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Abstract
Unsupervised Domain Adaptation (UDA) in person re-identification (reID) addresses the
challenge of adapting models trained on labeled source domains to unlabeled target domains,
which is crucial for real-world applications. A significant problem in clustering-based UDA
methods is the noise in pseudo-labels generated due to inter-domain disparities, which can
degrade the performance of reID models. To address this issue, we propose the Unsuper-
vised Dual-Teacher Knowledge Distillation (UDKD), an efficient learning scheme designed
to enhance robustness against noisy pseudo-labels in UDA for person reID. The proposed
UDKD method combines the outputs of two source-trained classifiers (teachers) to train a
third classifier (student) using a modified soft-triplet loss-based metric learning approach.
Additionally, a weighted averaging technique is employed to rectify the noise in the pre-
dicted labels generated from the teacher networks. Experimental results demonstrate that the
proposed UDKD significantly improves performance in terms of mean Average Precision
(mAP) and Cumulative Match Characteristic curve (Rank 1, 5, and 10). Specifically, UDKD
achieves an mAP of 84.57 and 73.32, and Rank 1 scores of 94.34 and 88.26 for Duke to
Market and Market to Duke scenarios, respectively. These results surpass the state-of-the-art
performance, underscoring the efficacy of UDKD in advancing UDA techniques for per-
son reID and highlighting its potential to enhance performance and robustness in real-world
applications.
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1 Introduction

Visual surveillance plays a pivotal role in proactively managing risks and bolstering security
through extensive person tracking across large areas.With the proliferation ofCCTVcameras,
traditionalmanual surveillancemethods are increasingly becoming impractical, necessitating
the adoption of automated video surveillance systems powered by computer vision. Facial
features [1, 2] are widely considered as biometric identifiers due to their distinctiveness.
Recent advancements in face recognition leveraging Robust Principal Component Analysis
(RPCA) [3] and optimization techniques such as Grey Wolf Optimization [4, 5] have signifi-
cantly propelled the field forward. Despite these advancements, challenges persist in CCTV
environments where facial visibility can be compromised or completely obscured, prompting
the use of person re-identification (reID) techniques to ensure reliable identification under
such circumstances.

Person reID has emerged as a prominent area of research in computer vision in recent
years, addressing the challenge of matching individuals across different visual contexts. This
task is complex due to variations in poses, lighting conditions, and occlusions, resulting in
significant differences in how individuals appear across images and videos. Applications of
person reID include surveillance systems, human identification in videos, pedestrian tracking,
and crowd analysis, highlighting its practical importance in various domains.

Although supervised reID methods [6] have achieved commendable performance, but
they rely on labelled data from the same domain (dataset) for model training. However, when
these supervised models are deployed in different domains, they frequently experience a
significant performance drop [7].

In this context, Unsupervised Domain Adaptation (UDA) [9] plays a crucial role in adapt-
ing supervised reID models to new, unlabeled domains by mitigating the issue of domain
shift. UDA is concerned with the transfer of knowledge from a labeled source domain to an
unlabeled target domain. This knowledge transfer aims to enhance the model’s performance
in the target domain by leveraging insights gained from the source domain. Figure 1 provides
a graphical representation of the UDA process for person reID. The schematic representation
illustrates the adaptation process, which involves a feature extractor and classifier trained in a
supervised manner. This adaptation leverages domain-invariant reID knowledge to generate
pseudo-labels from target domain images.

Among various UDAmethods, clustering-based UDA [10–12] has gained popularity over
time, due to the ability o group similar looking individuals together. This approach involves
by utilizing a pre-trained model to assign pseudo labels to target domain images, which
are then employed for clustering. The advantage of clustering-based UDA is its ability to
reduce the impact of noisy pseudo labels, which is considered as a common challenge in
conventional clustering-based UDA methods [10].

One of the fundamental challenge in UDA models is handling label noise in the form of
inaccuracies in pseudo labels generated for target domain data. Several recent studies have
suggested different strategies to address this issue. Some approaches focus on refining pseudo
labels to enhance the accuracy [13, 14], while others emphasize learning from soft pseudo
labels [13, 15]. Furthermore, some efforts have beenmade towards developing noise-resilient
methods [16, 17] to counter the adverse effects of inaccuracies in pseudo labels on reIDmodel
performance.

The motivation behind this study is to address the persistent issue of noisy pseudo labels
in UDA for person reID. Noisy labels can significantly degrade the performance of reID
models by introducing inaccuracies that lead to incorrectmodel learning, reducing themodel’s
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Fig. 1 A schematic representation of the Unsupervised Domain Adaptation process in person reID. The
adaptation involves a feature extractor and classifier trained in a supervised manner, and it leverages domain-
invariant reID knowledge to generate pseudo-labels from target domain images. The images of these persons
are used from the Market1501 [8] dataset, and for the privacy concerns, the faces have been masked

ability to generalize across different domains. These inaccuracies stem from the erroneous
assignment of labels during the pseudo-labeling process, which can cause the model to learn
incorrect associations and patterns. To overcome this problem, we propose an Unsupervised
Dual-Teacher Knowledge Distillation (UDKD) learning scheme that combines collaborative
noise-rectification and learning from soft pseudo labels. This approach aims to enhance the
robustness and accuracy of reID models in unsupervised settings by mitigating the adverse
effects of noisy labels.

The workflow of the proposed method consists of three phases, namely teacher training
(3.1), clustering (3.2), and knowledge distillation (3.3). For better clarity, the contribution of
this paper can be summarized as follows:

1. An Unsupervised Dual-Teacher Knowledge Distillation (UDKD) method is proposed to
enhance the robustness of person reID models.

2. An Enhancement has been suggested for the baseline model with a modified backbone
architecture and feature learning technique.

3. To further improve robustness in person reID tasks, soft pseudo-labels from teachers are
utilized, contributing to a more effective knowledge distillation process.

