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Abstract
Activity recognition is a fundamental concept widely embraced within the realm of health-
care. Leveraging sensor fusion techniques, particularly involving accelerometers (A), gyro-
scopes (G), and magnetometers (M), this technology has undergone extensive development 
to effectively distinguish between various activity types, improve tracking systems, and 
attain high classification accuracy. This research is dedicated to augmenting the effective-
ness of activity recognition by investigating diverse sensor axis combinations while under-
scoring the advantages of this approach. In pursuit of this objective, we gathered data from 
two distinct sources: 20 instances of falls and 16 daily life activities, recorded through the 
utilization of the Motion Tracker Wireless (MTw), a commercial product. In this particu-
lar experiment, we meticulously assembled a comprehensive dataset comprising 2520 
tests, leveraging the voluntary participation of 14 individuals (comprising 7 females and 
7 males). Additionally, data pertaining to 7 cases of falls and 8 daily life activities were 
captured using a cost-effective, environment-independent Activity Tracking Device (ATD). 
This alternative dataset encompassed a total of 1350 tests, with the participation of 30 vol-
unteers, equally divided between 15 females and 15 males. Within the framework of this 
research, we conducted meticulous comparative analyses utilizing the complete dataset, 
which encompassed 3870 tests in total. The findings obtained from these analyses convinc-
ingly establish the efficacy of recognizing both fall incidents and routine daily activities. 
This investigation underscores the potential of leveraging affordable IoT technologies to 
enhance the quality of everyday life and their practical utility in real-world scenarios.

Keywords Fall detection · Activity recognition · Wearable sensors · Sensor axis 
combinations · Machine learning

1 Introduction

Activity recognition and fall detection are critical for ensuring the safety and well-being 
of older adults. Technological advancements have significantly improved these capa-
bilities. Innovative approaches utilizing mobile devices, wearable sensors, and artifi-
cial intelligence algorithms enable real-time activity classification and fall detection. 
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Activity recognition plays a vital role in monitoring a person’s daily activities (ADLs) 
and gleaning valuable insights into their health status. Falls, however, pose a significant 
risk factor for older adults, potentially leading to severe injuries.

Demographic changes are fueling the recent surge in health technology advance-
ments. According to World Health Organization (WHO) data, a key driver is the stead-
ily increasing global elderly population [1]. Globally, the population aged 65 and over 
stood at 9% (688 million) in 2019. This figure is projected to rise to approximately 12% 
(1 billion) by 2030 and further increase to 16% (1.6 billion) by 2050 [2]. Considering 
the growing elderly and disabled population, the development of assistive technologies 
(ATs) to empower them in daily living activities (DLAs), promote their safety and inde-
pendence, and reliably detect critical events like falls has emerged as a progressively 
crucial and indispensable research domain [3].

Research efforts have focused not only on reliable fall detection but also on monitor-
ing and recognizing Activities of Daily Living (ADLs) to improve the quality of life 
for individuals at risk of falls. Given the strong correlation between falls and ADLs 
established in numerous studies, activity recognition systems hold significant potential 
for various applications. These applications encompass social-physical interaction [4], 
factory worker activity recognition [5], health and sports science domains [6], and even 
extend to the entertainment and interactive gaming sectors [7].

Numerous solutions have been proposed for automatic activity recognition and fall 
detection [8–11]. Classification of these solutions can be achieved based on the sensor 
technology employed, encompassing three primary categories: Ambient Sensor-Based 
(ASB), Wearable Sensor-Based (WSB), and Hybrid Sensor-Based (HSB) approaches 
[10–12].

• Ambient Sensor-Based (ASB) Technologies: Leveraging a diverse array of sensor 
modalities, including acoustic [13], infrared [14], vibration [15], and vision-based sen-
sors [16], these technologies are seamlessly integrated into the environment (doors, 
walls, floors, furniture, etc.) to facilitate ADL recognition and fall detection [17].

• Wearable Sensor-Based (WSB) Technologies: At the core of WSB technologies lie sen-
sors that capture motion parameters, including acceleration, velocity, and orientation 
[10, 11].

• Hybrid Sensor-Based (HSB) Technologies: HSB technologies seamlessly integrate 
both ASB and WSB approaches, often employing sensor pairs such as microphone-
accelerometer or infrared microphone combinations [18].

Despite their substantial benefits for activity recognition and fall detection, these tech-
nologies are not without their inherent challenges, such as real-time analysis, integration 
with smart homes, high computational power requirements, data fusion across different 
sensors, and sensor synchronization needs [12, 18, 19].

In the nutshell, this study addresses limitations in existing activity recognition and fall 
detection research, aiming for a more robust and generalizable approach.

Key Improvements:

• Comprehensive Dataset: We address generalizability by constructing a diverse dataset 
encompassing a wider range of activities (36 total, including 20 falls) and balanced par-
ticipant demographics.
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• Optimized Model Performance: Hyperparameter analysis ensures optimal classification 
accuracy for the models.

• Real-World Applicability: A low-power sensor network with energy harvesting 
capabilities promotes long-term wearability.

• Effective Sensor Data Utilization: We investigate selecting appropriate sensor axis 
combinations, demonstrating high accuracy with carefully designed models.

Challenges:

• User-centered evaluation: Conducting pilot studies to assess user comfort, accept-
ance, and the system’s effectiveness in real-world settings.

• Data expansion and analysis: Collecting more data encompassing a wider variety 
of situations to enhance model stability and investigate the effects of additional 
parameters.

• Integration with existing systems: Exploring seamless integration with other health 
monitoring wearables for a more comprehensive approach to health management.

By addressing these challenges, we can refine the sensor network architecture, 
optimize energy consumption, and enhance user experience. This will lead to a light-
weight, cost-effective, and perpetually wearable fall detection system that significantly 
improves user quality of life.

Contribution to the Field:
This study contributes by:

• Assessing Sensor Combinations: Analyzing the impact of different sensor axis 
combinations on activity recognition performance in wearable-based sensors.

• Realistic Evaluation: Obtaining realistic results by working with a gender-balanced 
participant group.

• Comparison Standard: Providing a comparison standard for fall and activity recog-
nition systems, improving their comparability.

• Foundation for Improvement: Laying a foundation for improving the design of fall 
and activity recognition devices.

• Next-Generation AI Algorithms: Building upon these advancements, the aim is to 
develop a device capable of real-time operation and an efficient artificial intelli-
gence model. The results of this study will contribute to the development of next-
generation AI algorithms for activity recognition and fall detection.

Overall, this work presents a significant step towards robust and reliable fall detec-
tion systems, promoting the safety, well-being, and independent living of the growing 
elderly population.

