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Abstract
As the number of long-distance commuters continues to rise, driver fatigue has become a 
major contributor to traffic accidents, underscoring the critical need for real-time fatigue 
detection and prevention. Facial expressions serve as crucial indicators that directly reflect 
the driver’s fatigue state, which may vary due to individual differences. This paper pre-
sents a comprehensive visual monitoring approach for real-time driver fatigue detection. 
The proposed method uses a vehicle-mounted camera to extract the driver’s facial features 
through an empirical multi-feature fusion model. By determining appropriate thresholds 
based on individual driving habits and conditions, the algorithm maps multi-dimensional 
facial behaviors to corresponding Karolinska Sleepiness Scale (KSS) scores and fatigue 
levels, accurately identifying four states: awake, mild fatigue, moderate fatigue, and severe 
fatigue. Evaluated on a dataset of 2,555 validated samples obtained from real-world driv-
ing conditions, the method demonstrated an impressive average accuracy of 98.35% during 
both training and experimentation. Furthermore, a comparative analysis against state-of-
the-art fatigue detection algorithms on a self- curated dataset revealed that the proposed 
approach achieved the highest average accuracy of 98.9%, with lower computational 
requirements and a lighter weight. The mean average precision (mAP) was 1.6% higher 
than the lightweight Efficient Det-D2, while also having fewer model parameters and 
reduced computational complexity.
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1 Introduction

The importance of road traffic crashes as a global social problem cannot be overstated. 
Statistics show that fatigued driving is the primary cause of over 60% of traffic accidents 
[1, 2]. Fatigued driving occurs when drivers experience physiological and psychological 
dysfunction due to prolonged driving that significantly impairs their driving ability [3–5]. 
This condition affects several facets of the driver’s cognitive processes, including attention, 
perception, reasoning, judgment, willpower, decision making, and reaction time. Driving 
while fatigued can significantly increase the risk of road crashes, highlighting the critical 
role of early detection of this condition in ensuring road safety.

Drivers exhibit distinct physiological and psychological symptoms when they become 
fatigued [6]. According to the length of driving time, fatigue driving can be classified as 
either short-term or long-term. In the case of short-term fatigue driving, drivers exhibit the 
following characteristics: (1) Increased frequency of blinking, fatigue, and reduced atten-
tion to safety. (2) Inaccurate and untimely gear shifting and lack of focused attention. (3) 
Inability to adjust driving behavior, such as acceleration, deceleration, and steering, based 
on changing road conditions. Meanwhile, long-term fatigue driving is characterized by: (1) 
Dry mouth, frequent yawning, head nodding, and difficulty keeping the head upright. (2) 
Painful, dry eyes that open and close, drowsiness, and blurred vision. (3) Low mood, slow 
reaction time, and impaired judgment [7–9].

At present, research on fatigue driving is mainly focused on the following three 
directions:

One is to evaluate and detect fatigue driving state based on signal characteristics. This 
approach mainly includes the use of electrocardiogram (ECG) [10, 11] and photoplethys-
mography (PPG) to detect ECG signals [12, 13], multi-wave electroencephalography 
(EEG) signals [14], surface electromyography (sEMG) to detect electroencephalography 
(EMG) signals [15], and measurement of electrooculography (EoG) signals between the 
cornea (with positive electricity) and the retina (with negative electricity) [16]. These 
methods of detecting fatigue using various physiological signals of the human body have 
strong theoretical support in biology and can achieve high detection accuracy. However, 
they require drivers to wear special detection instruments during the measurement process, 
which can greatly affect their ability to drive. In addition, the cost of professional detection 
instruments is generally very high, which makes it difficult to apply in practice.

The second is driving fatigue detection based on vehicle characteristics. It mainly relies 
on indirectly detecting and judging signs of fatigue through vehicle behavior, such as steer-
ing wheel angle, driving speed, acceleration, trajectory, lane offset, pressure exerted on the 
seat by various parts of the driver’s body, and brake pedal pressure [17–19]. This vehicle 
and driver behavior-based method of fatigue detection avoids direct physical contact with 
the driver and does not interfere with the driver’s driving behavior. However, factors such 
as weather and road conditions, vehicle models, and driver habits can significantly affect 
the accuracy of these detection methods, making them relatively less robust than other 
approaches.