4. A modified soft triplet loss for UDKD is incorporated to optimize sample discrepancies
and positive distances.

5. A comprehensive experimental evaluation has been conducted employing various bench-
mark datasets, and the proposed scheme shows superior performance than that of the
state-of-the-art approaches.

The subsequent sections of this paper are structured as follows. Section 2 provides a com-
prehensive overview of recent advancements in cluster-based domain adaptive person reID.
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In Section 3, the proposed method is extensively elucidated, highlighting its key compo-
nents and underlying principles. The experimental setup and specific details are outlined in
Section 4. To rigorously evaluate the effectiveness of the proposed scheme and its various
components, we conduct a thorough testing and evaluation process. The results are presented
and discussed in Section 5, along with a comparative analysis between our method and state-
of-the-art approaches in UDA for person reID. Finally, the results are discussed in Section 6
and concluded in Section 7, summarizing the key findings and discussing potential avenues
for future research.

2 Related works

In the field of person reID, Unsupervised Domain Adaptation (UDA) techniques are cru-
cial due to the absence of human identity information in real-world deployment scenarios.
UDA leverages reID knowledge from labelled source domains to compensate for the lack
of labelled data in target or deployment domains. Recent research has underscored the
competitive performance of clustering-based UDA methods when compared to supervised
approaches. However, the existence of inter-domain disparities introduces noise into pseudo
labels generated by pre-trained networks, impacting overall model performance. To address
this challenge, we draw inspiration from existing works in the domain of person reID,
clustering-based domain adaptation, and knowledge distillation.

In clustering-based Domain Adaptation approaches, [18] introduced a novel method for
matching individuals across camera views by using spatiotemporal sequences. Furthermore,
[19] improved pseudo-label accuracy through hierarchical clustering with hard-batch triplet
loss. These developments have laid the foundation for research in this domain.

To tackle noisy pseudo labels, several strategies have been proposed. [13] introduced the
Mutual Mean-Teaching (MMT), which employs a mutual teaching strategy for pseudo-label
refinement. Similarly, [11] presented a two-branch architecture optimized for classification
and metric learning to adapt to target domains, emphasizing domain adaptation and metric
learning techniques.

A range of label refinement approaches, including Group-aware Label Transfer (GLT) by
[20], probabilistic uncertainty-guided progressive label refinery (P2LR) by [21], and Noise
Resistible Network (NRNet) by [22], have been suggested to tackle noisy pseudo labels.
These approaches collectively address challenges related to intra-camera similarity, self-
discrepancy, and feature distribution noise in different domains.

Knowledge distillation in UDA has been exemplified by methods such as Moving Seman-
tic Transfer Network and Progressive Feature Alignment Network, both of which focus
on enhancing semantic understanding and feature alignment, reducing domain divergence,
and improving representation learning capabilities. Moreover, the Adversarial Double Mask
based Pruning (ADMP) method by [23] employs advanced adversarial learning techniques
to eliminate unnecessary features and enhance feature alignment in domain adaptation sce-
narios. These approaches underline the importance of leveraging knowledge from diverse
sources to narrow domain gaps.

A major challenge in person re-identification (reID) is the need for extensive data
annotation. The Color Prompting (CoP) method [24] addresses this issue by generating
pseudo-supervisionmessages to facilitate data-free, continual, unsupervised domain adaptive
reID. This approach leverages colour prompts to support continual learning and adaptation,
effectively managing the domain shift over time. Similarly, the Adaptive Memorization with
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Group labels (AdaMG) framework [25] emphasizes creating comprehensive sample descrip-
tions and managing noisy pseudo labels in unsupervised reID tasks. By integrating group
labels, AdaMG enhances model adaptability and robustness, resulting in improved perfor-
mance under varying domain conditions.

In the context ofmulti-view,multi-person 3D pose estimation, the problem of domain shift
is addressed using unsupervised domain adaptation with a dropout discriminator [26]. This
method improves the accuracy of 3D pose estimation by aligning features across different
views and individuals, significantly enhancing pose estimation robustness and generalization
capabilities. Additionally, a global-local transformer-based framework for unsupervised reID
[27] employs a multi-branch structure to learn robust features from pedestrian images. This
approach highlights the effectiveness of transformer architectures in capturing both global and
local features essential for accurate reID across diverse datasets and environments. Collec-
tively, these studies demonstrate significant advancements in unsupervised domain adaptation
techniques, encompassing innovative labelling strategies and transformative model architec-
tures to enhance the reliability and applicability of reID systems.

Despite commendable efforts in addressing challenges related to clustering-based domain
adaptation, pseudo-label generation, and knowledge distillation for person reID in exist-
ing literature, several persistent limitations remain. The presence of noisy pseudo-labels
continues to affect model performance due to inter-domain disparities. Current strategies for
pseudo-label refinement, although advanced, still suffer from issues like intra-camera similar-
ity, self-discrepancy, and feature distribution noise. Additionally, extensive data annotation
remains a significant challenge, particularly for unsupervised methods. Domain shifts in
multi-view, multi-person 3D pose estimation and capturing both global and local features in
transformer-based frameworks also present ongoing difficulties. These gaps underscore the
necessity for more robust and effective solutions, such as our proposed UDKD scheme, to
advance the field of unsupervised domain adaptation for person reID.

In response to this challenge, our UDKD scheme takes a novel approach by integrating the
outputs of two teachers. This integration aims to minimize the impact of noisy pseudo-labels
generated by one teacher, leveraging the complementary guidance provided by the other. An
integral aspect of ourUDKDmethod is the adoption of soft pseudo-labels,where the predicted
probability distribution across all classes is considered for training the student network. This
not only contributes to the robustness of the learning process but also addresses the issue
of noisy pseudo-labels. To effectively handle these soft labels, we introduce a modified soft
triplet loss into the scheme. This nuanced strategy collectively addresses the challenge of
noisy pseudo-labels, thereby enhancing the efficacy of our proposed method in advancing
unsupervised domain adaptation (UDA) for person reID. The subsequent section, ’Proposed
Methodology,’ delves into the intricate details of our approach, elucidating its components
and demonstrating their impact on refining pseudo-labels in the domain adaptive setting.