The organization of this paper is as follows: Sect.  2 delves into a comprehensive 
review of extant literature on the application of WSB technologies in activity recogni-
tion. Delving into the methodological aspects, Sect.  3 elaborates on the datasets uti-
lized in the study and comprehensively outlines the methodology employed for train-
ing and evaluating the machine learning (ML) models. In Sect. 4, a detailed exposition 
of the study’s findings are found. Section 5 explores the impact of using different sen-
sor axis combinations on activity recognition performance. Finally, Sect. 7 concludes 
the paper by discussing potential future research directions in this field.
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2  Related works

Researchers have introduced a diverse range of devices specifically designed for activity 
recognition and fall detection applications. However, evaluating the accuracy level of these 
devices is challenging as common activity datasets are not available. In previous studies 
(Table 1), research has been conducted using public datasets and self-created datasets [20, 
21]. For instance, the PAMAP2 dataset contains the ADLs of nine elderly volunteers [22]. 
The SBHAR dataset includes data on six different activity types [23]. The MHealth dataset 
comprises the ADLs of 10 volunteers [24]. The MobiAct dataset contains the activities of 
66 volunteers [25]. Additionally, publicly accessible datasets such as the Multimodal UP-
Fall Detection Dataset are also available [26]. These datasets have accelerated the recogni-
tion of falls and daily activities, generating significant interest for research [27]. In general, 
these datasets have facilitated the development of a standard for research [28].

Numerous academic studies have focused on fall and activity recognition algorithms. 
For instance, Buber and Guvensan proposed a study for activity recognition [29]. Dern-
bach and colleagues conducted a study for the recognition of simple and complex activi-
ties [30]. Anjum and Ilyas presented a study on recognizing activities with a smartphone 
carried in different positions [31]. Saputri and colleagues conducted a study on activity 
recognition using a smartphone [32]. Bayat introduced a novel system capable of recog-
nizing six distinct activity types [33]. Figueriedo and colleagues suggested a technique 
for recognizing falls [34]. Zhao and colleagues proposed a fall detection system based on 
smartphones [35]. Albert and colleagues collected acceleration data for ADLs [36]. Kansiz 
and colleagues conducted a study using a smartphone accelerometer to recognize activities 
[37]. Mehrang and colleagues used heart rate monitors and accelerometers for activity rec-
ognition [38]. Pavey and colleagues recognized activities using a wrist-worn accelerometer 
[39]. Hsu and colleagues identified ADLs using an inertial system [40]. Sok and colleagues 
proposed a method for fall detection [41]. Li and colleagues recognized activities using 
signal streams acquired from sensors [42].

In these studies in the literature, different datasets, sampling frequencies, activity types, 
numbers of volunteers, gender balance, and sensor configurations were used. Therefore, it 
is challenging to compare the results of these studies. Another issue is the lack of informa-
tion on the performance of different sensor combinations.

3  Materials and methods

This section provides information about the system developed for activity tracking and 
fall detection (Activity Tracking Device—ATD) and the commercially available device 
(Motion Trackers Wireless—MTw). It also explains the general working principles regard-
ing sensor types, the number of sensors, and configurations. Details about the experimental 
preparation process and information about the volunteers are also included in this section.

3.1  Systems used for Activity Recognition and Fall Detection (ATD and MTw)

This study employed ATD and MTw devices, encompassing a fusion of MEMS inertial 
sensors and magnetic sensors, to facilitate activity recognition and fall detection.
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3.1.1  Motion Trackers (MTw) development kit

Xsens Technologies, the renowned developer of motion tracking solutions, offers the MTw 
development kit [43]. This kit comprises both hardware and software components (see 
Fig. 1). The kit comprises two primary components: six MTw sensor units and an Awinda 
Receiver Station.

The MTw sensor unit comprises a suite of sensors, including a 3D accelerometer (A) 
for detecting 3D acceleration, a gyroscope (G) for measuring 3D angular velocity, a mag-
netometer (M) for gauging 3D magnetic field, a barometer to gauge atmospheric pressure, 
with a measurement range of 300–1100 hPa. While the barometer data is not utilized for 
classification purposes, as outlined in Table 2, the remaining sensors play a crucial role in 
capturing relevant motion and orientation information.

3.1.2  Activity Tracking Device (ATD)

The ATD architecture comprises six components, including four sensors, one controller, 
a battery, and an SD card reader. Four different sensor types, namely BMX055, BMP280, 
MAX30102, and GSR, are utilized within the ATD framework. Other components in the 
ATD architecture include the ESP32-WeMos-Lolin32 controller, a lithium-ion battery, and 
an SD card reader.

The BMX055 sensor is a 9-axis sensor used for motion, orientation, and magnetic direc-
tion detection. The BMP280 sensor is employed for absolute pressure measurement. The 
MAX30102 sensor is capable of pulse and oximetry measurements, while the GSR sensor 
is used to measure galvanic skin response (see Fig. 2). Table 3 details the specifications of 
the sensors employed in the ATD.

The ESP32-WeMos-Lolin32 controller has been employed as the controller in this 
setup. This module provides high processing power and low power consumption, along 

Fig. 1  MTw sensor and recording unit

Table 2  Fundamental detection 
components of MTw sensors

A G M

Sensör Type Digital Digital Digital
Full scale  ± 120 m/s2  ± 1200 deg/s  ± 1.5 Gauss
Noise 200 µg/√Hz 0.01 deg/s/√Hz 0.2 mGauss/Hz
Bandwith 180 Hz 180 Hz 10–60 Hz (var.)
Bias stability 0.1 mg 10 deg/hr



 Multimedia Tools and Applications

Fig. 2  Placement of sensors on the board

Table 3  Fundamental detection components of sensors in ATD Design

BMX055
Accelerometer Sensor Type Digital

Measurement Range (g) ±16
Zero Offset (mg) ±80
Noise Density (ug/√Hz) 150
Resolution [bit] 12

Gyroscope Sensor Type Digital
Measurement Range (derece/sn) 2000
Zero Offset (derece/sn) ±1
Noise Density (derece/s/√Hz)
Resolution [bit] 16

Magnetometer Sensor Type Digital
Measurement Range (gauss) 12
Resolution [bit] 12

BMP280
Sensor Type Digital
Pressure Resolution 0.16 Pa
Measurement Range 157 Hz üstü
MAX30102
Sensor Type Digital
ADC Resolution 14
Red ADC Count 26000
IR ADC Count 26000
Dark Current Count 0
DC Ambient Light Rejection 0
Grove - GSR
Sensitivity Adjustable with a Potentiometer
Input Signal No Resistance, No Conductivity
Output Signal Voltage, Analog Reading
Finger Touch Material Nickel
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with Wifi, Bluetooth, and BLE capabilities. Furthermore, it is equipped with GPIO, UART, 
 I2C, and SPI interfaces for controlling various peripheral devices (see Fig. 3).

A 1450 mA lithium-ion battery has been used to provide power to the ATD device (see 
Fig. 4). Additionally, an SD card reader module has been employed for continuous data 
recording.

