datasets and implementation details

4.1.1 Datasets

We conducted simulation experiments on two general VI Re-ID datasets to evaluate our
proposed method.

SYSU-MM01 consists of 491 identities captured by 6 cameras (4 RGB cameras and 2 IR
cameras) at different times and under varying environmental conditions, resulting in a total
of nearly 60,000 images. The training set comprises 395 identities with a total of 19,659
RGB images and 12,792 IR images, while the test set includes 96 identities. Following its
standard evaluation protocol, the dataset offers global retrieval mode and indoor retrieval
mode. To ensure fair comparison with state-of-the-art methods, we extracted respectively
301 and 3010 images to construct the gallery set for evaluation.

RegDB [45], created by a visible camera and a thermal camera, contains 412 identities,
with 10 images for each identity under each mode, which contains several different perspec-
tives, a total of 10,932 images. In the training phase, we randomly selected a subset consisting
of 206 identity images as the training set while using the remaining 206 identity images as
the test set.

4.1.2 Implementation details

Weutilized theAGW[46] baseline as our backbone network and collected two versions of the
UPPI sample repository, UniCP12 with 4100 identities and nearly 120,000 visible images,
UniCP18with 7,250 identities and almost 180,000 images. To account for the varying number
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of classes, we set independent classifiers for both pre-training and fine-tuning processes.
Our proposed CF2 was inserted after the second and third convolution blocks; however,
its parameters did not participate in updates due to a lack of cross-modal paired images
during fine-tuning. After conducting numerous experiments, we determined that setting ω at
0.6 effectively balanced loss term C2. During pre-training and fine-tuning stages, each batch
randomly selected sixteen identities fromwhich four visible images and four infrared images
were chosen to form small batches. Each infrared sample was stacked into a three-channel
image before being fed into the network. To expedite the training process, mixed precision
training was employed. The Adam optimizer with a warm-up strategy was utilized, setting
the learning rate to 3.5 × 10−4 for SYSU-MM01 and 8.25 × 10−4 for RegDB during the
initial 10 epochs. Subsequently, at epoch 20 and epoch 40, the learning rate was reduced by
factors of 0.1 and 0.01 respectively. Standard data augmentation techniques including random
cropping, random horizontal flipping, color jittering, and random erasure were applied. A
total of 120 epochs were conducted for network training; comprising of an initial pre-training
phase spanning over 80 epochs followed by fine-tuning for an additional 40 epochs. To ensure
fair comparison among different networks, any reordering algorithm was employed during
evaluation.

4.2 Comparison with state-of-the-art methods

The comparison resultswith state-of-the-artmethods onSYSU-MM01 andRegDBare shown
in Tables 1 and 2. It can be seen that the performance indicators of the proposed UPPI

Table 1 Comparison with the state-of-the art methods on the SYSU-MM01 dataset

Method Venue All-search Indoor-search
R1 R10 mAP R1 R10 mAP

AGW [46] TPAMI 2022 47.50 84.39 47.65 54.17 91.14 62.97

X-Modal [16] AAAI 2020 49.92 89.79 50.73 − − −
DDAG [9] ECCV 2020 54.75 90.39 53.02 61.02 94.06 67.98

NFS [47] CVPR 2021 56.91 91.34 55.45 62.79 96.53 69.79

DFLN-ViT [48] TMM 2022 59.84 92.49 57.70 62.13 94.83 69.03

MID [49] AAAI 2022 60.27 92.90 59.40 64.86 96.12 70.12

SMCL [50] ICCV 2021 67.39 92.87 61.78 68.84 96.55 75.56

MCLNet [51] ICCV 2021 65.40 93.33 61.98 72.56 96.98 76.58

MPMN [52] TMM 2021 48.98 90.33 62.41 64.89 96.85 76.47

FMCNet [12] CVPR 2022 66.34 − 62.51 68.15 − 74.09

cm-SSFT [7] CVPR 2020 61.60 89.20 63.20 70.50 94.90 72.60

PMT [53] AAAI 2023 67.53 95.36 64.98 71.66 96.73 76.52

CMIT [54] TMM 2022 70.94 94.93 65.51 73.28 95.20 77.18

CAJ [19] ICCV 2021 69.88 95.71 66.89 76.26 97.88 80.37

MPANet [10] CVPR 2021 70.58 96.21 68.24 76.74 98.21 80.95

MAUM [55] CVPR 2022 71.68 − 68.79 76.97 − 81.94

CAL [56] ICCV 2023 74.66 96.47 71.73 79.69 98.93 83.68

DEN [57] WACV 2024 76.36 − 71.30 83.56 − 84.65

UPPI(Ours) − 76.58 97.25 72.76 84.23 97.96 85.66
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Table 2 Comparison with the state-of-the art methods on the RegDB dataset

