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Abstract
Facial attribute editing has been obtaining remarkable progress as the rapid development
in deep generative models. Existing algorithms can be roughly grouped into two distinct
categories: attribute-guided models and exemplar-guided models. These models achieve
impressive facial attribute editing results, however, there are some limitations. For exam-
ple, images generated by current attribute-guided models are lack of diversity and attribute
styles are not controllable. For exemplar-guided models, low transfer precision and fidelity
of generated images are commonly complained issues. In order to generate high-quality
attribute-controllable facial images, we propose a novel unified translation framework called
HyperplaneGAN which has following advantages: (1) the proposed model can do both
attribute-guided facial editing and exemplar-guided facial editing; (2) by employing latent
unit swapping and linear separation constraint for learning pair-wise linearly separable
disentangled representations, themodel can do flexible and controllable translation; (3) cycle-
consistency loss and residual attribute vectors are used to guide the model to manipulate
specific attributes precisely while other attributes are kept intact. Substantial experimen-
tal results demonstrate that HyperplaneGAN outperforms state-of-the-art models on both
attribute-guided facial editing and exemplar-guided facial editing, in terms of quantitative
evaluation and qualitative evaluation.
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1 Introduction

Attribute editing has attracted many interests in computer vision, not only because of its
important role for improving the performance of various face detection and recognition algo-
rithms [1], but also its promising applications in the media and entertainment industry. Facial
attribute editing aims to edit a target facial image or video bymanipulating specific attributes,
such as facial expression [2], hair color, hair style [3] or age[4], etc, while preserve attribute-
excluding details, such as identity, background, etc [5–7]. Combining prior knowledge, early
works focus on designing exclusive algorithms for specific tasks, for instance, hair generation
[8], expression change [9, 10], beautification/de-beautification [11, 12], aging [13, 14], etc.
However, these algorithms are difficult to be transferred to new editing tasks.

Recently, more attention has been paid tomulti-attribute editing through one singlemodel.
Due to the rapid development of deep generative models, especially Generative Adversarial
Nets (GANs) [15], many deep models have emerged and significantly boosted the perfor-
mance of facial image editing. These methods can be broadly categorized into two groups:
attribute-guided models and exemplar-guided models. Figure 1 illustrates examples of these
two types of facial editing. Attribute-guided models [16–20] focus on semantically trans-
ferring attributes by making the target images possess generic attribute styles perceptually,
which is guided by given attribute labels. In attribute-guided models, generation is guided
by attribute label vectors, enabling attribute transfers at a semantic level. Each element of
an attribute label vector typically takes a binary value of either 1 or 0. A "1" indicates that
the corresponding attribute should be present in the target image, while a "0" indicates its
absence. However, these models face limitations when it comes to controlling specific styles
within attributes. For instance, when adding bangs, thesemodels cannot determine the desired
style of bangs to generate but the generic style generation, resulting in a restricted ability to
produce diverse outcomes.

On the other hand, exemplar-guidedmodels [21–23] concentrate on instance-level attribute
transfer, involving the extraction and preservation of exemplar-dependent attributes, which
are then transferred to the target images. These models rely on the availability of exemplars
for guidance. Without exemplar guidance, exemplar-based methods struggle to manipulate
target images, even when attempting to generate generic attribute styles. Moreover, low
transfer precision and fidelity in the generated images have been commonly reported issues
with these models.

It is natural to askwhetherwe cando the attribute-guided editing and exemplar-guided edit-
ing in a single model. To the best of our knowledge, most of the existing facial editing models
only perform well in one kind of the editing. To address the need for a unified multi-attribute
transfer model for facial image editing, we propose a novel framework named Hyperplane-
GAN. This framework caters to both attribute-guided editing and exemplar-guided editing
without the need for pairwise training samples, making it highly flexible for application.

Specifically, HyperplaneGAN has an encoder-decoder architecture. The encoder is
designed for learning the latent representation, and the decoder is used for reconstruct-
ing images from latent representations. Unlike conventional encoder-decoder models, our
framework assumes that the latent representation can be separated into an attribute-relevant
part and an attribute-irrelevant part, with each attribute-relevant part consisting of multiple
units, each corresponding to a single attribute. Thus, attributes can be modified by directly
manipulating the corresponding units.