3.2  Experimental preparation process and volunteer information

This section provides information about the experimental stages conducted with MTw and 
ATD devices and details about the volunteers.

3.2.1  Experimental preparation process

The experimental setup involved a rigorous series of trials adhering to the established 
experimental protocol for fall event simulation [44]. The experiments conducted in this 
study involved human participants and were approved by the Ethics Committee of Erciyes 

Fig. 3  ESP32 module and pinout specifications

Fig. 4  Battery used as the power 
supply for ATD
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University (Approval Number: 2011/319). All the sensor units used in the research were 
adjusted and calibrated, ensuring that the datasets were accurate and reliable. A sampling 
frequency of 25 Hz was chosen to collect the data effectively and efficiently. Selecting an 
appropriate sampling rate is crucial for recognizing activities and detecting falls. In gen-
eral, human activities exhibit a frequency range that typically falls between 0 and 20 Hz. 
Balancing power efficiency and data fidelity, a sampling frequency of 25 Hz was strategi-
cally selected for this study [45].

Experimental preparation process using MTw Experiments created using MTw were 
conducted with a total of 14 volunteers (7 females and 7 males). Female participants’ 
demographic characteristics were captured as follows: mean age 21.5 ± 2.5  years, mean 
weight 58.5 ± 11.5  kg, and mean height 169.5 ± 12.5  cm. Among male participants, the 
mean age was 24 ± 3 years, the mean weight was 67.5 ± 13.5 kg, and the mean height was 
172 ± 12 cm (see Table 4).

Experimental preparation process Using ATD The identification of ADL and fall actions 
within the ATD dataset was guided by the activity type labels extracted from the MTw 
device data. The study involved 30 participants (15 females and 15 males). Female par-
ticipants were further characterized by an average age of 22.3 ± 6.5  years, weight of 
60.3 ± 9 kg, and height of 164.4 ± 5.5 cm. For male participants, the age, weight, and height 
ranges were calculated as 28.9 ± 10.7 years, 80.1 ± 12.6 kg, and 177 ± 7.3 cm, respectively 
(see Table 5).

Table 4  Age, Gender, and 
Anthropometric Information of 
Volunteers (MTw)

Gender Volunteer Height (cm) Weight (kg) Age

Male 101 170 75 21
102 174 81 21
103 180 78 23
104 176 67 27
106 160 54 22
107 175 72 21
108 184 68 21

Female 203 170 51 21
204 157 47 21
205 169 51 20
206 166 47 19
207 165 60 20
208 163 55 24
209 182 70 22
All Volunteers
Mean 170.79 62.57 21.64
Standard Deviation 8.17 11.82 1.98
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The Placement of ATD on Volunteers is Illustrated in Fig. 5.

3.3  Activity types, dataset, and classification techniques

This section provides an explanation of activity types, data collection, preprocessing, 
artificial intelligence techniques, and performance metrics for the detection of ADLs 
and falls.

Table 5  Age, Gender, and 
Anthropometric Information of 
Volunteers (ATD)

Gender Volunteer Height (cm) Weight (kg) Age

Male 101 179 100 39
102 174 96 37
103 191 69 18
104 178 86 20
105 175 89 18
106 168 93 50
107 170 62 21
108 168 90 37
109 182 75 20
110 192 60 18
111 178 76 34
112 176 71 21
113 170 87 41
114 174 81 37
115 180 67 22

Female 201 163 50 34
202 169 69 19
203 166 53 21
204 162 62 19
205 156 73 41
206 172 70 18
207 163 45 19
208 165 53 19
209 162 59 23
210 169 73 21
211 159 48 21
212 175 63 19
213 157 64 20
214 168 63 22
215 160 60 18
All Volunteers
Mean 170.70 70.23 25.57
Standard Deviation 9.01 14.73 9.32
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3.3.1  Data collection process and activity types with MTw

For this investigation, we employed a dataset encompassing 2520 records (14 volun-
teers × 36 activities × 5 repetitions). The data was meticulously collected from 14 volun-
teers, encompassing 36 distinct activities (20 sets fall and 16 sets ADL), each performed 
five times. This dataset incorporates both fall and ADL event recordings. A detailed break-
down of the activity types is provided in Table 6.

The experiments involved the placement of three-axis sensors equipped with six sensor 
units (accelerometer, gyroscope, and magnetometer) on various sections of the volunteers’ 
bodies. Recorded DLA and falls differ from activities recorded in a laboratory setting, as 
they mimic real-life occurrences [46].

3.3.2  Data collection process and activity types with ATD

In this study, a dataset comprising 1350 records (30 volunteers × 15 activities × 3 repeti-
tions) collected from 30 volunteers was used. Encompassing both fall and ADL data, the 
dataset comprises a collection of activities performed by volunteers. These activities, 

Fig. 5  The Placement of ATD on 
Volunteers
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categorized into seven fall sets and eight ADL sets, were each repeated three times to 
ensure data consistency and robustness. A detailed description of the activity types is pro-
vided in Table 7.

For data collection, sensor units equipped with tri-axial sensors (accelerometer, gyro-
scope, and magnetometer) were affixed to the waist regions of the participants. This choice 
was made considering studies [47, 48] that indicate the highest classification performance 
is achieved with sensors placed on the waist.

3.3.3  Dataset Preprocessing Procedure

Each movement was captured by the waist sensor unit for a period of 12–18 s. The highest 
acceleration value ( Amax ) was determined using the data gathered from the accelerometer 
[49, 50].

To obtain the active motion range, a two-second time interval was used to collect data 
from before and after the peak acceleration. This resulted in a total of 101 samples, with 25 
samples per second for a total of 2 s before and 2 s after the peak acceleration (2 s × 25 Hz 
for the peak acceleration + 1 sample + 2 s × 25 Hz). The remaining records were not used.

Following data acquisition from the accelerometer, gyroscope, and magnetometer sen-
sors along the three axes, a 101 × 9 matrix was constructed by aggregating the sensor data 
[49]. The matrix consisted of 101 rows, representing individual samples, and 9 columns, 
representing sensor axes. Figure 6 illustrates the arrangement of the matrix.

3.3.4  Feature extraction

Feature extraction was performed from the datasets collected with MTw and ATD for ML 
techniques, which will be examined for activity classification performance.

The extracted features encompass the following [49, 51]:

• Minimum, maximum, mean, skewness, and kurtosis
• Five peak points of DFT (Discrete Fourier Transform)
• Frequency values
• Eleven values of the autocorrelation function

Consequently, 26 features were generated for each record, computed using the provided 
formulas below.

(1)Amax =

√

A2
x
+ A2

y
+ A2

z

(2)mean(d) ∶ � =
1

N

∑N

i=1
di

(3)variance(d) ∶ �
2 =

1

N

∑N

i=1

(

di − �

)2

(4)skewness(d) =
1

N�3

∑N

i=1

(

di − �

)3
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In this research, the performance of activity classification was examined using 72 differ-
ent combinations. The study focused on the x, y, and z axes of sensor units for both MTw 
and ATD. Table 8 illustrates the seventy-two axis combinations for the sensor types.