3 Proposedmethodology

Unsupervised domain adaptation is the process where data from one domain Ds =
(xsi , y

s
i )|mi=1 is used to train a model that can be applied to another domain Dt = xti |ni=1,

where xs and xt denote person images in the source and target domains, respectively, whereas
m and n represent the number of images in the source and target domains. The goal is to
learn a model that can effectively generalize to the new domain by predicting labels y∼t for
every target image xt , even though no labelled data is available for that domain. This can be
accomplished by either transferring knowledge from the source domain to the target domain
or learning a model invariant to changes in the domain.
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Clustering-basedUDA involves pre-training the deep neural network F(.|θ)with the target
domain in order to encode the features {F(xsi |θ}|mi=1. Followed by re-tuning the network
parameters θ in order to transfer the encoded features {F(xti |θ}|ni=1 to the target domain.

The present work introduces an Unsupervised Dual-Teacher Knowledge Distillation
(UDKD) learning scheme, aiming to ameliorate the challenges posed by the generation of
pseudo labels during the clustering process. These pseudo-labels are produced to categorize
data points based on their similarity, thus serving as a form of weak supervision. However,
due to the inherent noise and imprecision associated with the clustering procedure, these
labels may exhibit inaccuracies.

To mitigate the influence of such noise, the approach at hand capitalizes on the deploy-
ment of two independent classifiers. An averaging method is employed to minimize the
potential impact of outliers within the pseudo labels, leading to the refinement of these labels
and rendering them more dependable and robust. Subsequently, these refined soft pseudo
labels assume a pivotal role in training a smaller network in a supervised manner, thereby
augmenting the overall robustness of UDKD.

Themethodology builds upon the combined architecture of the stronger baseline of Luo et
al. [28] and theGroup-aware Label Transfer network of Zheng et al. [29] as the initial method.
This baseline forms the foundation for subsequent modifications with the introduction in two
critical phases: Teacher Training (3.1) and Clustering (3.2). In Phase 1, we enhance the
baseline by integrating two teacher models, denoted as C1 and C2. These teachers undergo
fine-tuning using the source domain, adding discriminative power to the original baseline.
In Phase 2, a clustering mechanism is introduced to adapt the model to the target domain,
refining features through k-means clustering. Architectural details of these modifications,
along with a rationale and comparative analysis against the original stronger baseline, are
provided in Appendix A. This approach aims to capitalize on the baseline’s strengths while
tailoring it to the specific demands of unsupervised domain adaptation for person reID.

For a comprehensive exposition of the proposed UDKD, inclusive of its procedural intri-
cacies pertaining to training and knowledge distillation, refer to the end-to-end workflow
diagram depicted in Fig. 2, which provides an illustrative visualization. In phase 1 (repre-
sented in blue and P1), image samples xs of the source domain Ds are used to train the
parameters θ1 and θ2 of classifiers Cs

1 and C
s
2 by using the source domain labels ys and loss

function Ls . In phase 2 (represented in green and P2), the parameters of the same classifiers
are re-tuned by using k-means clustering and loss function Lc for every image sample xt

of the target domain Dt . In the last phase (represented in red and P3), the parameters θ3
of the third classifier Ct are tuned by using the combined output Y∼t of Cs

1 and Cs
2 using

loss function Lst for the target domain Dt . Additionally, the flowchart presented in Fig. 3
offers a step-by-step depiction of the sequential processes involved in the UDKD methodol-
ogy. This flowchart provides a visual representation of the sequential steps involved in the
UDKD process, including Dual-Teacher Training, Clustering, and Knowledge Distillation
phases. Each phase is depicted with its corresponding input, processes, and output, highlight-
ing the comprehensive approach of UDKD for effective unsupervised domain adaptation in
person re-identification. Algorithm 1 succinctly encapsulates the essence of the training and
knowledge distillation procedures for reference.

3.1 Phase 1: Dual-Teacher Traning

UDKD begins by training two different CNNs separately with the source data Ds to model
two feature transformation functions, F(.|θ1) and F(.|θ2). Here, each input sample xsi is trans-
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Fig. 2 End-to-end workflow diagram of the proposed UDKD learning scheme. In phase 1 (represented in blue
and P1), image samples xs of the source domain Ds are used to train the parameters θ1 and θ2 of classifiers
Cs
1 and Cs

2 by using the source domain labels ys and loss function Ls . In phase 2 (represented in green and
P2), the parameters of the same classifiers are re-tuned by using k-means clustering and loss function Lc for
every image sample xt of the target domain Dt . In the last phase (represented in red and P3), the parameters
θ3 of the third classifier Ct are tuned by using the combined output Y∼t of Cs

1 and C
s
2 using loss functionLst

for the target domain Dt

formed into two feature representations y∼s1
i and y∼s2

i . Using these feature representations,
the reID classifiers Cs

1 and Cs
2 produce two m-dimensional probability vectors correspond-

ing to the predicted identities of the source domains. Here, m is the number of classes or
identities present in the source domain. Using a combination of a triplet loss function Ls

trip
and an identity loss Lid function, the CNNs are optimized to distinguish features belonging
to distinct identities.

Ls(θ) = Ls
id(θ) + (λs × Ls

id(θ)) (1)

Ls
id(θ) = −1

n

n∑

i=1

ysi log(y
∼s
i ) (2)

Ls
trip(θ) = 1

n

∑n
i=1 max(0, ||y∼s

i − ysi,p||
+χ − ||y∼s

i − ysi,n ||)
(3)

Where ysi,p and ysi,n represent positive and negative identities in each minibatch, Lce is
the cross-entropy loss, || − || represents the euclidean distance, χ is the margin and λs is the
weighting parameter for source domain losses.