In addition, we assume that facial images with and without specific attribute are linearly
separable in the latent space, meaning that the latent unit of images with certain attribute
can be distinguished from that of images without this attribute by a hyperplane. We explain
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Fig. 1 Examples of facial attribute editing generated by our proposed model. (a) Attribute-guided facial
attribute editing examples. No exemplar was involved. The leftmost column is the original images, attributes
expected to be modified are listed in the top row. (b) Exemplar-guided facial attribute editing examples. The
target images are shown in the leftmost column and the exemplars are listed in the top row. The goal of this
group of examples is to demonstrate the results of transferring bang styles from the exemplars to the target
images

why this assumption is reasonable and easily achievable in Sec. 3.5.When moving latent unit
along the normal vector of one separating hyperplane, the corresponding attribute of the target
images will be enhanced or weakened. Furthermore, we can assume that these separating
hyperplanes for the different attributes are pairwise orthogonal so that changing one attribute
along the corresponding normal vector won’t affect other attributes. This setting allows us to
modify attributes continuously without giving exemplars. Based on these assumptions, the
proposed model aims to achieve following goals:

• Given exemplars, the model can exactly transfer specific attribute styles owned by the
exemplars to target images while attribute-excluding details can be well preserved.

• Without exemplar images involved, the model can perceptually generate target images
by modifying specific attributes.
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To generate sharp and accurate target images, two additional techniques are employed
in the model. The first technique is known as reconstruction cycle consistency. By taking
two facial images, exchanging the editing attributes, and utilizing the decoder, we can gen-
erate two images with swapped attributes. Subsequently, these two generated images are
fed into the encoder to learn the latent representations, followed by attribute swapping once
again to produce images that resemble the originals. Since the editing attributes have been
swapped twice, the final generated images should theoretically be identical to the original
ones. The second technique employed in the model involves incorporating residual attribute
vectors during the generation process. Using a complete attribute vector is unnecessary and
may even have adverse effects on the editing. Instead, residual attribute vectors serve as
switches, indicating to the decoder which attributes should be modified and which should be
retained. The experimental results discussed in Sec. 4 validate that the utilization of these
two techniques results in higher-quality and more realistic generations.

Major contributions of the proposed model include:

• We propose a unified facial editing model for both attribute-guided editing and exemplar-
guided editing, which is more powerful in facial editing and will bring much more
convenience for applications.

• The proposed model introduces several novel techniques to generate sharp and accurate
target images, including linearly separation by hyperplanes to disentangle the attributes,
latent unit swapping constraint, reconstruction cycle consistency etc. These techniques
can be easily applied to other editing tasks.

• The results of extensive experiments show that the proposed model is capable of gener-
ating images for complex facial editing.

The paper is structured as follows. Sec. 2 provides an overview of the related works.
In Sec. 3, we present the unified attribute transfer framework. Sec. 4 showcases extensive
experimental results, while Sec. 5 presents the conclusion.

2 Related works

2.1 Generative adversarial networks

GenerativeAdversarialNetworks (GANs) [15] are powerful latent variablemodels that can be
used to learn complex real-world distributions. Especially for images, GANs have emerged as
one of the dominant approaches for generating images of surprising complexity and realism.
Typically GAN consists of a Generator (G) and a Discriminator (D) that compete in a two-
player minimax game, where G tries to synthesize fake samples from random noises based
on a prior distribution, whereas D is trained to distinguish these synthetic images from real
ones. The two players combat each other and can theoretically reach an equilibrium when
the distribution pg of the synthetic images converges to the distribution pdata of real images.
Once reaching the equilibrium, the generator is able to produce indistinguishable fake images.

Due to its ability to produce sharp and realistic images,GANhas beenwidely used in image
generation. However, some researches show that GAN is easily suffered frommodel collapse
which leads to instability in optimization [19, 24]. Many efforts have been made to improve
the stability of GAN.WGAN [25] andWGAN-GP [26] are twoGAN-basedmethods that use
theWasserstein distance rather than the Kullback-Leibler distance to train the models, which
has been proven that the Wasserstein distance can make the GAN training process more
stable. In this work, we chooseWGAN-GP [26] as the backbone of the proposed framework,
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since the Wasserstein-1 distance and the gradient penalty item used in WGAN-GP are more
effective to stabilize the training process.