Method Venue Visible to infrared Infrared to visible
R1 R10 mAP R1 R10 mAP

AGW [46] TPAMI 2022 70.05 86.21 66.37 75.93 90.93 69.49

X-Modal [16] AAAI 2020 62.21 83.13 60.18 − − −
DDAG [9] ECCV 2020 69.34 86.19 63.46 68.06 85.15 61.8

NFS [47] CVPR 2021 80.54 91.96 72.1 77.95 90.45 69.79

DFLN-ViT [48] TMM 2022 92.1 97.97 82.11 91.21 98.2 81.62

MID [49] AAAI 2022 87.45 95.73 84.29 84.29 93.44 81.41

SMCL [50] ICCV 2021 83.93 − 79.83 83.05 − 78.57

MCLNet [51] ICCV 2021 80.31 92.7 73.07 75.93 90.93 69.49

MPMN [52] TMM 2021 86.56 96.89 82.91 84.62 95.51 79.49

FMCNet [12] CVPR 2022 89.12 − 84.43 88.38 − 83.86

cm-SSFT [7] CVPR 2020 72.3 − 72.9 71 − 71.7

PMT [53] AAAI 2023 84.83 − 76.55 84.16 − 75.13

CMIT [54] TMM 2022 88.78 94.76 88.49 84.55 93.72 83.64

CAJ [19] ICCV 2021 85.03 95.49 79.14 84.75 95.33 77.82

MPANet [10] CVPR 2021 83.7 − 80.9 82.8 − 80.7

MAUM [55] CVPR 2022 87.87 − 85.9 86.95 − 84.34

CAL [56] ICCV 2023 94.51 99.7 88.67 93.64 99.46 87.61

DEN [57] WACV 2024 95.34 − 90.21 94.98 − 90.24

UPPI(Ours) − 97.28 99.16 91.11 95.26 98.39 90.48

on the two datasets are mostly better than existing state-of-the-art methods. Most of the
comparison methods employed in this study utilize pre-trained models on ImageNet and
lack paired cross-modal images, thus limiting their untapped potential. Therefore, the UPPI
proposed in this study is specifically designed to tackle these two significant challenges and
offer our innovative solutions. (1) The construction of a large-scale visible pseudo-infrared
paired sample repository(UnitCP), based on pseudo-infrared images, not only addresses the
scarcity of cross-modal samples but also enables the pre-trained model to compensate for
the lack of infrared experience while retaining prior knowledge acquired from ImageNet; (2)
CF2 facilitates the integration of cross-modal information by leveraging redundant features,
thereby mitigating substantial visual disparities across different modalities; during the fine-
tuning phase, C2 significantly aids in redirecting themodel’s attention from images to identity.

4.3 Ablation study and analysis

4.3.1 Effectiveness of proposed components

The experimental results on the SYSU-MM01 dataset are presented in Table 3. It is evident
that our pre-training weights significantly enhance the performance of the network on the
cross-modal dataset, while the other two components also contribute to a portion of this
improvement. To further validate our approach, we integrate these proposed components into
well-established backbone networks such as Inception-V3 [58], ResNet50, EfficientNet-B3
[59], and Vit-Base [27]. As shown in Table 3, our components yield performance gains for
these networks, demonstrating the versatility of our method.
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Table 3 Effectiveness of the proposed components over different backbone networks on the SYSU-MM01
dataset under the all-search single-shot mode

Backbone UnitCP18 CF2 C2 SYSU-MM01(All-search)
R1 R10 mAP

ResNet-50 48.16 87.47 50.41
√ 67.76 91.10 62.77
√ √ 69.18 94.92 64.31
√ √ √ 70.75 96.43 66.89