In summary of phase 1 of UDKD, the classifiers Cs
1 and Cs

2 are trained with the images

xsi and ground truth ysi of source domain Ds to produce the predictions ŷsi for each xsi .
Further loss functions (Ls

id ,Ls
id ) are used to fine-tune the weights θ1 and θ2 to enhance the

performance.
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Fig. 3 Flowchart of the proposed Unsupervised Dual-Teacher Knowledge Distillation (UDKD) methodology.
This flowchart provides a visual representation of the sequential steps involved in the UDKD process, includ-
ing Dual-Teacher Training, Clustering, and Knowledge Distillation phases. Each phase is depicted with its
corresponding input, processes, and output, highlighting the comprehensive approach of UDKD for effective
unsupervised domain adaptation in person re-identification

3.2 Phase 2: Clustering

After training of two teacher networks, the classifiers Cs
1 and Cs

2 are used to generate soft
pseudo-labels for k number of image samples xti present in the target domain Dt . Each
classifier generates n-dimentional probability vector for each xt , in which each element
represents the probability of the image xti belongs to the pseudo id y∼t1

i and y∼t2
i . (i.e.

P(xti ∈ y∼t1
i ) and P(xti ∈ y∼t2

i )). Further, the k-means clustering algorithm is used to
generate the probability vector (M1, M2, ..., Mn). Here, the parameters θ1 and θ2 of Cs

1 and
Cs
2 are re-tuned using the Lc loss function.

Lc =
k∑

i=1

n∑

j=1

||xi − Mj ||2 (4)
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Algorithm1UnsupervisedDual-TeacherKnowledgeDistillation (UDKD) training algo-
rithm.
Require: Source and Target domain datasets Ds and Dt .
Require: Three CNN classifiers Cs

1, C
s
2, and C

t whose weights θ1, θ2, and θ3 are pretrained on
ImageNet.

Input : Values for Ss, St , λs , n, learning rate, T ′num_epochs, T "num_epochs, Snum_epochs, χ
for triplet loss and soft triplet loss.

Require: Assign the value of n as the value of k for k-means clustering.
1 for p ← 1 to T ′num_epochs do
2 for i ← 1 to m do
3 Generate the feature vectors y∼s1

i and y∼s2
i , by using the classifiers Cs

1 and Cs
2 for image

sample xsi of the source domain Ds ;
4 Update the parameters θ1 and θ2 of Cs

1 and Cs
2 by using the loss function (1);

5 for q ← 1 to T ′′num_epochs do
6 for i ← 1 to n do
7 Assign each item of y∼s1

i and y∼s2
i to cluster Mi which has the closest mean;

8 Calculate new mean for each cluster;

9 Update θ1 and θ2 by using the loss function Lc;

10 for r ← 1 to Snum_epochs do
11 for i ← 1 to n do
12 Generate soft pseudo label y∼t1

i and y∼t2
i for image sample xti of Dt by using classifier Cs

1
and Cs

2;

13 Combine the output vectors y∼t1
i and y∼t2

i to generate a composite soft pseudo label Y∼t
i

by using (6) for w = mAP;
14 Generate the feature vector y∼t

i for image sample xti by using the student network classifier
Ct ;

15 Update the parameters θ3 of Ct by using the loss function (7);

3.3 Phase 3: knowledge distillation

In the final phase, the target domain image samples xt are fed to the classifiers Cs
1 and

Cs
2 to generate two probability vectors (y∼t1

i and y∼t2
i ). Subsequently, these two vectors

are combined using an averaging function μ (as defined in (5)). The rationale behind this
process lies in harnessing the strengths of multiple models to create a more robust ensemble.
By leveraging the diverse perspectives and learned representations of each classifier, the
ensemble aims to enhance overall performance, utilizing the complementary capabilities of
the individual models. This ensemble-based approach contributes to improved accuracy and
generalization across the target domain, ultimately achieving superior results in the context
of unsupervised domain adaptation for person reID. The following reasons would justify the
combination of the results of teacher models in ensemble learning, including:

• Improved Prediction Accuracy Combining the predictions of multiple models helps
mitigate variance and enhance the overall accuracy of the ensemble. This proves benefi-
cial, especially when individual models exhibit high bias or susceptibility to overfitting.

• Increased Robustness Utilizing multiple models contributes to the ensemble’s robust-
ness against noise and outliers in the data. The presence of diverse models ensures that
the impact of any single model is diluted, making the ensemble more resilient to erratic
data patterns.
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• Leveraging Complementary Models Different models may excel at predicting distinct
facets of the data. Integrating predictions from these complementary models allows the
ensemble to exploit their individual strengths, leading to an overall improvement in
performance by capturing a broader spectrum of data characteristics.

• Enhanced Generalization Ability Training multiple models on different subsets of the
data and amalgamating their predictions enhances the ensemble’s generalization ability.
This approach enables the ensemble to grasp a wider range of patterns and relation-
ships present in the data, ultimately contributing to superior performance across diverse
scenarios.

Y∼t
i =

n⋃

j=1

μ(P(xti ∈ y∼t1
j ), P(xti ∈ y∼t2

j )) (5)

In subsection 5.2, the simple averaging method μsa , as well as the weighted averaging
method μw , are tested in different scenarios. We have considered the mAP and R1 scores
of each teacher network Cs

1 and Cs
2 as weights in the weighted averaging method (w = m

and w = r ). In conclusion, we utilize the mAP-weighted averaging method μw=m as a final
approach because it performs better than the simple and R1-weighted averaging methods in
each scenario.

Simple Averaging Method:

μsa(y
∼t1
i , y∼t2

i ) = y∼t1
i + y∼t2

i

2

Weighted Averaging Method (with w1 and w2 as weights):

μw(y∼t1
i , y∼t2

i ) = w1.y∼t1
i + w2.y∼t2

i

w1 + w2
(6)

Meanwhile, a comparatively smaller classifier Ct is fed with the target sample image xti
to obtain the feature vector y∼t

i . The loss function Lst uses both y∼t
i and Y∼t

i to fine-tune the
trainable parameters θ3 of Ct . In place of the triplet loss Ls

trip function used in the previous

phase (3), a modified soft-triplet loss Lst is used. As the classifier C3, deals with soft labels
Y∼t
i , which is a collection of probabilities. Therefore, it cannot be handled by a triplet loss.

