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Abstract

Activity recognition is a fundamental concept widely embraced within the realm of health-
care. Leveraging sensor fusion techniques, particularly involving accelerometers (A), gyro-
scopes (G), and magnetometers (M), this technology has undergone extensive development
to effectively distinguish between various activity types, improve tracking systems, and
attain high classification accuracy. This research is dedicated to augmenting the effective-
ness of activity recognition by investigating diverse sensor axis combinations while under-
scoring the advantages of this approach. In pursuit of this objective, we gathered data from
two distinct sources: 20 instances of falls and 16 daily life activities, recorded through the
utilization of the Motion Tracker Wireless (MTw), a commercial product. In this particu-
lar experiment, we meticulously assembled a comprehensive dataset comprising 2520
tests, leveraging the voluntary participation of 14 individuals (comprising 7 females and
7 males). Additionally, data pertaining to 7 cases of falls and 8 daily life activities were
captured using a cost-effective, environment-independent Activity Tracking Device (ATD).
This alternative dataset encompassed a total of 1350 tests, with the participation of 30 vol-
unteers, equally divided between 15 females and 15 males. Within the framework of this
research, we conducted meticulous comparative analyses utilizing the complete dataset,
which encompassed 3870 tests in total. The findings obtained from these analyses convinc-
ingly establish the efficacy of recognizing both fall incidents and routine daily activities.
This investigation underscores the potential of leveraging affordable IoT technologies to
enhance the quality of everyday life and their practical utility in real-world scenarios.

Keywords Fall detection - Activity recognition - Wearable sensors - Sensor axis
combinations - Machine learning

1 Introduction

Activity recognition and fall detection are critical for ensuring the safety and well-being
of older adults. Technological advancements have significantly improved these capa-
bilities. Innovative approaches utilizing mobile devices, wearable sensors, and artifi-
cial intelligence algorithms enable real-time activity classification and fall detection.

Extended author information available on the last page of the article

Published online: 12 September 2024 | Springer


http://orcid.org/0000-0001-6862-2891
http://orcid.org/0000-0002-2796-1384
http://orcid.org/0000-0002-4472-7047
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-024-20136-8&domain=pdf

Multimedia Tools and Applications

Activity recognition plays a vital role in monitoring a person’s daily activities (ADLs)
and gleaning valuable insights into their health status. Falls, however, pose a significant
risk factor for older adults, potentially leading to severe injuries.

Demographic changes are fueling the recent surge in health technology advance-
ments. According to World Health Organization (WHO) data, a key driver is the stead-
ily increasing global elderly population [1]. Globally, the population aged 65 and over
stood at 9% (688 million) in 2019. This figure is projected to rise to approximately 12%
(1 billion) by 2030 and further increase to 16% (1.6 billion) by 2050 [2]. Considering
the growing elderly and disabled population, the development of assistive technologies
(ATs) to empower them in daily living activities (DLAs), promote their safety and inde-
pendence, and reliably detect critical events like falls has emerged as a progressively
crucial and indispensable research domain [3].

Research efforts have focused not only on reliable fall detection but also on monitor-
ing and recognizing Activities of Daily Living (ADLs) to improve the quality of life
for individuals at risk of falls. Given the strong correlation between falls and ADLs
established in numerous studies, activity recognition systems hold significant potential
for various applications. These applications encompass social-physical interaction [4],
factory worker activity recognition [5], health and sports science domains [6], and even
extend to the entertainment and interactive gaming sectors [7].

Numerous solutions have been proposed for automatic activity recognition and fall
detection [8—11]. Classification of these solutions can be achieved based on the sensor
technology employed, encompassing three primary categories: Ambient Sensor-Based
(ASB), Wearable Sensor-Based (WSB), and Hybrid Sensor-Based (HSB) approaches
[10-12].

e Ambient Sensor-Based (ASB) Technologies: Leveraging a diverse array of sensor
modalities, including acoustic [13], infrared [14], vibration [15], and vision-based sen-
sors [16], these technologies are seamlessly integrated into the environment (doors,
walls, floors, furniture, etc.) to facilitate ADL recognition and fall detection [17].

e Wearable Sensor-Based (WSB) Technologies: At the core of WSB technologies lie sen-
sors that capture motion parameters, including acceleration, velocity, and orientation
[10, 11].

e Hybrid Sensor-Based (HSB) Technologies: HSB technologies seamlessly integrate
both ASB and WSB approaches, often employing sensor pairs such as microphone-
accelerometer or infrared microphone combinations [18].

Despite their substantial benefits for activity recognition and fall detection, these tech-
nologies are not without their inherent challenges, such as real-time analysis, integration
with smart homes, high computational power requirements, data fusion across different
sensors, and sensor synchronization needs [12, 18, 19].

In the nutshell, this study addresses limitations in existing activity recognition and fall
detection research, aiming for a more robust and generalizable approach.

Key Improvements:

e Comprehensive Dataset: We address generalizability by constructing a diverse dataset

encompassing a wider range of activities (36 total, including 20 falls) and balanced par-
ticipant demographics.
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e Optimized Model Performance: Hyperparameter analysis ensures optimal classification
accuracy for the models.

e Real-World Applicability: A low-power sensor network with energy harvesting
capabilities promotes long-term wearability.

e Effective Sensor Data Utilization: We investigate selecting appropriate sensor axis
combinations, demonstrating high accuracy with carefully designed models.

Challenges:

e User-centered evaluation: Conducting pilot studies to assess user comfort, accept-
ance, and the system’s effectiveness in real-world settings.

e Data expansion and analysis: Collecting more data encompassing a wider variety
of situations to enhance model stability and investigate the effects of additional
parameters.

e Integration with existing systems: Exploring seamless integration with other health
monitoring wearables for a more comprehensive approach to health management.

By addressing these challenges, we can refine the sensor network architecture,
optimize energy consumption, and enhance user experience. This will lead to a light-
weight, cost-effective, and perpetually wearable fall detection system that significantly
improves user quality of life.

Contribution to the Field:

This study contributes by:

e Assessing Sensor Combinations: Analyzing the impact of different sensor axis
combinations on activity recognition performance in wearable-based sensors.

e Realistic Evaluation: Obtaining realistic results by working with a gender-balanced
participant group.

e Comparison Standard: Providing a comparison standard for fall and activity recog-
nition systems, improving their comparability.

e Foundation for Improvement: Laying a foundation for improving the design of fall
and activity recognition devices.

e Next-Generation Al Algorithms: Building upon these advancements, the aim is to
develop a device capable of real-time operation and an efficient artificial intelli-
gence model. The results of this study will contribute to the development of next-
generation Al algorithms for activity recognition and fall detection.

Overall, this work presents a significant step towards robust and reliable fall detec-
tion systems, promoting the safety, well-being, and independent living of the growing
elderly population.