The third is facial fatigue detection. It is performed by eyes, mouth, expression, nose 
and head posture [20–22]. Compared with traditional approaches, computer vision-based 
facial feature fatigue detection has several advantages, including non-contact and non-
interference operation and high detection accuracy, making it a new research hotspot in 
this area. Mbouna [9] used SVM to classify both alert and non-alert states. Zhao C [23] 
identified fatigue expressions, extracted fatigue expression features, and classified them 
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by the stochastic subspace integration model of SVM with a polynomial kernel func-
tion. Ahmad [24] mainly studied eye opening and closing with head movement detection 
to detect fatigue. They used the "Viola-Jones" method for face detection and the CART 
method to detect the Haar features of the human eye ROI region. Ghoddoosian [25] used 
dlib to extract human eye key points, compute EAR (Eye Aspect Ratio) values, and extract 
blink features; they also defined a time window to transfer blink features to a HM-LSTM 
network, learned the characteristics of blinks in the time dimension, and then used a com-
bination of fully connected layers, regression units, and discrete values to map KSS values 
to three types of error states. Li [26] detects driver fatigue by measuring the duration of 
eye closure, blink frequency, and yawn frequency. For face detection, the dlib toolkit of 
YOLOv3 Tiny is used to extract feature vectors of the eye and mouth, and then an SVM 
classifier evaluates the fatigue state based on the characteristics of eye closure time, blink 
frequency, and yawn frequency.

The remainder of this paper is organized as follows: Section  2 describes the empiri-
cal fusion of KSS values of multiple fatigue behaviors using f1, f2, and f3 operators to 
establish the logical relationship of multiple fatigue behaviors and two KNN models used 
for real-time early fatigue and post-fatigue estimation. Section 3 details the detection pro-
cess and the determination of the KSS values. Section 4 discusses the experiment and the 
results. The authors used a self-curated dataset for analysis and processing, and a simula-
tion of driving fatigue on a real vehicle, which gave promising results compared to other 
algorithms. Finally, Section 5 presents some concluding remarks.

2  Facial fatigue detection algorithm

There are several challenges associated with the practical application of fatigue detection 
technology. One such challenge is the requirement for real-time performance, which lim-
its the available models. While deep learning models offer high accuracy, they are time-
consuming during the fatigue inference phase, making it difficult to study fatigue detection 
from a modeling perspective. Fatigue detection is also a classification task, but compared 
to object classification, its boundaries are not well defined. Early fatigue testing typically 
focuses on one specific fatigue behavior, and building a multi-feature model requires unsu-
pervised or supervised learning methods. However, the construction of multiple fatigue 
behavior features can be time-consuming, so the fusion analysis model should not be used 
for extended periods of time. In addition, KSS labeling involves many subjective factors, 
which can lead to overfitting when training supervised models.

The method proposed in this paper is a visual monitoring technique that analyzes the 
driver’s facial features in real time using a vehicle camera to determine the driver’s fatigue 
state. The method uses a multi-feature empirical fusion model that considers the driver’s 
personal situations and habits by determining an appropriate threshold. The model assigns 
a Karolinska Sleepiness Scale (KSS) score and a fatigue behavior weight that maps the 
multidimensional facial behavior combination to a fatigue-related KSS score to finally 
assess the driver’s fatigue state. The authors believe that this approach provides an effec-
tive and non-invasive way to determine driver fatigue status, which can be beneficial for 
the development of advanced driver assistance systems and the reduction of driver-related 
accidents.

Figure  1 shows the fatigue detection framework, which includes three operators (f1, 
f2, and f3) that establish the logical relationship between different fatigue behaviors by 
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empirically fusing the KSS values. In addition, the framework includes two K-Nearest 
Neighbors (KNN) models—one for short-term fatigue detection and another for long-term 
fatigue detection. The use of both models ensures that the proposed method can detect both 
early and late fatigue in real time, making it applicable to real-world driving scenarios. The 
overall architecture of the framework represents a comprehensive and practical approach to 
driver fatigue detection.

The steps of the fatigue detection algorithm are as follows:

1. Face detection: use the SCRFD-0.5GF + model.
2. 68 face key point detection: use MobileNetV3-56 +  + model.
3. Head motion detection: use the EPNP algorithm to calculate 3 rotational degrees of 

freedom and 3 translational degrees of freedom of the head posture. The first-order 
difference and threshold comparison of each degree of freedom are calculated to detect 
nodding, normal movement, head rest and head tilt forward and backward.