In subsection 5.2, the proposed method is also tested with the triplet loss by computing
max(Y∼t

i ).
The proposed soft triplet loss function Lst is an adaptation of the original soft triplet

loss Ltr i p introduced in [13]. This adaptation addresses the complex demands of UDKD,
which involves multiple teacher networks. The refined loss function incorporates a softmax
function, ensuring its smooth and differentiable nature for effective backpropagation during
model training.

τi,p = exp(χ − ||y∼t
i − μw=m(y∼t1

i,p , y∼t2
i,p )||)

τi,n = exp(||y∼t
i − μw=m(y∼t1

i,n , y∼t2
i,n )|| − χ)

Lst (θ3) = 1

n

n∑

i=1

log(1 + τi,p) + log(1 + τi,n) (7)

In the UDKD context, the soft triplet loss serves the dual purpose of minimizing the
discrepancy between positive and negative samples while maximizing the distance between
thepositive and thenegative samples.This nuanced trainingobjective is essential for acquiring
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a feature representation capable of effectively discriminating between similar and dissimilar
samples, aligning seamlessly with the unique architecture of UDKD. Appendix B provides
comprehensive details on the modification of the original triplet loss, offering an in-depth
exploration of the adjustments made to suit the distinctive features and requirements of
UDKD.

Tofine-tune the network parameters ofCt (students) in real time, the above procedureswill
be carried out concurrently. For this particular task, online learning or knowledge distillation
is preferred to offline learning for several reasons. Firstly, online learning facilitates contin-
uous improvement by perpetually refining and advancing the model, as it remains updated
with the incorporation of fresh data. Secondly, it enhances scalability and data flexibility by
enabling the model to dynamically adjust to shifts in the data distribution as they occur. Addi-
tionally, online learning proves advantageous in handling larger and more dynamic datasets,
as it does not require storing all the data at once. Moreover, it offers the benefit of real-
time performance by updating the model on the fly with new data, which can be critical in
time-sensitive applications. Furthermore, online learning tends to be more computationally
efficient, as it does not necessitate storing all the data simultaneously, leading to reduced
computational costs. Importantly, it effectively addresses challenges such as concept drift,
where the underlying distribution of the data changes over time, as well as non-stationary
data, whose statistical properties evolve over time.

3.4 Model evaluation

In order to assess the effectiveness of the proposed UDKD approach, two prominent person
reID datasets, namely DukeMTMC [30] and Market1501 [8], are utilized for evaluation
purposes. Details of these datasets are provided in Table 1.

To evaluate and compare the performance of the UDKDmodel, two distinct combinations
of source-to-target datasets are employed: Market-to-Duke and Duke-to-Market. Various
evaluation metrics are utilized to gauge the model’s performance, including mean average
precision (mAP), as well as the Cumulative Matching Characteristic (CMC), ranks of 1,
5, and 10, respectively. These metrics are commonly employed in the field of person reID
research and serve as benchmarks for evaluating the efficacy of different models.

4 Implementation details

4.1 Training and optimization details

In the experimental setup, we employ a Windows server machine equipped with an Intel
Xeon Silver 4114 CPU operating at a frequency of 2.20 GHz, accompanied by a generous
64 GB of RAM. Complementing this configuration is a single NVIDIA Quadro RTX 8000
GPU endowed with an impressive 48 GB of dedicated Graphics-RAM. This computational
infrastructure enables us to undertake both supervised pre-training on the source domain and
unsupervised fine-tuning on the target domain.

During the training process, a mini-batch approach is adopted, where each batch consists
of 64 images belonging to 16 distinct individuals. To ensure uniformity and compatibility
within our network, all input images undergo a preprocessing step,wherein they are uniformly
resized to dimensions of 256 × 128 pixels.
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4.2 Hyperparameter tuning

The hyperparameter values were determined through a pragmatic "heat and trial" method,
considering hardware limitations. Due to computational constraints, a manual iterative
approach was adopted, allowing for adjustments based on intuition and observed model
performance. This heuristic method proved effective in achieving satisfactory results within
the given limitations. Further details regarding specific hyperparameter values used in the
experiments are provided in Table 2.

4.3 Dual-teacher training

The teacher networks Cs
1 and C

s
2 employ the ResNet152 [31] and DenseNet169 [32] CNNs,

respectively, which are pretrained on ImageNet [33]. These networks are trained indepen-
dently using the image samples xs and corresponding labels ys from the source domain Ds .
The training procedure, as outlined in [29], involves fine-tuning the weights θ1 and θ2 over
100 iterations, each consisting of 30 epochs. An initial learning rate of 0.00035 is set, which
decreases to 1/10 of its previous value every 10 epochs.

4.4 Clustering

After the pre-training process, the images xt of the target domains are used as input for the
teacher networks to generate n number of clusters of identities by deploying the k-means
clustering algorithm. With 0.0004 learning rate, 100 iterations of training consisting of 80
epochs are executed to re-tune the weights θ1 and θ2. At the end, each cluster is considered
as soft-pseudo-labels y∼t1 and y∼t2.

4.5 Knowledge distillation

Finally,Cs
1,C

s
2 andC

t fed with the image samples xt of Dt to generate refined pseudo-labels
y∼t1
i and y∼t2

i . Further, the μw=m is calculated for each sample by using the (6) to fine-tune
the weights θ3 of the student network (ResNet50) in an online manner. The training involves
400 iterations of 40 epochs with a 0.00035 learning rate.

5 Experimental setup and results

This section aims to describe, analyze, and signify the different components of the proposed
scheme, such as the type of loss, averagingmethods, and the number of clusters. The proposed

Table 2 Training Parameters for Each Stage

Stage Iterations Epochs per iteration Learning rate

Dual-Teacher Training 100 30 0.00035

Clustering 100 80 0.0004

Knowledge Distillation 400 40 0.00035
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UDKDis evaluatedusing all possible combinations of two loss functions (triplet lossLt
tr i p and

soft-triplet lossLst ), three averagingmethods (simple averagingμsa , R1-weighted averaging
μw=r , and mAP-weighted averaging μw=m), and five different numbers of clusters (n =
500, 750, 1000, 1250, 1500).