The organization of this paper is as follows: Sect. 2 delves into a comprehensive
review of extant literature on the application of WSB technologies in activity recogni-
tion. Delving into the methodological aspects, Sect. 3 elaborates on the datasets uti-
lized in the study and comprehensively outlines the methodology employed for train-
ing and evaluating the machine learning (ML) models. In Sect. 4, a detailed exposition
of the study’s findings are found. Section 5 explores the impact of using different sen-
sor axis combinations on activity recognition performance. Finally, Sect. 7 concludes
the paper by discussing potential future research directions in this field.
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2 Related works

Researchers have introduced a diverse range of devices specifically designed for activity
recognition and fall detection applications. However, evaluating the accuracy level of these
devices is challenging as common activity datasets are not available. In previous studies
(Table 1), research has been conducted using public datasets and self-created datasets [20,
21]. For instance, the PAMAP2 dataset contains the ADLs of nine elderly volunteers [22].
The SBHAR dataset includes data on six different activity types [23]. The MHealth dataset
comprises the ADLs of 10 volunteers [24]. The MobiAct dataset contains the activities of
66 volunteers [25]. Additionally, publicly accessible datasets such as the Multimodal UP-
Fall Detection Dataset are also available [26]. These datasets have accelerated the recogni-
tion of falls and daily activities, generating significant interest for research [27]. In general,
these datasets have facilitated the development of a standard for research [28].

Numerous academic studies have focused on fall and activity recognition algorithms.
For instance, Buber and Guvensan proposed a study for activity recognition [29]. Dern-
bach and colleagues conducted a study for the recognition of simple and complex activi-
ties [30]. Anjum and Ilyas presented a study on recognizing activities with a smartphone
carried in different positions [31]. Saputri and colleagues conducted a study on activity
recognition using a smartphone [32]. Bayat introduced a novel system capable of recog-
nizing six distinct activity types [33]. Figueriedo and colleagues suggested a technique
for recognizing falls [34]. Zhao and colleagues proposed a fall detection system based on
smartphones [35]. Albert and colleagues collected acceleration data for ADLs [36]. Kansiz
and colleagues conducted a study using a smartphone accelerometer to recognize activities
[37]. Mehrang and colleagues used heart rate monitors and accelerometers for activity rec-
ognition [38]. Pavey and colleagues recognized activities using a wrist-worn accelerometer
[39]. Hsu and colleagues identified ADLs using an inertial system [40]. Sok and colleagues
proposed a method for fall detection [41]. Li and colleagues recognized activities using
signal streams acquired from sensors [42].

In these studies in the literature, different datasets, sampling frequencies, activity types,
numbers of volunteers, gender balance, and sensor configurations were used. Therefore, it
is challenging to compare the results of these studies. Another issue is the lack of informa-
tion on the performance of different sensor combinations.

3 Materials and methods

This section provides information about the system developed for activity tracking and
fall detection (Activity Tracking Device—ATD) and the commercially available device
(Motion Trackers Wireless—MTw). It also explains the general working principles regard-
ing sensor types, the number of sensors, and configurations. Details about the experimental
preparation process and information about the volunteers are also included in this section.

3.1 Systems used for Activity Recognition and Fall Detection (ATD and MTw)

This study employed ATD and MTw devices, encompassing a fusion of MEMS inertial
sensors and magnetic sensors, to facilitate activity recognition and fall detection.
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Fig. 1 MTw sensor and recording unit

Table 2 Fundamental detection A G M

components of MTw sensors
Sensor Type Digital Digital Digital
Full scale +120 m/s” +1200 deg/s + 1.5 Gauss
Noise 200 ,ug/\/ Hz 0.01 deg/s/ \/ Hz 0.2 mGauss/Hz
Bandwith 180 Hz 180 Hz 10-60 Hz (var.)
Bias stability 0.1 mg 10 deg/hr

3.1.1 Motion Trackers (MTw) development kit

Xsens Technologies, the renowned developer of motion tracking solutions, offers the MTw
development kit [43]. This kit comprises both hardware and software components (see
Fig. 1). The kit comprises two primary components: six MTw sensor units and an Awinda
Receiver Station.

The MTw sensor unit comprises a suite of sensors, including a 3D accelerometer (A)
for detecting 3D acceleration, a gyroscope (G) for measuring 3D angular velocity, a mag-
netometer (M) for gauging 3D magnetic field, a barometer to gauge atmospheric pressure,
with a measurement range of 300-1100 hPa. While the barometer data is not utilized for
classification purposes, as outlined in Table 2, the remaining sensors play a crucial role in
capturing relevant motion and orientation information.

3.1.2 Activity Tracking Device (ATD)

The ATD architecture comprises six components, including four sensors, one controller,
a battery, and an SD card reader. Four different sensor types, namely BMX055, BMP280,
MAX30102, and GSR, are utilized within the ATD framework. Other components in the
ATD architecture include the ESP32-WeMos-Lolin32 controller, a lithium-ion battery, and
an SD card reader.

The BMXO055 sensor is a 9-axis sensor used for motion, orientation, and magnetic direc-
tion detection. The BMP280 sensor is employed for absolute pressure measurement. The
MAX30102 sensor is capable of pulse and oximetry measurements, while the GSR sensor
is used to measure galvanic skin response (see Fig. 2). Table 3 details the specifications of
the sensors employed in the ATD.

The ESP32-WeMos-Lolin32 controller has been employed as the controller in this
setup. This module provides high processing power and low power consumption, along

@ Springer
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BMP280

GSR
Modidil

MAX30102

Fig.2 Placement of sensors on the board

Table 3 Fundamental detection components of sensors in ATD Design

BMX055

BMXO055
Accelerometer

Gyroscope

Magnetometer

BMP280

Sensor Type

Pressure Resolution
Measurement Range
MAX30102

Sensor Type

ADC Resolution

Red ADC Count

IR ADC Count

Dark Current Count
DC Ambient Light Rejection
Grove - GSR
Sensitivity

Input Signal

Output Signal

Finger Touch Material

Sensor Type

Measurement Range (g)

Zero Offset (mg)

Noise Density (ug/ \/ Hz)
Resolution [bit]

Sensor Type

Measurement Range (derece/sn)
Zero Offset (derece/sn)

Noise Density (derece/s/y/Hz)
Resolution [bit]

Sensor Type

Measurement Range (gauss)
Resolution [bit]

Digital
+16
+80
150

12
Digital
2000

+1

16
Digital
12
12

Digital
0.16 Pa
157 Hz iistii

Digital
14
26000
26000
0

0

Adjustable with a Potentiometer
No Resistance, No Conductivity
Voltage, Analog Reading
Nickel
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Fig. 4 Battery used as the power
supply for ATD
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with Wifi, Bluetooth, and BLE capabilities. Furthermore, it is equipped with GPIO, UART,
I2C, and SPI interfaces for controlling various peripheral devices (see Fig. 3).