4. Head forward and backward motion detection: use the pinhole imaging principle to 
calculate the distance between the face and the camera. First-order distance difference 
and threshold judgment are used to detect the forward and backward tilt motion.

5. Blink detection: adaptive blink threshold of head posture based on calibrated EAR_ 
EAR_Threshold, using EAR and PERCLOS for two-stage blink detection.

6. Yawn detection: A yawn detection algorithm based on head posture uses MAR (Mouth 
Aspect Ratio) and FOM (Frequency of Occurrence of Mouth Opening) for two-stage 
yawn detection.

Table 1 shows the fatigue behavior code and KSS value setting used in the proposed algo-
rithm. The table lists three types of detection features, which include the yawning state (m1) 
and normal state (m2) of the mouth, fast blinking (e1), slow blinking (e2), and normal state 
(e3) of the eye, and finally, the nodding behavior (h1), leaning forward and backward behavior 

Fig. 1  Detection framework of the facial fatigue detection algorithm

Table 1  Fatigue behavior codes

Position Fatigue behavior

Mouth Yawn m1 Normal m2 / /
Eyes Blink e1 Slow blink e2 Normal e3 /
Head Nod h1 Tilt forward and back-

ward h2
Normal movement h3 Static h4
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(h2), normal movement behavior (h3), and static state (h4) of the head posture. These behav-
iors are used to identify the instances of driver fatigue and map them to the corresponding 
KSS values. Thus, the table provides a comprehensive understanding of the driver’s fatigue 
state and enables effective fatigue detection.

Given the objective of only detecting the driver’s fatigue status, the proposed algorithm 
adopts a focused approach that reduces computational burden and increases efficiency. Spe-
cifically, in order to optimize resource utilization, we use a subset of the KSS sleepiness quan-
tification table, specifically values ranging from 4–9, to assess driver fatigue, as detailed in 
Table 2.

There is a corresponding relationship between the observed object, the observed behavior 
and the value of the fatigue level (KSS). Specifically, the mouth fatigue range is 4 to 7, the 
head fatigue range is 4 to 8, and the eye fatigue range is 4 to 9, as shown in Fig. 2.

The empirical fusion of multiple fatigue behavior KSS values is to use normalized empiri-
cal KSS values and the number of fatigue behavior detection times, as shown in Fig. 3. Three 
operators are defined: singleton (f1), mutual (f2), and active/inhibit (f3). The cause-and-effect 
diagram of various fatigue behaviors constructed by human experience gives specific mean-
ings to the three operators:
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Table 2  Karolinska Sleepiness 
Quantification Table [27]

Verbal description KSS Score

Extremely alert 1
Very alert 2
Alert 3
Rather Alert 4
Neither alert nor sleepy 5
Some signs of sleepiness 6
Sleepy, but no effort to keep awake 7
Sleepy, some effort to keep awake 8
Very sleepy, great effort to keep awake, fighting sleep 9

Eye

Quick
Blink

Normal
blinking

Slow
Blink

4 5 9

Lips

Normal
size

Open
mouth

4 7

Head

Normal
Exercise Stationary Front and

back tilt Nods

4 5 6 8

Observation
Object

Observation
behavior

Fatigue level
KSS

Fig. 2  Relationship between object, behavior, and KSS
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The f1 operator is designed to detect three common signs of fatigue: blinking, yawning, 
and nodding. First, a high KSS value is assigned to determine the onset of fatigue, and the 
operator then calculates the frequency of these signs to estimate the level of subsequent 
fatigue.

The f2 operator focuses on identifying early fatigue signs such as head tilting forward/
backward and rapid blinking. To calculate the maximum level of early fatigue, the operator 
applies the mean KSS value assigned at the beginning and performs a count, followed by 
the use of the tanh activation function and the max function.

The f3 operator plays a complementary role to the f1 and f2 operators. It not only trig-
gers the f1 operator and amplifies the subsequent fatigue value, but also dampens the f2 
operator to reduce early fatigue values and mitigate potential early fatigue misjudgments.

The facial fatigue detection algorithm uses long and short term KNN to learn the fatigue 
threshold, and takes both short window KSS and long window KSS extracted from each 
video as training samples for two separate KNN models. To ensure efficient performance, 
the dataset is pre-processed and normalized for real-time use during early and late fatigue 
estimation.