To facilitate a clearer comprehension, Table 3 illustrates the significance of each compo-
nent. This table presents the experimental results of the proposed UDKD on Duke-to-Market
and Market-to-Duke datasets with various configurations. The detailed breakdown includes
performancemetrics when employing the triplet lossLt

tr i p and soft-triplet lossLst , alongside
comparisons of the three averaging methods (simple averaging μsa , R1-weighted averaging
μw=r , and mAP-weighted averagingμw=m). Additionally, it explores the impact of different
numbers of clusters, ranging from 500 to 1500, on the overall performance. These evaluations
underscore the relative importance and contribution of each component to the efficacy of the
UDKD scheme, highlighting the nuanced improvements brought by specific configurations.

5.1 Soft triplet loss analysis

To investigate the necessity of the soft-triplet loss Lst , we have compared the model’s per-
formance with or without using it. In Fig. 4, which illustrates the performance improvement
achieved using soft-triplet loss compared to triplet loss in the context of a fixed number of
clusters (n = 500) and using the mAP-weighted averaging method (μw=m), the number of
clusters n = 500 and pseudo-label averaging method μw=m are kept constant. In the context
of the Market-to-Duke dataset, we observed an increase of 6.15% in mAP and a significant
4.64% in the rank 1 score. Similarly, in the Duke-to-Market dataset, there is a 3.83% and
4.68% increase in mAP and rank 1 score. Based on these observations, we adopted a soft
triplet loss during the knowledge distillation process.

5.2 mAP-weighted averaging evaluation

Selecting an effective method for combining pseudo labels becomes paramount when deal-
ing with diverse teacher networks exhibiting varying performance on the target domain. A

Fig. 4 Comparison of the significance of soft-triplet loss over triplet loss with fixed n = 500 and μw=m . This
figure illustrates the performance improvement achieved using soft-triplet loss compared to triplet loss in the
context of a fixed number of clusters (n = 500) and using the mAP-weighted averaging method (μw=m )
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simplistic equal-weights (μsa) approach falls short, prompting the use of weighted aver-
aging. Here, each teacher’s output is assigned a specific weight, considering its individual
performance.

Our mAP-weighted averaging method, denoted as μw=m , plays a pivotal role in refining
pseudo labels within our UDKD learning scheme. Notably, we incorporate the mAP (μw=m)
and R1 (μw=r ) scores of each teacher network as their respective weights in the averaging
process.

To underscore the significance ofμw=m , we conducted comparative evaluationswith alter-
native averaging methods (μw=r and μsa), utilizing Lst as the loss function and maintaining
a constant cluster number (n = 500). Results, based on the Duke-to-Market dataset, reveal a
7.07% and 0.54% increase in mAP scores compared to the simple average and R1-weighted
average, respectively. Similarly, in the Market-to-Duke dataset, a remarkable increase of
10.37% and 3.61% in mAP is observed with the mAP-weighted average over the other two
methods. These findings underscore the efficacy of our chosenμw=m method. Refer to Fig. 5
for a detailed barplot comparison.

5.3 Impact of cluster number

Selecting a large number of clusters in clustering algorithms can engender overfitting,
whereby the algorithm models the intrinsic noise within the data rather than discerning
the underlying patterns. This can yield clusters that are excessively specific and lack general-
izability to novel data instances. Conversely, opting for a low number of clusters may result
in underfitting, where the algorithm fails to capture all pertinent patterns present in the data.
Consequently, the produced clusters may prove excessively broad and inadequately specific.
Thus, it is imperative to ascertain the appropriate number of clusters or employ method-
ologies such as the elbow method and silhouette score to determine the optimal number of
clusters. By leveraging these techniques, one can navigate the challenge of cluster selection,
thereby enhancing the fidelity and generalizability of the clustering results.

Fig. 5 Comparison of the significance of μw=m over μw=r and μsa with soft-triplet loss and n = 500.
This figure demonstrates the superiority of mAP-weighted averaging (μw=m ) over other averaging methods
(μw=r and μsa ) in conjunction with soft-triplet loss, particularly in the scenario where the number of clusters
is fixed at n = 500
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Fig. 6 Comparison of the significance of n = 500 over 750, 1000, 1200, and 1500 with soft-triplet loss and
μw=m . x-axis represents evaluation metrics, and y-axis represents the percentage (60-100%). This figure
illustrates the impact of varying the number of clusters on performance metrics when using soft-triplet loss
and the mAP-weighted averaging method

To establish a baseline, [13] opted for 500 clusters in their research, guiding our initial
evaluation and ensuring a meaningful comparison. Our model underwent systematic testing
across different cluster counts, including n = 500, 750, 1000, 1250, and 1500, utilizing
the soft-triplet loss with mAP-weighted averaging. On the Market-to-Duke dataset, notable
distinctions of 3.02% and 2.34%were observed in mAP and R1 scores, respectively, between
n = 500 and n = 750. The Duke-to-Market dataset revealed an even more pronounced
contrast, with differences of 4.21% and 6.77% for mAP and R1 scores, respectively. Given
these insights, our model settles on n = 500 clusters. Figure 6 visually summarizes the
detailed comparison through a barplot.