(5)kurtosis(d) =
1

N�4

∑N

i=1
(di − �)

4

(6)

autocorrelation(d) ∶ Rss(Δ) =
1

N − Δ

∑N−Δ−1

i=0

(

di − �

)(

di−Δ − �

)

,Δ = 0,1, ...,N − 1

(7)DFT(k) =
∑N−1

i=0
die

−
j2�ki

N , k = 0,1, ...,N − 1

Fig. 6  Data Preprocessing Process. These two graphs belong to the first repetition of Activity 17 of subject 
203. The data is collected from the sensor located on the waist. (a) 430 samples (more than 17 s of raw data 
collected at 25 Hz) are gathered, and (b) reduced to 101 samples (shortened to 4 s of data)
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Table 8  Sensor Type Axis Combinations. Y: Yes, N: No

Combinations Accelerometer Gyroscope Magnetometer

Ax Ay Az Gx Gy Gz Mx My Mz
Ax Y N N N N N N N N
Ay N Y N N N N N N N
Az N N Y N N N N N N
Gx N N N Y N N N N N
Gy N N N N Y N N N N
Gz N N N N N Y N N N
Mx N N N N N N Y N N
My N N N N N N N Y N
Mz N N N N N N N N Y
AxAy Y Y N N N N N N N
AxAz Y N Y N N N N N N
AxGx Y N N Y N N N N N
AxGy Y N N N Y N N N N
AxGz Y N N N N Y N N N
AxMx Y N N N N N Y N N
AxMy Y N N N N N N Y N
AxMz Y N N N N N N N Y
AyAz N Y Y N N N N N N
AyGx N Y N Y N N N N N
AyGy N Y N N Y N N N N
AyGz N Y N N N Y N N N
AyMx N Y N N N N Y N N
AyMy N Y N N N N N Y N
AyMz N Y N N N N N N Y
AzGx N N Y Y N N N N N
AzGy N N Y N Y N N N N
AzGz N N Y N N Y N N N
AzMx N N Y N N N Y N N
AzMy N N Y N N N N Y N
AzMz N N Y N N N N N Y
GxGy N N N Y Y N N N N
GxGz N N N Y N Y N N N
GxMx N N N Y N N Y N N
GxMy N N N Y N N N Y N
GxMz N N N Y N N N N Y
GyGz N N N N Y Y N N N
GyMx N N N N Y N Y N N
GyMy N N N N Y N N Y N
GyMz N N N N Y N N N Y
GzMx N N N N N Y Y N N
GzMy N N N N N Y N Y N
GzMz N N N N N Y N N Y
MxMy N N N N N N Y Y N
MxMz N N N N N N Y N Y
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Within each sensor type and for each axis, the extracted feature vectors consist of 26 
elements. These elements encompass accelerometer data (Ax, Ay, Az), gyroscope data 
(Gx, Gy, Gz), and magnetometer data (Mx, My, Mz). With this inference, the feature vec-
tor length for single-axis combinations is calculated as 26, for two-axis combinations it is 
52 (26 × 2), and for three-axis combinations, it is 78 (26 × 3).

3.3.5  Usage of artificial intelligence techniques

In this section, artificial intelligence (AI) techniques used for activity recognition are dis-
cussed. These techniques are employed to extract valuable information from input data 
and identify an activity. Eleven ML algorithms were employed in this study to accurately 
classify activities. These algorithms were applied with the features extracted in Sect. 2.3.4 
from raw data collected by the sensors.

Logistic Regression (LR) LR model was used to find the optimal decision boundary 
between these two classes, assuming that ADL and fall data are linearly separable [52]. In 

Table 8  (continued)

MyMz N N N N N N N Y Y
AxGxMx Y N N Y N N Y N N
AxGxMy Y N N Y N N N Y N
AxGxMz Y N N Y N N N N Y
AxGyMx Y N N N Y N Y N N
AxGyMy Y N N N Y N N Y N
AxGyMz Y N N N Y N N N Y
AxGzMx Y N N N N Y Y N N
AxGzMy Y N N N N Y N Y N
AxGzMz Y N N N N Y N N Y
AyGxMx N Y N Y N N Y N N
AyGxMy N Y N Y N N N Y N
AyGxMz N Y N Y N N N N Y
AyGyMx N Y N N Y N Y N N
AyGyMy N Y N N Y N N Y N
AyGyMz N Y N N Y N N N Y
AyGzMx N Y N N N Y Y N N
AyGzMy N Y N N N Y N Y N
AyGzMz N Y N N N Y N N Y
AzGxMx N N Y Y N N Y N N
AzGxMy N N Y Y N N N Y N
AzGxMz N N Y Y N N N N Y
AzGyMx N N Y N Y N Y N N
AzGyMy N N Y N Y N N Y N
AzGyMz N N Y N Y N N N Y
AzGzMx N N Y N N Y Y N N
AzGzMy N N Y N N Y N Y N
AzGzMz N N Y N N Y N N Y
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this research, the LR model was tested using two sets of hyperparameters. The first set con-
sisted of three optimization algorithms: "newton-cg", "lbfgs", and "liblinear". The second 
set included five regularization parameter values: "100, 10, 1.0, 0.1, and 0.01".

k‑Nearest Neighbors Algorithm (k‑NN) k-NN is a supervised ML algorithm that can be 
used for classification and regression tasks. It works by identifying the k most similar data 
points in the training set to a new data point and assigning the new data point to the same 
class as the majority of its k nearest neighbors [53]. For fall detection and activity recogni-
tion, it considers the falling or activity state of each training instance. When a new instance 
comes, it predicts its class by looking at the nearest k training instances. The value of k 
is an important hyperparameter that affects performance.. In this study, distance metrics 
such as (’euclidean’, ’manhattan’, ’chebyshev’, ’minkowski’), the number of neighbors (k) 
as [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29], and the power parameter (p) for the 
minkowski metric as [1, 2] were tested with three different hyperparameters for all sensor 
and axis combinations.

Naive Bayes (NB) NB is a probabilistic classifier that takes into account the assumption 
that each feature makes an independent and equal contribution to the target category [54]. 
The NB classifier was used to perform classification based on the probabilities obtained 
from the sensor data, under the assumption that each feature contributes independently and 
equally to the target category. In this study, a hyperparameter, var_smoothing, was tested. 
Values ranging from 0 to -9 with logarithmically equidistant intervals were generated by 
adding the maximum variance part of all features to ensure computational stability, and the 
model was tested with a single hyperparameter.