3  Facial feature point detection

The KSS values are determined in several steps. First, face detection is performed using the 
SCRFD-0.5GF + algorithm. Next, the key points of 68 faces are detected using the Mobile-
NetV3-56 +  + algorithm. Subsequently, the EPNP algorithm is used to calculate three rota-
tional degrees of freedom and three translational degrees of freedom of head movements. 
The pinhole imaging principle is applied to detect whether the head is moving forward or 

(4)activate = f
3
= −inhibit

KSS=0 KSS=9

Long-Term WindowShort-Term Window

f1 f2

f3

h2e2
h1

m1

h2 e3

e1

h3 e1
Activating Inhibition

m2 h4

Fig. 3  KSS value fusion diagram of multiple fatigue behaviors
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backward. Finally, two-stage slow-blink detection is performed using the EAR and PER-
CLOS (Percentage of Eye Closure over Time). Similarly, two-step yawn detection is per-
formed using the MAR and FOM measures. These steps help to accurately quantify the 
KSS values during fatigue detection.

3.1  Face detection

The face detection method used in this paper is SCRFD-0.5GF + [27]. It is a lightweight 
model that is well suited for deployment on edge devices with limited computational 
resources due to its small size and low computational cost. SCRFD-0.5GF + uses the back-
bone network to extract features from the input image, and predicts the position and cat-
egory of objects in the image through a series of convolutional layers. A feature pyramid 
network (FPN) is used to capture multi-scale features. The FPN architecture is a bottom-up 
and top-down approach that aggregates feature maps from different levels of the backbone 
network to enable the model to effectively detect targets of different sizes and scales. The 
training samples are randomly cut into square patches on the backbone network, and more 
training samples are allocated to smaller scales to improve the detection results via a sam-
ple and computation allocation mechanism, as shown in Fig. 4. These output values are 
used in subsequent steps of feature extraction and KSS value prediction. The "class" rep-
resents the category of detected facial features of the driver, including four states such as 
awake, mildly fatigued, fatigued, and severely fatigued. The "box" represents the region of 
interest (ROI) detected in the driver’s face, i.e. the driver’s facial region. The "mask" repre-
sents the result of further segmentation and localization of the detected facial ROI, which 
is used to accurately extract facial features.

Various methods are used to test the accuracy and efficiency of the verification dataset. 
The test images have a size of 640 × 640 and are evaluated using FaceBoxes (UCB17), 

class

box

mask

Fig. 4  SCRFD-0.5GF + Backbone Network Architecture
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Mobile-0.5GF, SCRFD-0.5GF, and SCRFD-1GF. The "# Params" and "# Flops" represent 
the number and the product of the parameters, respectively. The 640 images are evaluated 
on NVIDIA 2080TL × 640. The test results are shown in Fig. 5 and Table 3.

3.2  Detection of Face feature points

After obtaining the face block diagram using the improved SCRFD-0.5GF + model, the 
feature points of the face block diagram are detected. For this purpose, the lightweight 
model MobileNetV3-56 +  + is used to obtain the face key points. MobileNetV3-56 [29, 30] 
is a lightweight neural network architecture specifically designed for efficient image clas-
sification tasks on mobile devices. An important innovation of MobileNetV3-56 is the use 
of "squeeze and excite" (SE) blocks, which enhance the capture of channel dependencies 
and adaptively recalibrate feature maps to improve model accuracy while maintaining a 
low number of parameters and computational cost. This model can locate key points from 
coarse to fine with only a few parameters.

The SE module is added to the MobileNetv3 block and the activation function is 
replaced, as shown in Fig.  6. Since the activation functions used are different, NL 

Fig. 5  The accuracy of different methods for testing the validation set

Table 3  Comparison between SCRFD-0.5GF + and other network structures [28]

Method Backbone Easy Medium Hard #Params (M) #Flops (G) Infer (ms)

FaceBoxes(UCB17) - 76.17 57.17 24.18 1.01 0.275 2.5
Mobile-0.5GF MobileNet0.25 90.38 87.05 66.68 0.37 0.507 3.7
SCRFD-0.5GF Depth-wise Conv 90.57 88.12 68.51 0.57 0.508 3.6
SCRFD-0.5GF + SCRFD-0.5GF + 91.64 89.47 70.52 0.58 0.601 3.6
SCRFD-1GF Depth-wise Conv 92.38 90.57 74.51 0.64 0.982 4.1
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(nonlinear) is used in the figure. There are two main types of activation functions: ReLU 
and Hardswish (Hard-σ). The final 1 × 1 reduced dimension projection layer uses the linear 
activation function (f (x) = x).