A 1450 mA lithium-ion battery has been used to provide power to the ATD device (see
Fig. 4). Additionally, an SD card reader module has been employed for continuous data
recording.

3.2 Experimental preparation process and volunteer information

This section provides information about the experimental stages conducted with MTw and
ATD devices and details about the volunteers.

3.2.1 Experimental preparation process
The experimental setup involved a rigorous series of trials adhering to the established

experimental protocol for fall event simulation [44]. The experiments conducted in this
study involved human participants and were approved by the Ethics Committee of Erciyes

@ Springer
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University (Approval Number: 2011/319). All the sensor units used in the research were
adjusted and calibrated, ensuring that the datasets were accurate and reliable. A sampling
frequency of 25 Hz was chosen to collect the data effectively and efficiently. Selecting an
appropriate sampling rate is crucial for recognizing activities and detecting falls. In gen-
eral, human activities exhibit a frequency range that typically falls between 0 and 20 Hz.
Balancing power efficiency and data fidelity, a sampling frequency of 25 Hz was strategi-
cally selected for this study [45].

Experimental preparation process using MTw Experiments created using MTw were
conducted with a total of 14 volunteers (7 females and 7 males). Female participants’
demographic characteristics were captured as follows: mean age 21.5+2.5 years, mean
weight 58.5+11.5 kg, and mean height 169.5+12.5 cm. Among male participants, the
mean age was 24 +3 years, the mean weight was 67.5+13.5 kg, and the mean height was
172+ 12 cm (see Table 4).

Experimental preparation process Using ATD The identification of ADL and fall actions
within the ATD dataset was guided by the activity type labels extracted from the MTw
device data. The study involved 30 participants (15 females and 15 males). Female par-
ticipants were further characterized by an average age of 22.3+6.5 years, weight of
60.3 +9 kg, and height of 164.4 +5.5 cm. For male participants, the age, weight, and height
ranges were calculated as 28.9 +10.7 years, 80.1 +12.6 kg, and 177 +7.3 cm, respectively
(see Table 5).

Table 4 Age, Gender, and

Anthropometric Information of Gender  Volunteer Height (cm) Weight (kg) Age

Volunteers (MTw) Male 101 170 75 21
102 174 81 21
103 180 78 23
104 176 67 27
106 160 54 22
107 175 72 21
108 184 68 21

Female 203 170 51 21

204 157 47 21
205 169 51 20
206 166 47 19
207 165 60 20
208 163 55 24
209 182 70 22
All Volunteers
Mean 170.79 62.57 21.64
Standard Deviation 8.17 11.82 1.98
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Table 5 Age, Gender, and

Anthropometric Information of Gender  Volunteer Height (cm) Weight (kg) Age

Volunteers (ATD) Male 101 179 100 39
102 174 96 37
103 191 69 18
104 178 86 20
105 175 89 18
106 168 93 50
107 170 62 21
108 168 90 37
109 182 75 20
110 192 60 18
111 178 76 34
112 176 71 21
113 170 87 41
114 174 81 37
115 180 67 22

Female 201 163 50 34

202 169 69 19
203 166 53 21
204 162 62 19
205 156 73 41
206 172 70 18
207 163 45 19
208 165 53 19
209 162 59 23
210 169 73 21
211 159 48 21
212 175 63 19
213 157 64 20
214 168 63 22
215 160 60 18
All Volunteers
Mean 170.70 70.23 25.57
Standard Deviation 9.01 14.73 9.32

The Placement of ATD on Volunteers is Illustrated in Fig. 5.

3.3 Activity types, dataset, and classification techniques

This section provides an explanation of activity types, data collection, preprocessing,
artificial intelligence techniques, and performance metrics for the detection of ADLs
and falls.

@ Springer
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Fig.5 The Placement of ATD on
Volunteers

3.3.1 Data collection process and activity types with MTw

For this investigation, we employed a dataset encompassing 2520 records (14 volun-
teers X 36 activities X5 repetitions). The data was meticulously collected from 14 volun-
teers, encompassing 36 distinct activities (20 sets fall and 16 sets ADL), each performed
five times. This dataset incorporates both fall and ADL event recordings. A detailed break-
down of the activity types is provided in Table 6.

The experiments involved the placement of three-axis sensors equipped with six sensor
units (accelerometer, gyroscope, and magnetometer) on various sections of the volunteers’
bodies. Recorded DLA and falls differ from activities recorded in a laboratory setting, as
they mimic real-life occurrences [46].

3.3.2 Data collection process and activity types with ATD
In this study, a dataset comprising 1350 records (30 volunteers X 15 activities X 3 repeti-

tions) collected from 30 volunteers was used. Encompassing both fall and ADL data, the
dataset comprises a collection of activities performed by volunteers. These activities,
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categorized into seven fall sets and eight ADL sets, were each repeated three times to
ensure data consistency and robustness. A detailed description of the activity types is pro-
vided in Table 7.

For data collection, sensor units equipped with tri-axial sensors (accelerometer, gyro-
scope, and magnetometer) were affixed to the waist regions of the participants. This choice
was made considering studies [47, 48] that indicate the highest classification performance
is achieved with sensors placed on the waist.

3.3.3 Dataset Preprocessing Procedure

Each movement was captured by the waist sensor unit for a period of 12—18 s. The highest
acceleration value (4,,,,) was determined using the data gathered from the accelerometer

[49, 50].
— 2 2 2
Ay = /A2 +Ay +A? (1)

To obtain the active motion range, a two-second time interval was used to collect data
from before and after the peak acceleration. This resulted in a total of 101 samples, with 25
samples per second for a total of 2 s before and 2 s after the peak acceleration (2 s xX25 Hz
for the peak acceleration + 1 sample +2 s x25 Hz). The remaining records were not used.

Following data acquisition from the accelerometer, gyroscope, and magnetometer sen-
sors along the three axes, a 101 X9 matrix was constructed by aggregating the sensor data
[49]. The matrix consisted of 101 rows, representing individual samples, and 9 columns,
representing sensor axes. Figure 6 illustrates the arrangement of the matrix.

max

3.3.4 Feature extraction

Feature extraction was performed from the datasets collected with MTw and ATD for ML
techniques, which will be examined for activity classification performance.
The extracted features encompass the following [49, 51]:

Minimum, maximum, mean, skewness, and kurtosis
Five peak points of DFT (Discrete Fourier Transform)
Frequency values

Eleven values of the autocorrelation function

Consequently, 26 features were generated for each record, computed using the provided
formulas below.