Decision Trees (DT) DT is a non-parametric and hierarchical technique that is commonly 
used for both regression and classification problems. DT splits data at each level of hierar-
chy, with two, three, or multiple branching nodes [55]. For fall detection and activity rec-
ognition, it builds a tree structure according to the features (sensor data, motion features, 
etc.) that determine falling and activity states. Its interpretability is an advantage. In this 
study, different hyperparameters for creating the model were tested, including maximum 
depth (max depth) as [5, 10, 20, 40, 80, 100], minimum samples required to split a node 
(min samples split) as [2, 5, 10, 20, 40, 80, 100, 200], minimum samples required at a leaf 
node (min samples leaf) as [5, 10, 20, 40, 80, 100], maximum features (max features) as 
[’auto’, ’sqrt’, ’log2’], and criteria for splitting (criterion) as "gini" or "entropy."

Linear Discriminant Analysis (LDA) LDA is a statistical method that uses a linear com-
bination of features to distinguish between two or more groups. It is a multivariate 
method, meaning that it takes into account the relationships between multiple features 
[56]. It attempts to find the combinations of features that best separate falling and activ-
ity states. Dimensionality reduction can be useful, especially for high-dimensional data. In 
this research, The parameter being tested was the solver parameter, which included three 
options: "svd", "lsqr", and "eigen".

Support Vector Machines (SVMs) SVM stand as a prominent supervised learning algo-
rithm, renowned for their ability to maximize the margin between decision boundaries 
established by supporting points. SVMs were initially developed to tackle non-linear clas-
sification tasks by employing the kernel method [57]. In the context of fall detection and 
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activity recognition, this method identifies the optimal hyperplane that effectively distin-
guishes between falling and activity states. Its ability to handle non-linear problems stems 
from its utilization of kernel functions, which enable transformation into higher dimen-
sional spaces. In this research, an academic tested Support Vector Machines (SVM) using 
three sets of hyperparameters. These hyperparameters included different kernel types such 
as linear, poly, rbf, and sigmoid. The regularization parameter values tested were 0.1, 
0.3, 0.5, 0.7, 0.9, 1.0, 1.3, 1.5, 1.7, and 2.0. Additionally, the polynomial kernel function 
degrees tested were 2, 3, 4, and 5.

Ensemble AdaBoost (EAB) EAB is an ensemble algorithm that assigns weights to exam-
ples in the dataset according to their ease or difficulty in classification and makes the algo-
rithm pay more or less attention to them in generating subsequent models based on these 
weights [58]. It combines the predictions of weak learners by weighting them. It can per-
form well in complex and non-linear problems for ADL and fall classes. To evaluate the 
performance of the EAB model, a comprehensive grid search was conducted using two key 
hyperparameters: the number of trees (n_estimators) and the learning rate. The number of 
trees was varied across a range of values, including [10, 50, 100, 500, 1000, 1500], while 
the learning rate was explored across values of [0.001, 0.01, 0.1, 0.2, 0.3].

Ensemble Gradient Boosting (EGB) EGB algorithm trains a sequential series of decision 
trees, where each tree is trained on the residuals of the previous tree [59]. For fall detection 
and activity recognition, it attempts to create a stronger classifier by minimizing the errors 
of previous learners. It may be preferred for its ability to capture complex relationships. 
To evaluate the performance of the EGB model, a hyperparameter tuning experiment was 
conducted investigating four key parameters: the number of trees (n_estimators) as [10, 
50, 100, 500, 1000, 1500], the maximum depth (max depth) as [5, 10, 20, 40, 80, 100], the 
minimum number of samples required to split a node (min samples split) as [2, 5, 10, 20, 
40, 80, 100, 200], and the maximum features (max features) as ’auto’, ’square’, ’log2’.

Ensemble Random Forest (ERF) ERF algorithm builds a collection of decision trees by 
training them on different subsets of the data. The predictions made by each tree are then 
combined to make a final prediction [60]. It trains many decision trees from randomly 
selected subsets of features and then combines their predictions. Its robustness against 
overfitting and suitability for parallel processing are advantages. To optimize the perfor-
mance of the ERF model, a hyperparameter tuning process was performed evaluating four 
key parameters: the number of trees (n_estimators) as [10, 50, 100, 500, 1000, 1500], the 
maximum depth (max_depth) as [5, 10, 20, 40, 80, 100], the minimum number of samples 
required to split a node (min_samples_split) as [2, 5, 10, 20, 40, 80, 100, 200], and the 
maximum features (max_features) as ’auto’, ’square’, ’log2’.

Ensemble Extra Tee (EET) EET is an extension of ERF, an ensemble learning model. EET 
has a lower probability of overfitting compared to ERF because it randomly selects the 
best feature to split a node with the corresponding value. EET aims to split a node with 
the highest feature value [61]. The algorithm employs a random forest approach, training 
numerous decision trees with randomized feature and split-point selection. The predictions 
from these individual trees are then aggregated to achieve robust fall detection and activ-
ity recognition capabilities. To optimize the performance of the EET model, a hyperpa-
rameter tuning process was performed evaluating four key parameters: the number of trees 
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(n_estimators) as [10, 50, 100, 500, 1000, 1500], the maximum depth (max_depth) as [5, 
10, 20, 40, 80, 100], the minimum number of samples required to split a node (min_sam-
ples_split) as [2, 5, 10, 20, 40, 80, 100, 200], and the maximum features (max_features) as 
’auto’, ’square’, ’log2’.

Ensemble Bagging Classifier (EBC) EBC is an ensemble algorithm that trains a collection 
of classifiers on different subsets of the data and combines their predictions to make a final 
prediction [62]. For fall detection and activity recognition, it trains multiple weak learners 
and combines their predictions. Its robustness against overfitting and suitability for parallel 
processing are advantages. To assess the performance of the EBC model, a hyperparam-
eter tuning experiment focusing was conducted on a single parameter, the number of trees 
(n_estimators), as [10, 50, 100, 500, 1000, 1500].

3.3.6  Evaluating the performance of artificial intelligence techniques

Evaluating the performance of artificial intelligence techniques is a crucial step because it 
determines how well ML algorithms classify. Therefore, it is essential to select and apply 
performance evaluation criteria accurately. The chosen metrics significantly influence how 
algorithm performance is assessed and comparisons are made. However, the effectiveness 
of the performance evaluation process is also of great importance. Rigorous evaluation of 
a developed classification model necessitates testing it on unseen data with known class 
labels to ensure accurate performance assessment. This provides a realistic assessment of 
how well the model will perform on new data.

In this study, the dataset is divided into two parts obtained with MTw, consisting of data 
from 14 participants, 10 volunteers (1800 samples), and 4 volunteers (720 samples), and 
data obtained with ATD from 30 individuals, consisting of 20 volunteers (900 samples) 
and 10 volunteers (450 samples). To test the models, data with 4 volunteers for MTw and 
10 volunteers for ATD are set as the test set. This strategy effectively isolates the test set 
examples from the training process, precluding the emergence of biased and artificially 
inflated performance metrics.