Table 4 shows the architecture of MobileNet V3-56 +  + . The Input column indicates 
the input size, while NBN in the operator indicates the absence of batch normalization. The 
last conv2d 1 × 1 layer corresponds to a fully connected layer. Exp size is the dimension 

Fig. 6  MobileNetV3-56 Improvements

Table 4  Mobile-
NetV3-56 +  + Body Architecture

Input Operator Exp size #out SE NL s

2242*3 conv2d,3*3 - 16 - HS 2
1122*24 bneck,3*3 16 16 √ RE 2
562*24
282*24

bneck,3*3 72 24 - RE 2
bneck,3*3 88 24 - RE 1

282*40 bneck,5*5 96 40 √ HS 1
142*40 bneck,5*5 240 40 √ HS 1
142*40 bneck,5*5 240 40 √ HS 1
142*40 bneck,5*5 120 48 √ HS 1
142*48 bneck,5*5 144 48 √ HS 1
142*96 bneck,5*5 288 96 √ HS 2
72*96 bneck,5*5 576 96 √ HS 1
72*96 bneck,5*5 576 96 √ HS 1
72*96 conv2d,1*1 - 576 √ HS 1
72*576 pool,7*7 - - √ HS 7
12*576 conv2d,1*1 - 1280 - HS 1
12*1280 conv2d,1*1 - k - HS
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used by the first conv2d 1 × 1 layer in the bottleneck for dimension upscaling, and Out is 
the number of output channels through the bottleneck. SE indicates whether the SE module 
should be used, and NL indicates which activation function should be used. HS stands for 
Hardswish, while RE stands for ReLU. Additionally, s is the step size, and when s = 2, the 
length and width become half of the original.

3.3  Mouth feature detection

The mouth feature detection method mainly uses the MobileNetV3-56 +  + model to cap-
ture facial key points, extract mouth feature points, and then identify the shape and motion 
of the lips. The two-step mouth yawn detection method uses the MAR and FOM methods. 
MAR [31] indicates the mouth aspect ratio, which is useful for detecting mouth openings. 
FOM [31] refers to the frame frequency of the open mouth, i.e., the number of times the 
mouth opens in a given time frame. In the first step, the distance between the upper and 
lower lips of the mouth is divided by the distance between the left and right lips to obtain 
the MAR value. Once the MAR value exceeds a certain threshold, it can be preliminar-
ily judged as a yawn. Then, in the second step, the changes in FOM values are counted 
over a period of time; if the FOM value exceeds a certain threshold, it is considered a 
yawn. Using MAR and FOM in harmony can improve the accuracy and robustness of yawn 
detection. Figure 7 illustrates a complete mouth detection process.

3.4  Eye feature detection

Eye feature detection based on calibrated head pose adaptive blink thresholds (adaptive_
EAR_threshold) requires two-stage slow blink detection using EAR (Eye Aspect Ratio) 
and PERCLOS (Percentage of Eye Closure over Time). EAR [32] is typically used to 
detect whether the eye is closed, which is calculated by measuring the distance between 
feature points inside the eye, including the position of the eye corners, iris, and tail. When 

Fig. 7  Mouth feature detection
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the eye is closed, the distance between these feature points decreases, resulting in a lower 
EAR value. PERCLOS [33], often used to evaluate applications such as drowsy driving 
and crew fatigue, determines the ratio of the time the eye is closed to the total time. The 
adaptive_EAR_threshold adjusts the EAR threshold based on head pose calibration. Since 
the shape and position of the eyes can change under different head positions, the EAR 
threshold must adapt accordingly to ensure accurate detection.

Two-stage slow blink detection divides the closed eye state into two stages: slow blink 
and fast blink. Slow blinking usually refers to the state in which the eyes are closed for a 
short time, while fast blinking usually refers to the state in which the eyes are closed for 
a long time. By dividing the closed state of the eyes into these two stages, the state of the 
eyes can be more accurately detected and subsequently processed. As shown in Fig. 8, it 
illustrates a complete eye detection process.