1 N
mean(d) © u = N Zi:l d; 2
. .2 1 N 2
variance(d) : c° = N 21‘:1 (d,- - /4) 3)
skewness(d) = # 211 (d,- - ,14)3 (€))

@ Springer



Multimedia Tools and Applications

Data Preparation

Features: 9 Columns

goeeEEE® Features: 9 CqumEs
geeoEEREE® \
000000000 P2z 229 F3 B
0000000060 AeeeeceeEe s
000000000 gegooepEO @
2 000000000 (-]-N-N-T-1-§-1-F-]
& [-]-N-N-1-T-T-T-]-] geggococecog g
a geeeene gepeoeneaE S
vr oy » - »
o 6B EEEEEE 00000000 =
k> A = [T A+ A2 00000000 -
H e TVRTETE o0 0000000 |
b > (g,
- 000000000 =
£ . I
[= : & 4 S
6060000000 cooococoooe -
PP 800060660606
ki 66668660666
DOOSSNNNS 666666666
666666666
Time () Time (s)
—A | A
30 —A: 30 ( 7:v
Ay 20 “ 'z

A
= N
Acceleration (m/s2)
3

i’
7
|

a) b)

Fig.6 Data Preprocessing Process. These two graphs belong to the first repetition of Activity 17 of subject
203. The data is collected from the sensor located on the waist. (a) 430 samples (more than 17 s of raw data
collected at 25 Hz) are gathered, and (b) reduced to 101 samples (shortened to 4 s of data)

. 1 N 4
kurtosis(d) = Nod 2[:1 d; — 1) ©)
. . 1 N-A-1
autocorrelation(d) : R (A) = N_A Zi:o (dl- - ,u) (di_A - /4), A=01,...N-1
(6)
DFT(k) = Y "% k= 01,...N ~ 1 @

In this research, the performance of activity classification was examined using 72 differ-
ent combinations. The study focused on the X, y, and z axes of sensor units for both MTw
and ATD. Table 8 illustrates the seventy-two axis combinations for the sensor types.
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Table 8 Sensor Type Axis Combinations. Y: Yes, N: No

Gyroscope Magnetometer

Accelerometer

Combinations

Mz

My

Gz Mx

Gy

Gx

Az

Ay

Ax

Ax

Ay

Az

Gx

Gy

Gz

Mx

My

Mz

AxAy
AxAz

AxGx
AxGy
AxGz

AxMx
AxMy
AxMz
AyAz

AyGx

AyGy
AyGz

AyMx
AyMy
AyMz

AzGx
AzGy
AzGz
AzMx
AzMy
AzMz
GxGy
GxGz

GxMx
GxMy
GxMz
GyGz

GyMx
GyMy
GyMz

GzMx
GzMy
GzMz
MxMy
MxMz
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Table 8 (continued)

Z

MyMz

AxGxMx
AxGxMy
AxGxMz
AxGyMx
AxGyMy
AxGyMz
AxGzMx
AxGzMy
AxGzMz
AyGxMx
AyGxMy
AyGxMz
AyGyMx
AyGyMy
AyGyMz
AyGzMx
AyGzMy
AyGzMz
AzGxMx
AzGxMy
AzGxMz
AzGyMx
AzGyMy
AzGyMz
AzGzMx
AzGzMy
AzGzMz

Z Z Z Z 2 ZZ Z Z Z Z Z Z ZZZZZKKK<

Z Z Z Z 2 ZZZZ <KL ZZ2Z2Z2Z2Z2Z2ZZZ
o o 722 2 2 2 2 Z 2 2 2Z 2Z 2Z2ZZZZZZZ
Z Z ZZZZ << <ZZ22Z222ZZ<<ZZZ2ZZZ<AZ
Z Z Z < < ZZZZZZ <R ZZZZZZ A ZZZZ
< e Z 22 ZZZ <4< ZZZZZZ K Z2Z2ZZ2ZZZ
Z Z < ZZ < ZZ<ZZ<ZZKZZZZZZ<ZZ<Z
Z < ZZ < ZZ<ZZ<ZZ<ZZZZZZZZ<Z <
< Z Z < ZZ < ZZ < ZZKZZZZKZZZZZZ

Within each sensor type and for each axis, the extracted feature vectors consist of 26
elements. These elements encompass accelerometer data (Ax, Ay, Az), gyroscope data
(Gx, Gy, Gz), and magnetometer data (Mx, My, Mz). With this inference, the feature vec-
tor length for single-axis combinations is calculated as 26, for two-axis combinations it is
52 (26 x2), and for three-axis combinations, it is 78 (26 X 3).

3.3.5 Usage of artificial intelligence techniques

In this section, artificial intelligence (Al) techniques used for activity recognition are dis-
cussed. These techniques are employed to extract valuable information from input data
and identify an activity. Eleven ML algorithms were employed in this study to accurately
classify activities. These algorithms were applied with the features extracted in Sect. 2.3.4
from raw data collected by the sensors.

Logistic Regression (LR) LR model was used to find the optimal decision boundary
between these two classes, assuming that ADL and fall data are linearly separable [52]. In
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this research, the LR model was tested using two sets of hyperparameters. The first set con-

sisted of three optimization algorithms: "newton-cg", "lbfgs", and "liblinear". The second
set included five regularization parameter values: "100, 10, 1.0, 0.1, and 0.01".

k-Nearest Neighbors Algorithm (k-NN) k-NN is a supervised ML algorithm that can be
used for classification and regression tasks. It works by identifying the k most similar data
points in the training set to a new data point and assigning the new data point to the same
class as the majority of its k nearest neighbors [53]. For fall detection and activity recogni-
tion, it considers the falling or activity state of each training instance. When a new instance
comes, it predicts its class by looking at the nearest k training instances. The value of k
is an important hyperparameter that affects performance.. In this study, distance metrics
such as ("euclidean’, 'manhattan’, ’chebyshev’, *minkowski’), the number of neighbors (k)
as[1,3,5,7,9,11, 13, 15, 17, 19, 21, 23, 25, 27, 29], and the power parameter (p) for the
minkowski metric as [1, 2] were tested with three different hyperparameters for all sensor
and axis combinations.

Naive Bayes (NB) NB is a probabilistic classifier that takes into account the assumption
that each feature makes an independent and equal contribution to the target category [54].
The NB classifier was used to perform classification based on the probabilities obtained
from the sensor data, under the assumption that each feature contributes independently and
equally to the target category. In this study, a hyperparameter, var_smoothing, was tested.
Values ranging from 0 to -9 with logarithmically equidistant intervals were generated by
adding the maximum variance part of all features to ensure computational stability, and the
model was tested with a single hyperparameter.