2.2 Facial attribute editing

Currently, state-of-the-art facial image attribute editing approaches are mainly based on
GAN [16–19, 22, 27, 28]. Those works can be roughly classified into two categories based
on different tasks: semantic-level attribute transfer (aka attribute-guided facial editing) and
instance-level attribute transfer (aka exemplar-guided facial editing).

2.2.1 Semantic-level facial attribute editing

Guiding by the attribute labels, semantic-level attribute transfer directly manipulates facial
attributes of target images. Many recent works have achieved impressive results in this direc-
tion [16–19, 29, 30]. Conditional GAN (cGAN) [31] extends GAN by assuming that both
the generator and the discriminator are conditional on some extra information. Since GAN
does not have the capability to map a real image to its latent representation, IcGAN [29]
first trains the encoders to approximate the inverse mappings from the real image to the
latent representation and the extra information respectively. Then it modifies and combines
the extra information with the latent representation to train the decoder to generate images
like cGAN. Hence, IcGAN allows to synthesize images conditioned on arbitrary conditional
representation.

Fader Networks [16] employs adversarial training to learn attribute-invariant latent rep-
resentation. StarGAN [17] trains a single generator that learns mappings among multiple
domains and introduces an auxiliary classifier that allows a single discriminator to control
multiple domains. AttGAN [18] removes the strict attribute-independent constraint from the
latent representation and applies the attribute-classification constraint to the generated images
to guarantee the attributes are changed correctly. STGAN [19] further improves AttGAN by
incorporating selective transfer units with an encoder-decoder structure for simultaneously
improving the attribute manipulation ability and the image quality. SaGAN [32] applies
global spatial attention on the target images to explicitly specify areas where attribute editing
will be conducted, and other irrelevant regions will be preserved.

In [33],multi-path consistency loss is introduced to evaluate the differences between direct
and indirect translations to regularize the training. UGAN [34] employs a source classifier
in the discriminator to determine whether the translated images still hold the features in
the source domain, and remove other irrelevant features. To get the best advantages of both
Bayesian inference and adversarial training, LSA-VAE [35] incorporates the ideas of cVAE
[36] and cGAN [31] and imposes an adversarial training scheme on the encoder and the
decoder to achieve both facial attribute editing and facial image synthesis. ClsGAN [20]
introduces upper convolution residual networks(Tr-resnet) to selectively extract information
from source images and target labels to improve the quality of target images and the accuracy
of generated attributes.

In these models, attribute labels are directly input to the networks to guide the editing.
Although these models have significantly improved the facial editing results, these methods
suffer some limitations. For instance, these models cannot generate images with specific
attribute styles and synthesized attributes are lacking diverse styles. This ismainly because the
attribute label vectors used in the models are binary and don’t contain sufficient information
about attribute styles.
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2.2.2 Instance-level facial attribute editing

Instance-level attribute editing transfers specific attribute styles from exemplars to target
images, which is a more challenging task. There are less studies that discuss this kind
of methods. GeneGAN [21] transfers a desired attribute from a reference image to target
images by constructing disentangled attribute subspaces from weakly labeled data, but it
can not be extended to multi-attribute editing with a single model. DNA-GAN [37] and
ELEGANT [22] encode attributes into disentangled representations and generate (resid-
ual) images with specified attributes by swapping corresponding parts of latent encodings.
ST-GAN [38] uses a spatial transformer network to transform external objects into the cor-
rect positions before superimposing them onto facial images. GeoGAN [23] addresses the
problem of instance-level facial attribute editing without using paired training samples by
geometry-aware flow which serves as a well-suited representation for modeling the trans-
formation between instance-level facial attributes. In detail, GeoGAN uses facial landmarks
as geometric guidance to automatically learn differentiable flows, despite there exist large
pose gaps. MulGAN [27] and Multi-attribute transfer [28] adopt similar latent representa-
tion swapping strategies like DNA-GAN and ELEGANT and introduce auxiliary classifiers
to improve the quality of synthesized images. StarGANv2 [5] introduces style encoder to
extract style code from the reference image rather than domain labels used in StarGAN [17]
and utilizes it to manipulate source image, but the translations often involve unnecessary
manipulations such as inconsistency in facial identity and background. HiSD [39] improves
StarGANv2 by organizing the labels into a hierarchical tree structure and carefully design
modules to guarantee style disentanglement, however, it is limited by the uninterpretablity
of style codes. VecGAN [40, 41] uses similar hierarchical labels defined by HiSD, and learns
style translation directions in a linear fashion in the latent spacewith orthogonality constraints
and disentanglement losses, but there are still issues of artifacts and entanglement(e.g. hair
color versus mustache).