5.4 Comparative analysis with state-of-the-art methods

The evaluation of the proposed method is conducted by comparing its performance with
state-of-the-art UDA methods for person re-ID using the Duke-to-Market and Market-to-
Duke datasets. The assessment results, including the mAP, Rank 1, Rank 5, and Rank 10
scores for both datasets, are provided in Table 4. Notably, the experimental findings clearly

Table 4 The performance of the proposed UDKD compared with current state-of-the-art methods for UDA
for person reID. Bold values indicate the highest score

Methods Duke to Market Market to Duke
mAP Rank 1 Rank 5 Rank 10 mAP Rank 1 Rank 5 Rank 10

MMT [13] 76.5 90.9 96.4 97.9 65.7 79.3 89.1 92.4

NRMT [16] 71.7 87.8 94.6 96.5 62.2 77.8 86.9 89.5

ANL [17] 77.4 91.4 96.6 97.7 64.1 79.2 84.9 91.3

NRNet [22] 78.6 91.1 69.4 98 67.6 79.8 90.1 93

MDL [34] 73.4 88.9 95.5 97.6 65.4 79.3 89.2 92.9

Dual-Refinement [14] 78 90.9 96.4 97.7 67.7 82.1 90.1 92.5

INCLR [35] 82.2 92.6 97.6 98.3 70.9 82.6 91.8 93.2

DUCL+PAFR [36] 84.0 93.9 97.5 98.6 72.7 84.9 92.0 93.9

UDKD (ours) 84.57 94.34 97.31 98.83 73.32 88.26 95.1 97.14
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demonstrate the superior performance of the proposed method across all evaluation metrics,
surpassing all existing approaches in a significant manner.

6 Discussion

The results from our experiments show that the proposed Unsupervised Domain Knowl-
edge Distillation (UDKD) approach improves the performance of person re-identification
(reID) systems across different domains. By using dual-teacher networks pre-trained on a
source domain and incorporating soft-triplet loss and mAP-weighted averaging, we observed
significant improvements in both mean Average Precision (mAP) and Cumulative Match-
ing Characteristics (CMC) metrics. The dual-teacher framework, involving ResNet152 and
DenseNet169, allows the student network, ResNet50, to learn diverse and robust features,
leading to better generalisation of the target domain.

A key finding of this study is the effectiveness of the soft-triplet loss function over the
traditional triplet loss. The soft-triplet loss provides a softer margin between positive and
negative pairs, leading to more stable and effective training, which is particularly beneficial
in an unsupervised setting where ground truth labels are absent. Additionally, the mAP-
weighted averaging strategy for combining teacher network outputs significantly enhances
the quality of pseudo-labels used for training the student network. This method outperforms
other averaging techniques by prioritising the most relevant features, thereby improving the
model’s adaptability to new domains.

The number of clusters used for pseudo-label generation also plays a crucial role. Our
experiments indicate that setting the number of clusters to 500 strikes a balance between intra-
cluster compactness and inter-cluster separation, resulting in more accurate and meaningful
pseudo-labels. When compared to other state-of-the-art unsupervised domain adaptation
methods for person reID, the UDKD approach shows superior performance across various
evaluation metrics. This highlights the robustness and effectiveness of our method, demon-
strating its potential for practical applications in real-world reID systems.

One of the strengths of the UDKD approach is its ability to operate effectively in an
unsupervised manner. By leveraging knowledge from pre-trained networks and generating
high-quality pseudo-labels, the method reduces the reliance on labelled data, which is often
scarce and expensive to obtain. Furthermore, the use of dual-teacher networks ensures that the
student network benefits from diverse perspectives, leading to more comprehensive feature
learning.

However, there are limitations to this study. Hardware constraints limited the extent of
hyperparameter tuning,whichmay have affected themodel’s performance. Futurework could
explore more extensive hyperparameter optimisation and apply UDKD to a broader range
of datasets and domains. Additionally, while this implementation uses two specific teacher
networks, examining different combinations of teacher architectures could provide further
insights into optimising the dual-teacher framework. Exploring other advanced clustering
algorithms and loss functions could also enhance the model’s performance.

7 Conclusion and future work

The suggested scheme presented an efficient UDKD learning scheme designed specifically
for UDA in person reID tasks. The proposed method addresses the challenge of noisy pseudo
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labels by leveraging the outputs of two large networks to minimize misclassifications and
train a smaller classifier using the knowledge distilled from both networks.

Through an extensive experimental investigation, we have demonstrated the significant
contributions of two key components: the mAP-weighted average method and the soft-triplet
loss method. The mAP-weighted average method effectively combines the predictions of the
dual teacher networks, providing a robust and reliable output for UDKD. Additionally, the
modified soft-triplet loss facilitates improved discrimination between classes and enhances
the discriminative capabilities of the smaller classifier.

The UDKD has exhibited superior performance compared to the current state-of-the-art
UDA methods in Market-to-Duke and Duke-to-Market domain adaptation tasks. The com-
prehensive evaluation of the proposed approach demonstrates its effectiveness in achieving
higher accuracy in person identification results. The proposed method achieves an mAP of
84.57 and 73.32, and Rank 1 scores of 94.34 and 88.26 for Duke to Market and Market
to Duke scenarios, respectively. These improvements underscore the efficacy of UDKD in
advancingUDA techniques for person reID, highlighting its potential to enhance performance
and robustness in real-world applications.

However, to further enhance the performance of UDKD, future research should prioritize
addressing the challenges associated with noisy labels generated by clustering techniques.
By mitigating the impact of noisy labels, the performance of UDKD can be elevated to a
level comparable to that of fully supervised models.

Moreover, as an additional consideration, exploring the potential and effects of incor-
porating more than two teacher networks into the UDKD could provide valuable insights.
Investigating the benefits and trade-offs of increasing the number of teacher networks could
lead to improved knowledge distillation techniques and further advancements in UDA for
person identification.

Appendix A Modifications of the baseline

The Stronger Baseline serves as the foundation for the proposed method, constructed based
on Luo et al.’s work [28]. It employs a robust architecture forming the baseline for teacher
training and clustering phases. Enhancements have been made for training a resilient Person
ReIDmodel, incorporatingmodifications introducing identity (ID) loss and triplet loss. Addi-
tionally, a clustering phase refines the model’s capabilities, aiming to capture fine-grained
features, enhance discrimination between identities, and optimize feature representations.

In evaluations, ResNet152 and DenseNet169 are utilized as backbone architectures. Supe-
rior performance is observed with the modified approach compared to the original baseline,
as demonstrated in Table 5. Thus, the modified baseline is chosen as the teacher network due
to its more accurate and robust feature representations.