Decision Trees (DT) DT is a non-parametric and hierarchical technique that is commonly
used for both regression and classification problems. DT splits data at each level of hierar-
chy, with two, three, or multiple branching nodes [55]. For fall detection and activity rec-
ognition, it builds a tree structure according to the features (sensor data, motion features,
etc.) that determine falling and activity states. Its interpretability is an advantage. In this
study, different hyperparameters for creating the model were tested, including maximum
depth (max depth) as [5, 10, 20, 40, 80, 100], minimum samples required to split a node
(min samples split) as [2, 5, 10, 20, 40, 80, 100, 200], minimum samples required at a leaf
node (min samples leaf) as [5, 10, 20, 40, 80, 100], maximum features (max features) as
["auto’, sqrt’, "log2’], and criteria for splitting (criterion) as "gini" or "entropy."

Linear Discriminant Analysis (LDA) LDA is a statistical method that uses a linear com-
bination of features to distinguish between two or more groups. It is a multivariate
method, meaning that it takes into account the relationships between multiple features
[56]. It attempts to find the combinations of features that best separate falling and activ-
ity states. Dimensionality reduction can be useful, especially for high-dimensional data. In
this research, The parameter being tested was the solver parameter, which included three
options: "svd", "lsqr", and "eigen".

Support Vector Machines (SVMs) SVM stand as a prominent supervised learning algo-
rithm, renowned for their ability to maximize the margin between decision boundaries
established by supporting points. SVMs were initially developed to tackle non-linear clas-
sification tasks by employing the kernel method [57]. In the context of fall detection and
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activity recognition, this method identifies the optimal hyperplane that effectively distin-
guishes between falling and activity states. Its ability to handle non-linear problems stems
from its utilization of kernel functions, which enable transformation into higher dimen-
sional spaces. In this research, an academic tested Support Vector Machines (SVM) using
three sets of hyperparameters. These hyperparameters included different kernel types such
as linear, poly, rbf, and sigmoid. The regularization parameter values tested were 0.1,
0.3,0.5, 0.7, 0.9, 1.0, 1.3, 1.5, 1.7, and 2.0. Additionally, the polynomial kernel function
degrees tested were 2, 3, 4, and 5.

Ensemble AdaBoost (EAB) EAB is an ensemble algorithm that assigns weights to exam-
ples in the dataset according to their ease or difficulty in classification and makes the algo-
rithm pay more or less attention to them in generating subsequent models based on these
weights [58]. It combines the predictions of weak learners by weighting them. It can per-
form well in complex and non-linear problems for ADL and fall classes. To evaluate the
performance of the EAB model, a comprehensive grid search was conducted using two key
hyperparameters: the number of trees (n_estimators) and the learning rate. The number of
trees was varied across a range of values, including [10, 50, 100, 500, 1000, 1500], while
the learning rate was explored across values of [0.001, 0.01, 0.1, 0.2, 0.3].

Ensemble Gradient Boosting (EGB) EGB algorithm trains a sequential series of decision
trees, where each tree is trained on the residuals of the previous tree [59]. For fall detection
and activity recognition, it attempts to create a stronger classifier by minimizing the errors
of previous learners. It may be preferred for its ability to capture complex relationships.
To evaluate the performance of the EGB model, a hyperparameter tuning experiment was
conducted investigating four key parameters: the number of trees (n_estimators) as [10,
50, 100, 500, 1000, 1500], the maximum depth (max depth) as [5, 10, 20, 40, 80, 100], the
minimum number of samples required to split a node (min samples split) as [2, 5, 10, 20,
40, 80, 100, 200], and the maximum features (max features) as ’auto’, ’square’, "log2’.

Ensemble Random Forest (ERF) ERF algorithm builds a collection of decision trees by
training them on different subsets of the data. The predictions made by each tree are then
combined to make a final prediction [60]. It trains many decision trees from randomly
selected subsets of features and then combines their predictions. Its robustness against
overfitting and suitability for parallel processing are advantages. To optimize the perfor-
mance of the ERF model, a hyperparameter tuning process was performed evaluating four
key parameters: the number of trees (n_estimators) as [10, 50, 100, 500, 1000, 1500], the
maximum depth (max_depth) as [5, 10, 20, 40, 80, 100], the minimum number of samples
required to split a node (min_samples_split) as [2, 5, 10, 20, 40, 80, 100, 200], and the
maximum features (max_features) as "auto’, ’square’, "log2’.

Ensemble Extra Tee (EET) EET is an extension of ERF, an ensemble learning model. EET
has a lower probability of overfitting compared to ERF because it randomly selects the
best feature to split a node with the corresponding value. EET aims to split a node with
the highest feature value [61]. The algorithm employs a random forest approach, training
numerous decision trees with randomized feature and split-point selection. The predictions
from these individual trees are then aggregated to achieve robust fall detection and activ-
ity recognition capabilities. To optimize the performance of the EET model, a hyperpa-
rameter tuning process was performed evaluating four key parameters: the number of trees
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(n_estimators) as [10, 50, 100, 500, 1000, 1500], the maximum depth (max_depth) as [5,
10, 20, 40, 80, 100], the minimum number of samples required to split a node (min_sam-
ples_split) as [2, 5, 10, 20, 40, 80, 100, 200], and the maximum features (max_features) as
“auto’, ’square’, "log2’.

Ensemble Bagging Classifier (EBC) EBC is an ensemble algorithm that trains a collection
of classifiers on different subsets of the data and combines their predictions to make a final
prediction [62]. For fall detection and activity recognition, it trains multiple weak learners
and combines their predictions. Its robustness against overfitting and suitability for parallel
processing are advantages. To assess the performance of the EBC model, a hyperparam-
eter tuning experiment focusing was conducted on a single parameter, the number of trees
(n_estimators), as [10, 50, 100, 500, 1000, 1500].

3.3.6 Evaluating the performance of artificial intelligence techniques

Evaluating the performance of artificial intelligence techniques is a crucial step because it
determines how well ML algorithms classify. Therefore, it is essential to select and apply
performance evaluation criteria accurately. The chosen metrics significantly influence how
algorithm performance is assessed and comparisons are made. However, the effectiveness
of the performance evaluation process is also of great importance. Rigorous evaluation of
a developed classification model necessitates testing it on unseen data with known class
labels to ensure accurate performance assessment. This provides a realistic assessment of
how well the model will perform on new data.

In this study, the dataset is divided into two parts obtained with MTw, consisting of data
from 14 participants, 10 volunteers (1800 samples), and 4 volunteers (720 samples), and
data obtained with ATD from 30 individuals, consisting of 20 volunteers (900 samples)
and 10 volunteers (450 samples). To test the models, data with 4 volunteers for MTw and
10 volunteers for ATD are set as the test set. This strategy effectively isolates the test set
examples from the training process, precluding the emergence of biased and artificially
inflated performance metrics.

To evaluate the classification performance of the models, the k-fold cross-validation
method is employed. With this method, the training and validation sets are cyclically
changed using a specified k value. In this study, a k value of 10 has been chosen, result-
ing in the dataset being divided into equal parts. Each part is utilized as a validation set,
while the remaining segments constitute the training set. This process allows for the crea-
tion of distinct performance sets for each model. Evaluation of model performance on the
validation set is achieved through averaging the obtained results. Subsequently, the trained
models are deployed on a distinct test set composed of test volunteers, enabling a compre-
hensive assessment of their classification capabilities.