Inception-V3 40.22 74.28 44.36
√ 57.09 88.26 55.42
√ √ 60.66 89.90 58.17
√ √ √ 61.91 92.26 60.15

EfficientNet-B3 48.34 77.58 48.92
√ 64.88 92.30 61.16
√ √ 60.96 93.44 63.30
√ √ √ 65.27 95.57 65.08

AGW 47.50 84.39 47.65
√ 70.58 96.21 67.68
√ √ 74.66 96.46 70.71
√ √ √ 76.58 97.25 72.76

Vit-Base 40.23 83.63 39.90
√ 50.82 88.53 49.57
√ √ 53.77 90.94 52.73
√ √ √ 57.06 92.41 55.08

4.3.2 Comparative analysis of pre-training at different scales

we present in Fig. 6 the simulation results of pre-training weights obtained on ImageNet,
UnitCP12 and UnitCP18 sample repositories loaded by four different backbone networks,
ResNet-50, Inception-V3, EfficientNet-B3 and Vit-Base. It can be seen that the cross-modal
matching performance of themodel is significantly enhanced following saturated pre-training
tasks. Notably, the zero-shot mAP in ResNet50 exhibits an increase of over 20%, while other

Vit-BaseResNet50Inception-V3EfficientNet-B3

Fig. 6 Illustrates the performance curves for four feature extraction networks pre-trained on different datasets.
The networks exhibit significantly improved performance and faster convergence on UnitCP12 compared to
ImageNet. Amoderate enhancement is also observed fromUnitCP12 toUnitCP18.Notably, the substantial gap
in zero-shot performance highlights the network’s proficiency in cross-modal image environments, attributed
to our specialized pre-training approach
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Table 4 Comparison results of
different feature fusion methods

Method SYSU-MM01
R1 R10 mAP

UPPI w/o CF2 70.58 96.21 67.68

CF2 →DenseFuse 68.27 95.19 66.77

CF2 →SeAFusion 71.02 96.08 68.05

CF2 →FusionGAN 70.39 96.25 68.11

CF2 →DIVFusion 73.79 96.37 69.52

UPPI(Ours) 74.66 96.46 70.71

Please note that the algorithms involved in the table do not include image
reconstruction

backbone networks also demonstrate remarkable enhancements in their zero-shot match-
ing capabilities. The substantial improvement in final retrieval performance can likely be
attributed to the inclusion of a large number of samples. What factors, then, lead to the
significant enhancement in zero-shot retrieval performance post-pretraining? Zero-shot per-
formance is a crucial indicator of the extent of prior knowledge acquisition, and the sharp
increase in zero-shot performance undoubtedly signifies that the model has acquired sub-
stantial prior knowledge through our tailored pretraining tasks. Crucially, prior knowledge
from the visible spectrum has been effectively obtained using ImageNet. Therefore, our cus-
tomized pretraining tasks compensate for the missing infrared prior knowledge, which is a
key measure to mitigate domain discrepancy in cross-spectrum datasets.

4.3.3 Comparative analysis of different fusion methods

In Table 4, we substituted CF2 in the pre-training phase with alternative fusion tech-niques,
while keeping all other experimental conditions unchanged. The compared methods include
DenseFuse [60], SeAFusion [61], FusionGAN [62], and DIVFusion [63]. In contrast to
these approaches, we omitted a portion of the network responsible for generating the fused
image in order to extract fusion features. The results demonstrate that our proposed fea-
ture fusion method outperforms the aforementioned techniques significantly in cross-modal
retrieval tasks.We attribute this superiority to ourmethod’s emphasis on specific optimization

65.5

68.67

70.89

71.92

72.66 72.89 72.59

72.31

62.13

64.64

66.92

67.88
68.66 69.89

69.59 69.13

Fig. 7 The performance was systematically assessed across a range of parameter ω settings from 0.1 to 0.6,
revealing a consistent enhancement that highlights the efficacy of C2. Nevertheless, further increasing the
parameter values may lead to feature distortion
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Table 5 Comparison results of
different identity constraints

Method SYSU-MM01
R1 R10 mAP

UPPI w/o C2 74.66 96.46 70.71

C2 →CL 74.70 95.93 70.08

C2 →CCL 73.58 96.27 70.86

C2 →CPM 74.27 95.19 71.23

C2 →CC 75.02 96.08 71.55

C2 →DCL 75.39 96.65 72.11

UPPI(Ours) 76.58 97.25 72.76

processes that aid recognition rather than solely pursuing the visual quality of synthesized
images. This observation further validates the suitability ofCF2 within the image environment
established by UPPI.