3.5  Head pose feature detection

When SCRFD-0.5GF + is used to frame the face, head position detection is considered 
necessary. Head detection can be divided into two parts, as shown in Fig. 9. First, head 
motion detection is improved by using the EPNP algorithm to calculate the three rotational 
and three translational degrees of freedom of the head posture. Detection of head nodding, 
normal head motion, head rest, and forward or backward tilt is done by calculating the 

Fig. 8  Eye feature detection

Fig. 9  Head pose feature detection



 Multimedia Tools and Applications

first-order difference and threshold comparison of each degree of freedom. Second, head 
forward and backward motion detection uses the pinhole imaging principle to calculate 
the distance between the face and the camera, and then obtains the rate of change of the 
distance by first-order differentiation. It then determines whether the head is moving for-
ward or backward by comparing the rate of change with the threshold. During the detection 
phase of head pose estimation, the EPNP algorithm [34] is used to compute the 3 rotational 
and 3 translational degrees of freedom of the head pose according to known 3D points and 
corresponding 2D points.

During the head motion detection phase, the first-order difference is computed for each 
degree of freedom of the head, which gives the rate of change of each degree of freedom. 
Detection then judges the state of the head motion, including nodding, normal motion, 
head rest, and forward or backward head tilt, based on a comparison between the change 
rate and the threshold. By implementing these enhancements, the accuracy and robustness 
of head pose detection can be improved.

4  Experimental results

The experimental platform mainly consists of the central control unit, camera, horn and 
bus, and is installed in the experimental vehicle, as shown in Fig. 10.

4.1  Data preparation

Facial feature-based detection was performed using a self-curated hybrid dataset contain-
ing four mental state categories: awake, mild fatigue, moderate fatigue and severe fatigue. 
These four states comprehensively reflect the different stages from full wakefulness to 
severe fatigue, enabling the study to explore in depth the impact of changes in fatigue 
level on the performance of the detection algorithm. The data structure is as follows: the 
network acquisition part provides a total of 1671 sample images, of which 432 are in the 
awake state, 437 in mild fatigue, 435 in moderate fatigue and 367 in severe fatigue. These 
images come from different environments and scenarios and show different facial features, 

Fig. 10  Construction & environment of the experimental platform
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which provide strong support for the generalization ability of the model. Meanwhile, the 
video database collection part is derived from a 60 fps video stream with a resolution of 
780 × 580, which ensures the clarity and details of the images. A total of 3104 sample 
images were collected in this section, including 761 in awake state, 774 in the mild fatigue 
state, 737 in the moderate fatigue state, and 832 in the severe fatigue state. Finally, 3602 
sample images from the public dataset NTHU Drowsy Driving Detection Dataset, Closed 
Eyes in the Wild (CEW) data were used, of which 834 were in the awake state, 954 in the 
mild fatigue state, 862 in the moderate fatigue state, and 952 in the severe fatigue state. 
These images are not only sufficient in number but also of high quality, providing a solid 
foundation for model training and validation. In total, there are 2027 sample images for the 
awake, 2165 sample images for mild fatigue, 2034 sample images for moderate fatigue, and 
2151 sample images for severe fatigue, as shown in the example of part of the dataset in 
Fig. 11.

4.2  Experimental analysis

The performance of the algorithm is evaluated by a fivefold cross-validation method and 
compared with traditional models such as Random Forest (RF), Support Vector Machine 
(SVM), Radial Basis Function Neural Network (RBF), Bayesian Classification (BC), Ran-
dom Forest with Multi-feature Fusion (RFWF)and other models. The RF model uses an 
SVM-fused random forest algorithm, the SVM model uses the PSO-SVM algorithm, the 
RBF model uses the SOM algorithm, and the BC model uses a Bayesian model based 
on PCA. In addition, this study considers the runtime performance of the algorithm, i.e., 

awake 

mild 
fatigue 

moderate 
fatigue 

severe 
fatigue 

Fig. 11  Partial data set
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the time consumed by a single identification process. This aspect is essential because the 
fatigue detection system needs to determine the driver’s state in real time.

Table  5 shows the results of the above models on the dataset. A0 indicates the aver-
age detection accuracy of the awake state, A1 indicates the average detection accuracy of 
the mild fatigue state, A2 indicates the average detection accuracy of the moderate fatigue 
state, A3 indicates the average detection accuracy of the severe fatigue state, and Av indi-
cates the average detection accuracy of the four states.

The test results show that the algorithm proposed in this paper achieves a high detection 
accuracy of 90.34%, 93.17%,95.46% and 99.67% for different fatigue states. The average 
accuracy is as high as 94.66%, which is 3.86% higher than that of the traditional RF model, 
5% higher than that of the SVM, RBF and BC models, respectively. In addition, the algo-
rithm runs relatively fast due to its optimization and lightweight design in each detection 
step and multi-feature parallel detection is employed to improve the computational effi-
ciency. The test results are shown in Fig. 12, where the distinction between the four states 
can be clearly seen.