Accuracy is one of the most common metrics used to evaluate the classification perfor-
mance of algorithms, as shown in Eq. 8. It is calculated by dividing the number of correct
predictions by the total number of predictions. A confusion matrix is a tool that can be
used to visualize the performance of a classification algorithm.

T, +T,

Acc(A =———x100
cc(Accuracy) T, +T,+F,+ an ®)

In the equation, 7, represents true negatives, T, denotes true positives, F, signifies
false positives, and F, indicates false negatives. In summary, the symbols used for binary
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classification, specifically for distinguishing between falls and activities of daily living
(ADL), are as follows:

T,: True positive; actually a fall, correctly classified.

T,: True negative; actually not a fall (no fall), correctly classified.

F,: False positive; The system incorrectly identified an event as a fall when no fall actu-
ally occurred.

F,: False negative; An instance where a fall event occurred but was erroneously classi-
fied as non-fall.

In addition to accuracy, other metrics that are commonly used to evaluate the perfor-
mance of a classification algorithm are sensitivity and specificity.

Sensitivity (Se), also known as recall, is a measure of how well the algorithm identifies
positive examples (Eq. 9). It is calculated by dividing the number of correctly classified
positive examples (the number of falls that are correctly classified) by the total number of
positive examples.

T
Se(Sensitivity) = ———x100
e(Sensitivity) Tp n an 9)

The number of non-falls that are correctly classified in all negative examples is called
specificity (Sp). This is calculated using Eq. 10:

. T,
Sp(Specificity) = T prlOO (10)

4 Results

In this section, the performance outputs of the artificial intelligence models developed to
detect the contextual relationship between falls and ADLs, collected with MTw and ATD,
for highly accurate classification among sensor axis combinations, which is the starting
point of the study, are examined. This section consists of two parts. In the first part, the
classification performance of artificial intelligence models developed for the data collected
with MTw and, in the second part, for the data collected with ATD, is compared, taking
into account the sensor axis combinations.

A total of 72 different data formats, composed of Ax, Ay, Az, Gx, Gy, Gz, Mx, My, Mz
sensor axes for both activity tracking devices (MTw and ATD), were trained with 11 ML
algorithms. At the end of the training, seven sensor axis combinations, yielding the highest
accuracy rates, are presented along with the algorithm pairs.

The achievements of the developed artificial intelligence models within the scope of
examination and evaluation were assessed considering classification performance in multi-
class classification (MTw—36 Activities and ATD—15 Activities) and binary classifica-
tion (falls and ADLs). In the training set, the k-fold technique was applied with k=10, and
the average and standard deviation (std) values for the validation set were obtained with
different hyperparameter arrangements through 10 repetitions. Models were created for
each combination using the hyperparameter values that achieved the highest accuracy rates
on the validation set. In the final stage, the developed models were tested on an unseen test
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set, leading to generalized models and performance values for both binary and multi-class
classification.

4.1 Classification Performance Metrics (MTw)
4.1.1 Binary Classification (ADLs and Falls)

Within the scope of this investigation, 11 distinct ML algorithms were employed to clas-
sify falls and ADLs utilizing a binary classification approach. The hyperparameter values
contributing to the performance of each model during the training process are presented in
Table 9.

The analysis of sensor axis combinations in different data formats has been utilized to
evaluate classification performance using various metrics. Metrics such as the confusion
matrix, accuracy, sensitivity, and specificity were calculated, and the results for algorithm-
combination pairs are presented in Table 10. In the examination conducted on the test set,
the generalized performance of classifiers used with seven different axis combination types
was assessed. Among the investigated classifiers, SVM algorithm exhibited the superior
performance, achieving the highest accuracy rate when employing the AxGy-AxGxMz
axis combinations. The accuracy rate of the model developed with AxGy and AxGxMz
combinations was determined to be 99.17%. Furthermore, the primary goal for binary
classifications is to accurately classify fall cases to the highest extent. Therefore, using the
AxGy combination and SVM pair, 100% sensitivity was achieved, and all fall test data was
accurately classified. It is noted that a more acceptable performance was obtained com-
pared to the AxGy combination.

In the scope of this study, the computational requirements of models for binary and
multiclass classifications were examined. Leveraging a computational platform equipped
with an 8-core Intel Core i7 processor operating at 2.60 GHz, 16 GB of RAM, an Nvidia
GeForce GTX 950 M GPU (4 GB GDDR3), and a Microsoft Windows 10 (64-bit) operat-
ing system, the preprocessing and classification tasks were efficiently executed.

Table 10 compares the computational requirements and training, validation, and test-
ing times for different axis type combinations in binary classification problems. Regard-
ing training time, the algorithm with the highest computation time in axis combinations
is SVM with the AxGxMz combination, while the algorithm with the lowest computa-
tion time is k-NN with the AxAy combination. Concerning validation time, k-NN with
the AxAy combination has the highest computation time, while SVM with the AxGy
combination has the lowest computation time. Regarding testing time, k-NN with the

Table 9 Machine Learning

Models and Hyperparameter Models  Comb Parameters

X?tl;l et;;nl\/][s”ll“[\::gagssslgfinngf SVM Ax kernel: rbf C:1 degree: 3

Combinations k-NN AxAy metric: minkowski  k:5 p:2
SVM AxAz kernel: rbf C:1 degree: 3
SVM AxGx kernel: rbf C:1 degree: 3
SVM AxGy kernel: rbf C:1 degree: 3
k-NN AxGxMx  metric: minkowski  k:5 p:2
SVM AxGxMz  kernel: rbf C:1 degree: 3
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AxGxMx combination has the highest computation time, whereas SVM with the Ax
combination has the lowest computation time.

4.1.2 Multiclass Classification (36 Activities)

Within the scope of the study, 36 activities have been classified through multiclass clas-
sification using 11 different ML algorithms. The hyperparameter values contributing to
the success of each model during the training process are presented in Table 11.

In order to assess the classification performance of data formats composed of sensor
axis combinations, accuracy metrics were employed. Table 12 illustrates the generalized
performance of classifiers utilized with seven different axis combination types.

The highest accuracy rate was achieved with the AxGxMz combination and the
EET algorithm. The accuracy rate of the model developed with this axis combination
was determined to be 77.64%. When analyzing the data, it becomes evident that the
AxGxMz data format, in conjunction with the EET algorithm, resulted in the highest
accuracy rate for 36 different activities.