Recently, StyleGAN [42, 43] has emerged as a highly successful model for generating
realistic and high-quality faces. As a result, many studies have focused on exploring the latent
space for real image editingwhich is referred as StyleGAN inversion [44–47]. However, these
approaches are not trained end-to-end and often face challenges in balancing reconstruction
and editability.Moreover, there is no guarantee that the resulting latent spacewill successfully
disentangle interesting attributes.

Different from above algorithms, we propose a unified model for both semantic-level
attribute transfer and instance-level attribute transfer through disentangling latent repre-
sentation. The proposed model can disentangle and manipulate multiple facial attributes
simultaneously and generates images with high quality.

3 Methodology

We first introduce some notations. LetX be a multi-attribute facial image set, and each image
x ∈ X is associated with an n-dimensional binary attribute label vector y = [y1, . . . , yn]T
where yi ∈ {0, 1}. If yi is positive, it means that the image x has the corresponding attribute,
otherwise x doesn’t have the attribute. We denote images having an attribute as the positive
set of the attribute, and images not having the attribute as the negative set. Denote Y as the
label vector set.
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3.1 Motivation

Although there are many models that have been proposed for facial attribute editing, most of
them are designed for either semantic-guided attribute editing or exemplar-guided editing.
Meanwhile, transferring multiple attributes may easily affect other attributes or even distort
the appearances. Motivated by ELEGANT [22] and InterfaceGAN [6], we propose a unified
consistent framework to generate high-quality images for both semantic-level attribute editing
and instance-level attribute editing. In order to preserve appearances, the latent representa-
tion of a facial image is divided into two parts: attribute-relevant part and attribute-irrelevant
part. Manipulation of facial images is only imposed on the attribute-relevant part so that the
attribute-irrelevant part (e.g, identity) won’t be changed during the manipulating. In order
to do semantic-level attribute transfer, the attribute-relevant latent feature vector should be
disentangled so that if we want to change some facial attributes, we only need to manipulate
the corresponding components. Furthermore, to transfer an attribute from the negative set to
the positive set precisely, we assume that there exits a hyperplane separating the negative set
from the positive set. When moving the attribute unit from the negative set to the positive set
along the normal vector of the hyperplane, the facial image gradually owns the attribute. Fur-
thermore, if the attribute hyperplanes are orthogonal, i.e., the normal vectors are orthogonal,
then attribute manipulations along the normal vectors are independent.

Figure 2 shows the architecture of our proposedmodel, which consists of one encoderGenc,
one decoder Gdec and two discriminatorsDadv andDcls . As can be seen, all themodules share
the same encoder and the same decoder, which can greatly reduce the number of parameters.
Dadv acts like the discriminator for adversarial training andDcls is for attribute classification.
For convenience, we use G to represent {Genc,Gdec}. Details of designing principles and loss
functions are introduced below.

Fig. 2 Training phase of the proposed model, which consists of four losses for training: the reconstruction
loss, the adversarial loss, the attribute classification loss and the cycle-consistency loss
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3.2 Disentangled representation

Suppose that (A, B) is a pair of images for training the i-th attribute, where A is from the
positive set and B is from the negative set. The attribute label vectors of A and B should
be yA = [yA1 , · · · , 1i , · · · , yAn ]T and yB = [yB1 , · · · , 0i , · · · , yBn ]T respectively. Note that
A and B are not needed to be paired, that is, A and B are not required to belong to the
same person. Let ZA and ZB be the latent representations of A and B mapped by Genc. As
described in Sec. 3.1, ZA and ZB are split into attribute-relevant parts and attribute-irrelevant
parts, which are denoted as

ZA = Genc(A) = [a1, · · · , ai , · · · , an, za]T

ZB = Genc(B) = [b1, · · · ,bi , · · · ,bn, zb]T
(1)

where [a1, · · · , ai , · · · , an] and [b1, · · · ,bi , · · · ,bn] are attribute-relevant parts of A and
B, and za and zb are the attribute-irrelevant parts. ai and bi are di -dimensional representing
the i-th attribute. Without loss of generality, we assume that d1 = d2 = · · · = dn = d , that
is, each attribute embedding can be represented by a d-dimensional vector. The attribute-
irrelevant parts za and zb are designed to preserve necessary information for the recovery
of facial details, such as identity, background etc., which should keep unchanged during
attribute manipulations.