4.3  Validation test

For safety reasons, the fatigue state was manually simulated. The data set consisted of 900 
sober driving samples (including 150 interference samples such as talking or rubbing eyes), 
650 mild fatigue samples, 455 moderate fatigue samples, and 550 severe fatigue samples, 
for a total of 2555 valid samples. Each fatigue sample lasted between 3 and 8 min. Using 
artificial fatigue state simulations, the proposed algorithm was comprehensively evaluated 
for accuracy, as shown in Table 6.

The test results indicate that the algorithm has a high degree of accuracy in detecting 
fatigued driving behavior, with an average detection accuracy of 98.35%. However, the 
tests also revealed that the algorithm had errors and missed detections in all the test videos, 
which could be attributed to the duration and severity of fatigue.

To further verify the detection performance of the algorithm in this paper, it is com-
pared with the current mainstream fatigue driving detection algorithms on the self-curated 
dataset, and the experimental results are shown in Table 7. From the above table, it can be 
seen that under lower computing power and lighter weight, the algorithm in this paper has 
the highest mean average accuracy, and the mAP is 1.6% higher than that of the lighter 
weight Efficient Det-D2, and the number of parameters of the model is lower, and the 

Table 5  Test Results Model Accuracy/% Time 
consump-
tion
/ms

A0 A1 A2 A3 Av

SVM 85.64 87.75 90.43 94.84 89.67 35
RBF 85.62 87.23 91.51 95.56 89.98 97
BC 86.07 88.31 90.11 94.18 89.67 38
RF 86.25 88.40 91.64 96.94 90.80 39
RFWF 87.34 89.18 93.52 99.66 92.42 40
The pro-

posed 
algorithm

90.34 93.17 95.46 99.67 94.66 37
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awake 

mild 
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Fig. 12  Detection status diagram

Table 6  Comprehensive 
evaluation of the proposed 
algorithm

Video Total Frames Correct Error Undetected Accuracy /%

A 240 230 1 9 95.93
B 240 239 1 0 99.58
C 240 238 0 2 99.16
D 240 237 3 0 98.75

Table 7  Validation of the mainstream algorithms on a self-curated dataset

Detection Methods mAP /% GFLOPs Paras / (×  106) Vol/MB

YOLOv5-Tiny 89.9 12.9 8.68 66.7
YOLOv7 95.6 154.6 61.52 123.5
SSD 97 61.2 20.4 90.7
YOLOv8 96.1 160 69.36 161.1
MTCNN [35] 89.36 - - -
Dlib [36] 96.8 - - -
Bi-LSTM [37] 89.2 - - -
EfficientDet-D2 97.3 11 8.1 35.1
YOLOv9s 97.1 15.8 7.02 14.4
The proposed algorithm 98.9 4.5 3.32 7
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computational complexity is smaller. This is because this paper comprehensively consid-
ers the lightweight processing and the depth extraction of face information, and further 
strengthens the focus on category features and the connection of contextual information by 
constructing feature mapping and lightweight feature enhancement module. In summary, 
the algorithm in this paper has strong comprehensive detection performance.

5  Conclusions

This paper presents a comprehensive facial feature-based driver fatigue detection algorithm 
that integrates several innovative techniques to improve detection accuracy and reliability. 
The main features of the proposed algorithm are:

1. The multi-feature fusion approach not only detects typical fatigue indicators such as 
blinking and yawning, but also incorporates new fatigue indicators such as head tilts 
forward and backward, thereby improving the overall comprehensiveness and precision 
of detection.

2. By fusing and analyzing multiple fatigue-related features, the algorithm can more accu-
rately detect a range of driver postures, resulting in improved overall detection accuracy 
and robustness.

3. The algorithm’s ability to map facial movements to KSS scores enables real-time assess-
ment of fatigue levels, improving the system’s performance and accuracy in detecting 
driver drowsiness.

4. The approach of decomposing fatigue videos into long and short KSS sequences, fol-
lowed by early and late machine learning training, allows the algorithm to more effec-
tively utilize the available training data, thereby improving its generalization ability and 
adaptability.

The proposed algorithm can effectively detect driver fatigue and provide timely warning 
signals, which is significant for promoting traffic safety and provides valuable insights for 
the future development of fatigue detection technology.
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