The EET model’s classification performance of 36 activities in the test set is pre-
sented in Table 13 through the confusion matrix. In this matrix, rows represent the
actual activities, while columns depict the classification results obtained by the model.
Values on the diagonal indicate correct classification, whereas values off the diagonal
represent misclassifications. For instance, in the matrix, the value of 2 at the intersec-
tion of row 4 (Squat and Stand Up) and column 13 (Sitting in the Air) indicates that
the model classified activity 4 as 13. Within the diagonal of the confusion matrix, the
values represent the model’s classification accuracy for each activity. Limited or zero
values off the diagonal demonstrate that the model did not confuse activities with each
other.

Table 12 compares the computational requirements and training, validation, and testing
times for classification algorithms in terms of axis type combinations for multiclass clas-
sification problems. When considering the training time, the combination AxGyMz—EET
has the highest time requirement, while the combination AxXMy—EET has the lowest time
requirement. In terms of validation time, the combination AxGxMz—EET has the long-
est computation time, whereas the combination AxAz—SVM has the shortest computation
time. For testing time, the combination AXGxMz—EET has the highest time requirement,
and the combination AxMy—EET has the lowest time requirement.

Table 11 Machine Learning Models and Hyperparameter Values in Multiclass Classification with the MTw
Dataset. Comb.: Combinations

Models Comb Parameters

EET AxAy n_estimators: 100 max_depth: 40  min_samples_split: 2 max_features:auto
SVM AxAz kernel: linear C: 1,5 degree: 3

EET AxGx n_estimators:500 max_depth: 20  min_samples_split:5 max_features: log2
EET AxMy n_estimators:50 max_depth: 40  min_samples_split:5 max_features:sqrt

EET AxGxMy n_estimators:1000 max_depth: 40  min_samples_split:20  max_features:auto
EET AxGxMz n_estimators:1500 max_depth: 40  min_samples_split:2 max_features:sqrt

EET AxGyMy n_estimators:1500 max_depth: 40  min_samples_split:2 max_features:log2
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4.2 Classification Performance Metrics (ATD)
4.2.1 Binary Classification (ADLs and Falls)

Within the scope of this investigation, fall and ADL classification was performed utiliz-
ing 11 distinct ML algorithms in a binary classification framework. The hyperparameter
values contributing to the success of each model during the training process are pre-
sented in Table 14.

In order to examine the effects of axis combinations on classification performance,
results obtained using the confusion matrix, accuracy, sensitivity, and specificity met-
rics are presented in Table 15..

Classifier models using seven different axis combinations were evaluated on the
test data set. According to the results obtained, models developed with the Ax, AxAz,
AxGy, AxMz, and AxGxMx axis combinations achieved the highest accuracy rates.
Using the k-NN algorithm with these combinations, 100% accuracy, 100% sensitivity,
and 100% specificity were achieved.

However, it is important to note a limitation of this study. The analysis revealed the
situation where the model overfits the data and the results obtained on the test data set
are higher than those on the validation data set. This may lead to low accuracy in clas-
sifying new data sets.

Additionally, the computational requirements of classification algorithms were com-
pared in this research. The effects on training, validation, and testing times were exam-
ined. According to the results, the EGB algorithm with the AxAy axis combination had
the highest training time, while the k-NN algorithm with the AxAz and AxGxMx axis
combinations had the lowest training time. When looking at validation time, the k-NN
algorithm with the Ax axis combination had the highest time, while the EGB algorithm
with the AxAy axis combination had the lowest time. As for testing time, the k-NN
algorithm with the AxMz axis combination had the highest time, and the EGB algo-
rithm with the AxAy axis combination had the lowest time.

Table 14 Machine Learning Models and Hyperparameter Values in Binary Classification with the ATD
Dataset. Comb.: Combinations

Models Comb Parameters

k-NN Ax metric: minkowski k:11 p:2

EGB AxAy n_estimators: 100 max_depth: 3 min_samples_  max_fea-
split:2 tures:

None

k-NN AxAz metric: minkowski k:5 p:2

k-NN AxGx metric: euclidean k:3

k-NN AxGy metric: euclidean k:13

k-NN AxMz metric: minkowski k:11 p:2

k-NN AxGxMx metric: euclidean k:13
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4.2.2 Multiclass Classification (15 Activities)

Within the scope of this study, 15 activities were compared using 11 different ML algo-
rithms through multiclass classification. The hyperparameter values contributing to the
success of each model during the training process are presented in Table 16.

To assess the classification performance of various data formats with different axis
combinations, accuracy metrics were employed. The outcomes of the algorithm-com-
bination pairs are displayed in Table 17. Generalized performance of classifiers using
seven axis combinations was examined on the test set. Amongst the evaluated classi-
fiers, the combination of AxAy axes yielded the superior accuracy rate. Specifically,
the combination of AxAy sensors and the EGB algorithm achieved an accuracy rate of
94.00%.

Moreover, Table 18 presents the confusion matrix for axis combinations, providing a
detailed evaluation of the classification performance for each activity type. When evalu-
ating the classification performance of the EGB model on the test set for 15 activities,
the confusion matrix presented in Table 18 is examined. Within the matrix, the num-
bers that are not located on the diagonal can be observed to be either smaller or equal
to zero. A value of zero signifies that the developed model successfully distinguished
between activities without any confusion.

Table 17 presents a comparison of the computational requirements for different ML
algorithms when applied to multiclass classification problems and considering axis type
combinations. The table provides information about the training, validation, and test-
ing times required by each algorithm. Concerning training time, the algorithm with
the highest computation time in axis combinations is EGB when combined with the
AxGyMy axes. On the other hand, the algorithm with the lowest computation time is
ERF when combined with the AxGxMx axes.When considering validation time, the
algorithm with the highest computation time among the various axis combinations is
EET with the AxGxMy combination. Conversely, ERF algorithm emerged as the most
computationally efficient, exhibiting the lowest execution time when utilizing the
AxGxMx data combination. In terms of testing time, the EGB algorithm displayed the
greatest computational burden, particularly when combined with the AxGyMy axes.On
the other hand, LR with the G axes has the lowest computation time.

5 Discussion

This study encompasses a comprehensive analysis of the classification performance of ML
models developed for activity recognition and fall detection. The research’s objective is to
construct a well-structured dataset [20, 44, 63], and make the research conducted with this
dataset comparable to others. A critical limitation addressed in this study is the paucity of
diverse datasets utilized in current activity recognition and fall detection research. Many
researchers have relied on datasets with a limited range of activities[23, 29, 30, 33, 35-37],
some consisting solely of ADL data [22-24, 29-33, 38—41], a homogeneous pool of par-
ticipants [25, 34-37], and insufficient information about the number of activity repetitions
[29, 31, 33, 34, 37]. While these studies may report high classification accuracies for basic
movements, their real-world applicability is questioned. Real-life scenarios are often more
complex and noisy, posing challenges that these models might struggle to overcome, lead-
ing to potential misclassifications.
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To address this limitation, a comprehensive dataset was constructed, encompassing a
diverse spectrum of activities. This dataset comprises 36 activity types, including 20 fall
events and 16 ADLs, and a subset of 15 activity types, consisting of 7 falls and 8 ADLs.
Moreover, the dataset is characterized by an even representation of male and female par-
ticipants, fostering gender balance and enhancing the generalizability of the research out-
comes. This comprehensive approach enhances the dataset’s ability to capture the inherent
variability present in real-world settings, thereby improving the robustness and reliability
of the developed models.