4.3.4 Comparative analysis of different identity constraints

In (9), we set a parameter ω to control the tradeoff between the C2 loss with identity loss and
triplet loss. To explore the impact of the hyperparameter, we give an empirical analysis on the
SYSU-MM01 datasets and report the results in Fig. 7. From the results, we can observe that

(a)

(c)

(b)

(d)

Fig. 8 The purple and green colors in Fig. 6(a) and (b) respectively denote intra-class distance and inter-class
distance. In (c) and (d), distinct colors represent features of different identities, while diverse shapes indicate
different modes. It is evident that our proposed UPPI method effectively reduces both modal distance and
intra-class variation simultaneously
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even adding the C2 loss with a small weight (0.2), the final accuracy and mAP could improve
significantly. The best performance is achieved when the parameter ω goes to 0.6. Although
a biggerω may obtain a more compact feature space for every single identity, the high weight
of C2 loss makes limited optimization for the feature from different identities. To compare
C2 with distance-based hard constraints, we substituted it with alternative hard distance
constraints and conducted comparative experiments. The compared hard distance constraints
include Center Loss (CL) [64], Center Cluster Loss (CCL) [10], Dual-Enhancement Center
Loss (DCL) [11], Center-Guided Pair Mining Loss (CPL) [43], and Cross-center Loss (CC)
[44]. The results presented in Table 5 demonstrate that proposed C2, aiming to alleviate
intra-class variations and promote the network’s focus on identity features, yields superior
performance improvements and significantly enhances accuracy.

4.4 Qualitative analysis

4.4.1 Feature visualization

We visualized the spatial distribution and distance distribution of different modal features
through t-SNE [65]. Figure 8(a),(b) respectively present the intra-class distance and inter-class
distance of Baseline and UPPI. It can be seen that the inter-class distance of UPPI features
is significantly greater than the intra-class distance. As shown in Fig. 8(c), the inter-modal
difference of some identities is very large, even greater than the difference between different
identities in the samemodal feature, whichmay lead to incorrect cross-modal retrieval results.

Baseline UPPI

Query QueryTop 5 Retrieval Results Top 5 Retrieval Results

Fig. 9 The top-5 retrieval results of several hard queries obtained by the baseline method (AGW) and the
proposed framework on the SYSU-MM01 dataset. The images with green bounding boxes have the same
identity labels as the query images (i.e., correct matches), and those with red bounding boxes have different
identity labels (i.e., wrong matches)
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In contrast, the UPPI proposed by us makes the features more compact and the intra-class
difference smaller, as shown in Fig. 8(d).

4.4.2 Analysis of retrieval results

Figure 9 shows the comparison of retrieval results between UPPI and baseline on SYSU-
MM01, including single-shot and multi-shot settings. The findings demonstrate a significant
enhancement in retrieval accuracy achieved by UPPI. Notably, certain queries depicted in
Fig. 9 pose challenges even for human ; however, the network incorporating UPPI still
manages to achieve accurate matches.

5 Conclusion

In this paper, we propose UPPI, the first unified pre-training framework for VI Re-ID. It
enhances network performance from a training method perspective by incorporating three
main components: (1) constructing a large-scale cross-modal sample warehouse (UnitCP)
based on pseudo-infrared images and pre-training the network with it for cross-modal learn-
ing; (2) utilizing the cross-modal feature fusion module (CF2) to identify potential redundant
features and fuse them into cross-modal features; and (3) implementing the center contrast
loss (C2), which establishes flexible constraints of identity consistency that encourage the
network to focus on identity-consistent cross-modal features while reducing differences in
such features. A multitude of simulation experiments confirm significant performance gains
resulting from UPPI.
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