To evaluate the classification performance of the models, the k-fold cross-validation 
method is employed. With this method, the training and validation sets are cyclically 
changed using a specified k value. In this study, a k value of 10 has been chosen, result-
ing in the dataset being divided into equal parts. Each part is utilized as a validation set, 
while the remaining segments constitute the training set. This process allows for the crea-
tion of distinct performance sets for each model. Evaluation of model performance on the 
validation set is achieved through averaging the obtained results. Subsequently, the trained 
models are deployed on a distinct test set composed of test volunteers, enabling a compre-
hensive assessment of their classification capabilities.

Accuracy is one of the most common metrics used to evaluate the classification perfor-
mance of algorithms, as shown in Eq. 8. It is calculated by dividing the number of correct 
predictions by the total number of predictions. A confusion matrix is a tool that can be 
used to visualize the performance of a classification algorithm.

In the equation, Tn represents true negatives, Tp denotes true positives, Fp signifies 
false positives, and Fn indicates false negatives. In summary, the symbols used for binary 

(8)Acc(Accuracy) =
Tp + Tn

Tp + Tn + Fp + Fn

x100



Multimedia Tools and Applications 

classification, specifically for distinguishing between falls and activities of daily living 
(ADL), are as follows:

Tp : True positive; actually a fall, correctly classified.
Tn : True negative; actually not a fall (no fall), correctly classified.
Fp : False positive; The system incorrectly identified an event as a fall when no fall actu-
ally occurred.
Fn : False negative; An instance where a fall event occurred but was erroneously classi-
fied as non-fall.

In addition to accuracy, other metrics that are commonly used to evaluate the perfor-
mance of a classification algorithm are sensitivity and specificity.

Sensitivity (Se), also known as recall, is a measure of how well the algorithm identifies 
positive examples (Eq. 9). It is calculated by dividing the number of correctly classified 
positive examples (the number of falls that are correctly classified) by the total number of 
positive examples.

The number of non-falls that are correctly classified in all negative examples is called 
specificity (Sp). This is calculated using Eq. 10:

4  Results

In this section, the performance outputs of the artificial intelligence models developed to 
detect the contextual relationship between falls and ADLs, collected with MTw and ATD, 
for highly accurate classification among sensor axis combinations, which is the starting 
point of the study, are examined. This section consists of two parts. In the first part, the 
classification performance of artificial intelligence models developed for the data collected 
with MTw and, in the second part, for the data collected with ATD, is compared, taking 
into account the sensor axis combinations.

A total of 72 different data formats, composed of Ax, Ay, Az, Gx, Gy, Gz, Mx, My, Mz 
sensor axes for both activity tracking devices (MTw and ATD), were trained with 11 ML 
algorithms. At the end of the training, seven sensor axis combinations, yielding the highest 
accuracy rates, are presented along with the algorithm pairs.

The achievements of the developed artificial intelligence models within the scope of 
examination and evaluation were assessed considering classification performance in multi-
class classification (MTw—36 Activities and ATD—15 Activities) and binary classifica-
tion (falls and ADLs). In the training set, the k-fold technique was applied with k = 10, and 
the average and standard deviation (std) values for the validation set were obtained with 
different hyperparameter arrangements through 10 repetitions. Models were created for 
each combination using the hyperparameter values that achieved the highest accuracy rates 
on the validation set. In the final stage, the developed models were tested on an unseen test 

(9)Se(Sensitivity) =
Tp

Tp + Fn

x100

(10)Sp(Specificity) =
Tn

Tn + Fp

x100
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set, leading to generalized models and performance values for both binary and multi-class 
classification.

4.1  Classification Performance Metrics (MTw)

4.1.1  Binary Classification (ADLs and Falls)

Within the scope of this investigation, 11 distinct ML algorithms were employed to clas-
sify falls and ADLs utilizing a binary classification approach. The hyperparameter values 
contributing to the performance of each model during the training process are presented in 
Table 9.

The analysis of sensor axis combinations in different data formats has been utilized to 
evaluate classification performance using various metrics. Metrics such as the confusion 
matrix, accuracy, sensitivity, and specificity were calculated, and the results for algorithm-
combination pairs are presented in Table 10. In the examination conducted on the test set, 
the generalized performance of classifiers used with seven different axis combination types 
was assessed. Among the investigated classifiers, SVM algorithm exhibited the superior 
performance, achieving the highest accuracy rate when employing the AxGy-AxGxMz 
axis combinations. The accuracy rate of the model developed with AxGy and AxGxMz 
combinations was determined to be 99.17%. Furthermore, the primary goal for binary 
classifications is to accurately classify fall cases to the highest extent. Therefore, using the 
AxGy combination and SVM pair, 100% sensitivity was achieved, and all fall test data was 
accurately classified. It is noted that a more acceptable performance was obtained com-
pared to the AxGy combination.

In the scope of this study, the computational requirements of models for binary and 
multiclass classifications were examined. Leveraging a computational platform equipped 
with an 8-core Intel Core i7 processor operating at 2.60 GHz, 16 GB of RAM, an Nvidia 
GeForce GTX 950 M GPU (4 GB GDDR3), and a Microsoft Windows 10 (64-bit) operat-
ing system, the preprocessing and classification tasks were efficiently executed.

Table 10 compares the computational requirements and training, validation, and test-
ing times for different axis type combinations in binary classification problems. Regard-
ing training time, the algorithm with the highest computation time in axis combinations 
is SVM with the AxGxMz combination, while the algorithm with the lowest computa-
tion time is k-NN with the AxAy combination. Concerning validation time, k-NN with 
the AxAy combination has the highest computation time, while SVM with the AxGy 
combination has the lowest computation time. Regarding testing time, k-NN with the 

Table 9  Machine Learning 
Models and Hyperparameter 
Values in Binary Classification 
with the MTw Dataset. Comb.: 
Combinations

Models Comb Parameters

SVM Ax kernel: rbf C: 1 degree: 3
k-NN AxAy metric: minkowski k:5 p:2
SVM AxAz kernel: rbf C: 1 degree: 3
SVM AxGx kernel: rbf C: 1 degree: 3
SVM AxGy kernel: rbf C: 1 degree: 3
k-NN AxGxMx metric: minkowski k:5 p:2
SVM AxGxMz kernel: rbf C: 1 degree: 3
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AxGxMx combination has the highest computation time, whereas SVM with the Ax 
combination has the lowest computation time.

4.1.2  Multiclass Classification (36 Activities)

Within the scope of the study, 36 activities have been classified through multiclass clas-
sification using 11 different ML algorithms. The hyperparameter values contributing to 
the success of each model during the training process are presented in Table 11.

In order to assess the classification performance of data formats composed of sensor 
axis combinations, accuracy metrics were employed. Table 12 illustrates the generalized 
performance of classifiers utilized with seven different axis combination types.