Another strength of this research lies in the comprehensive hyperparameter analy-
ses conducted for both fall detection and activity recognition approaches. Meticulous
parameter tuning, often overlooked in many studies, can lead to suboptimal model per-
formance. By carefully optimizing the hyperparameters, the models have been ensured
to operate at their full potential, maximizing their classification accuracy.

Furthermore, this study addresses a crucial aspect of sensor networks: power con-
sumption optimization. By adopting an approach that minimizes power requirements and
developing energy-harvesting methods, this research aims to create a simple, affordable,
low-power, real-time, and long-lasting device for fall and ADL detection. This innovative
approach addresses the environmental dependence issue, a significant limitation in existing
solutions, and paves the way for more practical and sustainable solutions for individuals at
risk of falling.

In addition to these strengths, the effectiveness of selecting appropriate axis combina-
tions from datasets consisting of different activity types has been showcased. The results
demonstrate that carefully curated models can achieve high classification accuracy, further
solidifying the practical relevance of this research. To the best of our knowledge, no such
a comprehensive study study has investigated sensor axis combination on activity recogni-
tion and fall detection (11 ML algorithms X 72 sensor axis combination on both of MTw
and ATD =Total 1584 evaluate combinations).

In conclusion, this study addresses several critical limitations in the existing literature
by constructing a diverse and comprehensive dataset, conducting rigorous hyperparameter
analyses, and developing innovative solutions for power optimization and real-time opera-
tion. These contributions not only advance the field of activity recognition and fall detec-
tion but also pave the way for more robust, reliable, and practical solutions that can posi-
tively impact individuals’ lives.

Table 16 Machine learning models and hyperparameter values in multiclass classification with the ATD
Dataset. Comb.: Combinations

Models Comb Parameters

EGB AxAy n_estimators:500 max_depth: 100  min_samples_split:20  max_features:log2
EET AxGx n_estimators:500 max_depth: 80 min_samples_split:5 max_features:log2
ERF AxGxMx n_estimators:100 max_depth: 40 min_samples_split:2 max_features:sqrt
EET AxGxMy n_estimators:1500  max_depth: 40 min_samples_split:2 max_features:log2
EGB AxGyMy n_estimators:1000 max_depth: 40 ~ min_samples_split:20  max_features:sqrt
EGB AxGzMy n_estimators:1000  max_depth: 5 min_samples_split:10  max_features:sqrt
EGB AxGzMz  n_estimators:1000  max_depth: 5 min_samples_split:10  max_features:sqrt
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Table 18 Confusion Matrix

Representation of Classification 1234567 89 1011121311415

Results for 15 Activities Usin

the EGB Model in the AxAy y ! 290 0010000000000

Data Format 2 0 380 0 0 0 0 OO O 0 0 0 00O
3 0 0 300 0 0 0O OO OO O0OO0OO0O
4 0 0 0 38€0 0 0 0O O O O O 0 0 O
5 2 3 0 0 20 0 O OO O O O 0 O
6 0 0 0 0 0O 16 140 0 0 0 0O 0 0 O
7 0 0 0 0O 0 2 280 0 0 0 0 0 0 O
8 0 0 0O O O O O 33d0 0 0 0 0 0 O
9 0 0 0 0 1 0 0 0 280 1 0 0 0 O
o 0 0 0 0OOO 0 O O 30 0 0 0 O
1m0 0 0 0 0 0 OO O O 30 0 0 O
2 0 0 0 00O O O O OO 30 0 O
30 0 0000 0 0 0 0 0 0 300 0
4 0 0 0 O OO O O O 0 3 0 27 0
5 0 0 0 0OOO 0 0 0 0 0 O 0 30

6 Conclusion and recommendations

In this study, two datasets were utilized and analyzed using various classification algo-
rithms. Seven axis combinations that provided the highest performance were selected, and
the models’ performance on the test set was examined. High success rates were achieved in
both binary classification (falls and ADLs) and multiclass classification (MTw—36 Activi-
ties and ATD—15 Activities).

When evaluating the impact of axis combinations on binary classification, it is chal-
lenging to draw a definitive conclusion. However, in multiclass classification problems, it
was observed that the axis combinations had an effect on classification performance. As
the number of axis types decreased, a general decrease in classification accuracy rates was
observed. The classifiers chosen have been validated to successfully differentiate between
falls and activities of daily living (ADLs) with high accuracy.

This study presents a low-power sensor network with energy harvesting capabilities for
real-world fall detection applications. The proposed system demonstrates versatility across
diverse settings, including elderly care in remote areas, home monitoring, workplace safety,
fall prevention in rehabilitation centers, and personal fall detection. The use cases highlight
the potential of this approach in safeguarding individuals at risk of falls.

Future research should prioritize incorporating practical use case data into the design
and development process. Pilot studies within these scenarios can provide valuable data on
several key aspects:

e User-Centered Evaluation: Here, pilot studies can assess user comfort, acceptance, and
the system’s effectiveness in real-world settings.

e Data Expansion and Analysis: Implementing data collection procedures to enhance
data quantity and variability is essential. Expanding the dataset size can further
investigate model stability and explore the effects of various parameters.Integration
with Existing Systems: Exploring seamless integration with other health monitoring
wearables can facilitate comprehensive health management.
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e Sensor Performance: Evaluation should focus on the accuracy and sensitivity of fall
detection algorithms.

e User Acceptance: Assessing user comfort, compliance, and overall satisfaction with
the wearable sensor system is crucial.

e System Effectiveness: Measuring the impact of the system on fall prevention rates
and intervention response times will provide valuable insights.

By integrating these findings, researchers can refine the sensor network architecture,
optimize energy consumption, and enhance user experience.

Furthermore, body energy harvesting presents an exciting opportunity for extending
battery life and achieving true long-term system autonomy. Collaborations with com-
mercial entities can facilitate the development of wearable devices that harvest energy
from human movement, further reducing reliance on external power sources.

This integrated approach, informed by practical use case data and harnessing body
energy, paves the way for a lightweight, cost-effective, and perpetually wearable fall
detection system. Such a device, seamlessly integrated with other health monitoring
systems, has the potential to become a ubiquitous companion. This empowers individu-
als to manage their health and safety proactively, ultimately contributing to a significant
improvement in overall quality of life.
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