The overall loss function is defined as:

L(θ) = Lid(θ) + (λ × Ltrip(θ))

Here, Lid(θ) represents the identity loss function, Ltrip(θ) is the triplet loss function, and
λ is the weighting parameter for the triplet loss.

The introduction of triplet loss enhances the model’s ability to distinguish between indi-
viduals by creating anchor-positive and anchor-negative pairs. This encourages mapping
similar images closer together in the feature space, thereby improving discriminative power.
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Table 5 Comparison of the Baseline (BL) and Modified Baseline on various backbones for UDA Person reID

Models Backbone Duke to Market Market to Duke
mAP R1 mAP R1

BL [28] ResNet50 79.5 92.7 66.7 80.0

BL [28] ResNet152 82.53 93.02 68.19 82.18

Our Baseline ResNet152 83.09 94.85 69.54 82.25

BL [28] DenseNet169 84.13 95.44 70.29 83.05

Our Baseline DenseNet169 84.79 95.49 70.86 83.51

Identity loss is refined to align predicted probabilities closely with ground truth labels.
This modification penalizes deviations from ground truth, emphasizing accurate identity
predictions and improving overall classification accuracy.

The weighting parameter (λ) for triplet loss provides flexibility to fine-tune its contribu-
tion, balancing between identity preservation and feature discrimination as per specific task
requirements.

Lcluster =
k∑

j=1

n∑

i=1

||xi − c j ||2

A clustering phase is introduced to further refine themodel, employingK-means clustering
to group similar instances. This guides the model to generate more cohesive and well-defined
clusters in the feature space, enhancing both intra-class compactness and inter-class separa-
bility.

The clustering phase serves as a supplementary step to refine feature representations
learned by the model. K-means clustering groups similar instances, contributing to the for-
mation of compact and distinguishable clusters, thereby enhancing overall performance.

Appendix B Modification of the soft triplet loss

This appendix delves into the derivation and analysis of the modifications applied to the soft
triplet loss, as outlined in the main manuscript. These modifications are crucial for adapting
the loss function to the unique challenges of Unsupervised Dual-Teacher Knowledge Distil-
lation (UDKD). We will dissect each step of the derivation, providing a clear understanding
of how the original soft triplet loss is transformed into a version specifically tailored for
UDKD.

The foundation of our analysis lies in the original soft triplet loss, denoted as Ltri
t (θ1),

which is rooted in themethodology presented in the cited study. This loss function is formally
expressed as:

Ltri
t (θ1) = 1

Nt

Nt∑

i=1

Lbce

(
Ti (θ1), Ti

(
E (T )[θ2]

))

Here, Ti (θ1) denotes the prediction made by the student network with parameters θ1
for the i th sample in the target domain. Additionally, Ti

(
E (T )[θ2]

)
represents the temporal

average prediction for the same sample, derived from the teacher network with parameters
θ2 through the knowledge distillation process. The variable Nt signifies the total number
of samples present in the target domain. Our loss function, denoted by Lbce, quantifies the
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disparity between the network’s prediction and the temporal average prediction, facilitating
the optimization process. This is mathematically represented as:

The original soft triplet loss encourages the student network to produce predictions that
are closer to the temporal average predictions from the teacher network, guiding the student
towards better knowledge acquisition.

However, directly applying the original soft triplet loss to UDKD poses challenges. In
UDKD, we don’t have access to ground-truth labels in the target domain. Instead, we rely on
pseudo-labels generated through clustering, which can be noisy and imprecise. This noise
can negatively impact the loss function, hindering the training process. To overcome these
challenges, we propose modifications by incorporating Weighted Averaging and a Modified
Loss Function with Exponential Terms.

Instead of solely relying on the current prediction yit for positive samples, we introduce
a weighted average of past predictions, denoted by μw(y pt1, y

p
t2). This mechanism leverages

the valuable information contained in past predictions to provide a more stable and reli-
able representation for positive samples. The specific weighting scheme used in μw can be
customized to suit the specific requirements of the UDKD task.

We replace the binary cross-entropy loss in the original formulation with a modified
version that utilizes exponential terms:

Lst (θ1) = 1

Nt

Nt∑

i=1

log(1 + τi,p) + log(1 + τi,n)

Here, τi,p and τi,n represent the "softness" scores for positive and negative samples,
respectively. These scores are calculated using exponential terms that capture the relative
distances between the current prediction yit and theweighted averages of positive and negative
samples:

τi,p = exp(χ − ||yit − μw(y pt1, y
p
t2)||)

τi,n = exp(||yit − μw(ynt1, y
n
t2)|| − χ)

The parameter χ controls the steepness of the exponential functions, influencing how
quickly the scores decrease with increasing distance. Higher values of χ lead tomore focused
relationships, where only very close samples are considered positive or negative, while lower
values create softer relationships, allowing for some tolerance to noise in the pseudo-labels.

Appendix C List of abbreviations

Abbreviation Full Form

AdaMG Adaptive Memorization with Group labels
ADMP Adversarial Double Mask based Pruning
ANL Anti-Noise Learning
CCTV Close Circuit Television
CMC Cumulative Matching Characteristics
CNN Convolutional Neural Network
CoP Color Prompting
DUCL Dual-Uncertainty Guided Curriculum Learning
GLT Group-aware Label Transfer
INCLR Intensifying the Consistency of Pseudo Label Refinement
MDL Multi-Domain Learning
MMT Mutual Mean Teaching
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mAP mean Average Precision
MTMC Multi Tracking Multi Camera
NRMT Noise Resistible Mutual-Training
NRNet Noise Resistible Network
P2LR Probabilistic Uncertainty-guided Progressive Label Refinery
PAFR Part-Aware Feature Refinement
reID person re-identification
RPCA Robust Principal Component Analysis
R1, R5 and R10 Rank 1, Rank 5 and Rank 10
UDA Unsupervised Domain Adaptation
UDKD Unsupervised Dual-teacher Knowledge Distillation
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