The highest accuracy rate was achieved with the AxGxMz combination and the 
EET algorithm. The accuracy rate of the model developed with this axis combination 
was determined to be 77.64%. When analyzing the data, it becomes evident that the 
AxGxMz data format, in conjunction with the EET algorithm, resulted in the highest 
accuracy rate for 36 different activities.

The EET model’s classification performance of 36 activities in the test set is pre-
sented in Table  13 through the confusion matrix.  In this matrix, rows represent the 
actual activities, while columns depict the classification results obtained by the model. 
Values on the diagonal indicate correct classification, whereas values off the diagonal 
represent misclassifications. For instance, in the matrix, the value of 2 at the intersec-
tion of row 4 (Squat and Stand Up) and column 13 (Sitting in the Air) indicates that 
the model classified activity 4 as 13. Within the diagonal of the confusion matrix, the 
values represent the model’s classification accuracy for each activity.  Limited or zero 
values off the diagonal demonstrate that the model did not confuse activities with each 
other.

Table 12 compares the computational requirements and training, validation, and testing 
times for classification algorithms in terms of axis type combinations for multiclass clas-
sification problems. When considering the training time, the combination AxGyMz—EET 
has the highest time requirement, while the combination AxMy—EET has the lowest time 
requirement. In terms of validation time, the combination AxGxMz—EET has the long-
est computation time, whereas the combination AxAz—SVM has the shortest computation 
time. For testing time, the combination AxGxMz—EET has the highest time requirement, 
and the combination AxMy—EET has the lowest time requirement.

Table 11  Machine Learning Models and Hyperparameter Values in Multiclass Classification with the MTw 
Dataset. Comb.: Combinations

Models Comb Parameters

EET AxAy n_estimators:100 max_depth: 40 min_samples_split: 2 max_features:auto
SVM AxAz kernel: linear C: 1,5 degree: 3
EET AxGx n_estimators:500 max_depth: 20 min_samples_split:5 max_features: log2
EET AxMy n_estimators:50 max_depth: 40 min_samples_split:5 max_features:sqrt
EET AxGxMy n_estimators:1000 max_depth: 40 min_samples_split:20 max_features:auto
EET AxGxMz n_estimators:1500 max_depth: 40 min_samples_split:2 max_features:sqrt
EET AxGyMy n_estimators:1500 max_depth: 40 min_samples_split:2 max_features:log2
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4.2  Classification Performance Metrics (ATD)

4.2.1  Binary Classification (ADLs and Falls)

Within the scope of this investigation, fall and ADL classification was performed utiliz-
ing 11 distinct ML algorithms in a binary classification framework. The hyperparameter 
values contributing to the success of each model during the training process are pre-
sented in Table 14.

In order to examine the effects of axis combinations on classification performance, 
results obtained using the confusion matrix, accuracy, sensitivity, and specificity met-
rics are presented in Table 15..

Classifier models using seven different axis combinations were evaluated on the 
test data set. According to the results obtained, models developed with the Ax, AxAz, 
AxGy, AxMz, and AxGxMx axis combinations achieved the highest accuracy rates. 
Using the k-NN algorithm with these combinations, 100% accuracy, 100% sensitivity, 
and 100% specificity were achieved.

However, it is important to note a limitation of this study. The analysis revealed the 
situation where the model overfits the data and the results obtained on the test data set 
are higher than those on the validation data set. This may lead to low accuracy in clas-
sifying new data sets.

Additionally, the computational requirements of classification algorithms were com-
pared in this research. The effects on training, validation, and testing times were exam-
ined. According to the results, the EGB algorithm with the AxAy axis combination had 
the highest training time, while the k-NN algorithm with the AxAz and AxGxMx axis 
combinations had the lowest training time. When looking at validation time, the k-NN 
algorithm with the Ax axis combination had the highest time, while the EGB algorithm 
with the AxAy axis combination had the lowest time. As for testing time, the k-NN 
algorithm with the AxMz axis combination had the highest time, and the EGB algo-
rithm with the AxAy axis combination had the lowest time.

Table 14  Machine Learning Models and Hyperparameter Values in Binary Classification with the ATD 
Dataset. Comb.: Combinations

Models Comb Parameters

k-NN Ax metric: minkowski k:11 p:2
EGB AxAy n_estimators: 100 max_depth: 3 min_samples_

split:2
max_fea-

tures: 
None

k-NN AxAz metric: minkowski k:5 p:2
k-NN AxGx metric: euclidean k:3
k-NN AxGy metric: euclidean k:13
k-NN AxMz metric: minkowski k:11 p:2
k-NN AxGxMx metric: euclidean k:13
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4.2.2  Multiclass Classification (15 Activities)

Within the scope of this study, 15 activities were compared using 11 different ML algo-
rithms through multiclass classification. The hyperparameter values contributing to the 
success of each model during the training process are presented in Table 16.

To assess the classification performance of various data formats with different axis 
combinations, accuracy metrics were employed. The outcomes of the algorithm-com-
bination pairs are displayed in Table 17. Generalized performance of classifiers using 
seven axis combinations was examined on the test set. Amongst the evaluated classi-
fiers, the combination of AxAy axes yielded the superior accuracy rate. Specifically, 
the combination of AxAy sensors and the EGB algorithm achieved an accuracy rate of 
94.00%.

Moreover, Table 18 presents the confusion matrix for axis combinations, providing a 
detailed evaluation of the classification performance for each activity type. When evalu-
ating the classification performance of the EGB model on the test set for 15 activities, 
the confusion matrix presented in Table 18  is examined. Within the matrix, the num-
bers that are not located on the diagonal can be observed to be either smaller or equal 
to zero. A value of zero signifies that the developed model successfully distinguished 
between activities without any confusion.

Table 17 presents a comparison of the computational requirements for different ML 
algorithms when applied to multiclass classification problems and considering axis type 
combinations. The table provides information about the training, validation, and test-
ing times required by each algorithm. Concerning training time, the algorithm with 
the highest computation time in axis combinations is EGB when combined with the 
AxGyMy axes. On the other hand, the algorithm with the lowest computation time is 
ERF when combined with the AxGxMx axes.When considering validation time, the 
algorithm with the highest computation time among the various axis combinations is 
EET with the AxGxMy combination. Conversely, ERF algorithm emerged as the most 
computationally efficient, exhibiting the lowest execution time when utilizing the 
AxGxMx data combination. In terms of testing time, the EGB algorithm displayed the 
greatest computational burden, particularly when combined with the AxGyMy axes.On 
the other hand, LR with the G axes has the lowest computation time.

5  Discussion

This study encompasses a comprehensive analysis of the classification performance of ML 
models developed for activity recognition and fall detection. The research’s objective is to 
construct a well-structured dataset [20, 44, 63], and make the research conducted with this 
dataset comparable to others. A critical limitation addressed in this study is the paucity of 
diverse datasets utilized in current activity recognition and fall detection research. Many 
researchers have relied on datasets with a limited range of activities[23, 29, 30, 33, 35–37], 
some consisting solely of ADL data [22–24, 29–33, 38–41], a homogeneous pool of par-
ticipants [25, 34–37], and insufficient information about the number of activity repetitions 
[29, 31, 33, 34, 37]. While these studies may report high classification accuracies for basic 
movements, their real-world applicability is questioned. Real-life scenarios are often more 
complex and noisy, posing challenges that these models might struggle to overcome, lead-
ing to potential misclassifications.
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To address this limitation, a comprehensive dataset was constructed, encompassing a 
diverse spectrum of activities. This dataset comprises 36 activity types, including 20 fall 
events and 16 ADLs, and a subset of 15 activity types, consisting of 7 falls and 8 ADLs. 
Moreover, the dataset is characterized by an even representation of male and female par-
ticipants, fostering gender balance and enhancing the generalizability of the research out-
comes. This comprehensive approach enhances the dataset’s ability to capture the inherent 
variability present in real-world settings, thereby improving the robustness and reliability 
of the developed models.

Another strength of this research lies in the comprehensive hyperparameter analy-
ses conducted for both fall detection and activity recognition approaches. Meticulous 
parameter tuning, often overlooked in many studies, can lead to suboptimal model per-
formance. By carefully optimizing the hyperparameters, the models have been ensured 
to operate at their full potential, maximizing their classification accuracy.

Furthermore, this study addresses a crucial aspect of sensor networks: power con-
sumption optimization. By adopting an approach that minimizes power requirements and 
developing energy-harvesting methods, this research aims to create a simple, affordable, 
low-power, real-time, and long-lasting device for fall and ADL detection. This innovative 
approach addresses the environmental dependence issue, a significant limitation in existing 
solutions, and paves the way for more practical and sustainable solutions for individuals at 
risk of falling.

In addition to these strengths, the effectiveness of selecting appropriate axis combina-
tions from datasets consisting of different activity types has been showcased. The results 
demonstrate that carefully curated models can achieve high classification accuracy, further 
solidifying the practical relevance of this research. To the best of our knowledge, no such 
a comprehensive study study has investigated sensor axis combination on activity recogni-
tion and fall detection (11 ML algorithms × 72 sensor axis combination on both of MTw 
and ATD = Total 1584 evaluate combinations).

In conclusion, this study addresses several critical limitations in the existing literature 
by constructing a diverse and comprehensive dataset, conducting rigorous hyperparameter 
analyses, and developing innovative solutions for power optimization and real-time opera-
tion. These contributions not only advance the field of activity recognition and fall detec-
tion but also pave the way for more robust, reliable, and practical solutions that can posi-
tively impact individuals’ lives.

Table 16  Machine learning models and hyperparameter values in multiclass classification with the ATD 
Dataset. Comb.: Combinations

Models Comb Parameters

EGB AxAy n_estimators:500 max_depth: 100 min_samples_split:20 max_features:log2
EET AxGx n_estimators:500 max_depth: 80 min_samples_split:5 max_features:log2
ERF AxGxMx n_estimators:100 max_depth: 40 min_samples_split:2 max_features:sqrt
EET AxGxMy n_estimators:1500 max_depth: 40 min_samples_split:2 max_features:log2
EGB AxGyMy n_estimators:1000 max_depth: 40 min_samples_split:20 max_features:sqrt
EGB AxGzMy n_estimators:1000 max_depth: 5 min_samples_split:10 max_features:sqrt
EGB AxGzMz n_estimators:1000 max_depth: 5 min_samples_split:10 max_features:sqrt
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6  Conclusion and recommendations

In this study, two datasets were utilized and analyzed using various classification algo-
rithms. Seven axis combinations that provided the highest performance were selected, and 
the models’ performance on the test set was examined. High success rates were achieved in 
both binary classification (falls and ADLs) and multiclass classification (MTw—36 Activi-
ties and ATD—15 Activities).

When evaluating the impact of axis combinations on binary classification, it is chal-
lenging to draw a definitive conclusion. However, in multiclass classification problems, it 
was observed that the axis combinations had an effect on classification performance. As 
the number of axis types decreased, a general decrease in classification accuracy rates was 
observed. The classifiers chosen have been validated to successfully differentiate between 
falls and activities of daily living (ADLs) with high accuracy.

This study presents a low-power sensor network with energy harvesting capabilities for 
real-world fall detection applications. The proposed system demonstrates versatility across 
diverse settings, including elderly care in remote areas, home monitoring, workplace safety, 
fall prevention in rehabilitation centers, and personal fall detection. The use cases highlight 
the potential of this approach in safeguarding individuals at risk of falls.

Future research should prioritize incorporating practical use case data into the design 
and development process. Pilot studies within these scenarios can provide valuable data on 
several key aspects:

• User-Centered Evaluation: Here, pilot studies can assess user comfort, acceptance, and 
the system’s effectiveness in real-world settings.

• Data Expansion and Analysis: Implementing data collection procedures to enhance 
data quantity and variability is essential. Expanding the dataset size can further 
investigate model stability and explore the effects of various parameters.Integration 
with Existing Systems: Exploring seamless integration with other health monitoring 
wearables can facilitate comprehensive health management.

Table 18  Confusion Matrix 
Representation of Classification 
Results for 15 Activities Using 
the EGB Model in the AxAy 
Data Format

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 29 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0
5 2 3 0 0 25 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 16 14 0 0 0 0 0 0 0 0
7 0 0 0 0 0 2 28 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0
9 0 0 0 0 1 0 0 0 28 0 1 0 0 0 0
10 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0
14 0 0 0 0 0 0 0 0 0 0 3 0 0 27 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30
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• Sensor Performance: Evaluation should focus on the accuracy and sensitivity of fall 
detection algorithms.

• User Acceptance: Assessing user comfort, compliance, and overall satisfaction with 
the wearable sensor system is crucial.

• System Effectiveness: Measuring the impact of the system on fall prevention rates 
and intervention response times will provide valuable insights.

By integrating these findings, researchers can refine the sensor network architecture, 
optimize energy consumption, and enhance user experience.

Furthermore, body energy harvesting presents an exciting opportunity for extending 
battery life and achieving true long-term system autonomy. Collaborations with com-
mercial entities can facilitate the development of wearable devices that harvest energy 
from human movement, further reducing reliance on external power sources.

This integrated approach, informed by practical use case data and harnessing body 
energy, paves the way for a lightweight, cost-effective, and perpetually wearable fall 
detection system. Such a device, seamlessly integrated with other health monitoring 
systems, has the potential to become a ubiquitous companion. This empowers individu-
als to manage their health and safety proactively, ultimately contributing to a significant 
improvement in overall quality of life.
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