3.3 Swapping corresponding units

Although we have allocated a specific unit for the corresponding attribute, we need to train
the model to map the attribute into the specific unit. The training process is implemented by
swapping corresponding units introduced in the following. As shown in Fig. 2, suppose we
have got ZA and ZB for the input images A and B, then we swap the units ai and bi for
the i-th attribute and obtain new latent representations Z(A→B)i = [a1, · · · ,bi , · · · , an, za]
and Z(B→A)i = [b1, · · · , ai , · · · ,bn, zb] to generate intermediate images C and D. Then

the attribute label vectors for C and D should be yC = [
yA1 , · · · , 0i , · · · , yAn

]T
and yD =

[
yB1 , · · · , 1i , · · · , yBn

]T
. That is, the i-th attribute of C will be changed from ai to bi but

other attributes of A will be preserved. Similarly, the i-th attribute of D will be changed from
bi to ai but other attributes of B will be preserved.

We use a scheme like autoencoder to train the encoderGenc and the decoderGdec. However,
for each attribute, we have six paths for the encoder-decoder process: A → A

′
, B → B

′
,

A
swapi (A,B)−−−−−−−→ C , B

swapi (B,A)−−−−−−−→ D, C
swapi (C,D)−−−−−−−→ A

′′
, D

swapi (D,C)−−−−−−−→ B
′′
, where, for exam-

ple, swapi (A, B) is defined as the swapping operator that returns Z(A→B)i . Combining with
other techniques described in the following sections, the model can be trained to faithfully
map attributes into corresponding units, which we will testify in experiments.

3.4 Residual attribute

In order to exactly tell the decoder whether an attribute should be changed or preserved in
the generation, we introduce auxiliary vectors called residual attribute vectors of the attribute
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label vectors [19, 48] into the generation to guide the model. Following the above examples,

the residual attribute vector for A
swapi (A,B)−−−−−−−→ C is computed as

yr(A→C)i
= yC − yA = (0, ...,−1i , ..., 0) (2)

and the residual attribute vector for B
swapi (B,A)−−−−−−−→ D is computed as

yr(B→D)i
= yD − yB = (0, ..., 1i , ..., 0). (3)

If a component is 0, it means that the corresponding attribute should be preserved. Oth-
erwise, the attribute will be changed. Then, the decoding process can be summarized as

C = Gdec
(
ZA→B , yr(A→C)i

)
and D = Gdec

(
ZB→A, yr(B→D)i

)
. Figure 2 demonstrates this

swapping and generation process for swapping i-th pair of units. We perform this swap-
ping process with respect to each single attribute iteratively until all attributes concerned are
involved, so as to implement multi-attribute translation.

Once finishing training, given an exemplar, we can do facial attribute editing through this
swapping process. Figure 3(a) demonstrates the swapping process of "Eyeglasses" attribute
from the exemplar to the target image.

3.5 Defining hyperplanes

In Sec. 3.3, we have introduced an attribute editing technique by swapping semantic units.
This approach can be used for exemplar-guided attribute editing. In order to capacitate the
model to do the attribute-guided editing, we assume that latent representations of the positive
set and the negative set of each attribute are linear separable. That is, there exits a hyperplane
separating the latent codes of the positive samples (w.r.t. the corresponding attribute) from
those of the negative samples. Therefore, when moving the attribute unit across the boundary
of the hyperplane along its normal vector, the attribute will turn into the opposite.

We notice that in InterfaceGAN [6] the authors also introduced the hyperplane concept in
interpreting the disentangled face representation learned by GANs. Our hyperplane used in
the proposed model differs from theirs in the following three aspects

• The hyperplane in InterfaceGANwas learned from the latent codes by linear SVMs,while
the hyperplane can be set arbitrarily in ourmodel and latent representations can be learned
automatically to fit the hyperplane assumption to guarantee attribute disentanglement.

• For multiple attribute editing, InterfaceGAN assumes that the latent codes are sampled
from the standard normal distribution, and different entries of the latent semantic scores
are disentangled if and only if the normal vectors of the learned hyperplanes are orthogo-
nal. However, their algorithm cannot guarantee the orthogonality, that is, some semantics
may entangle with others in InterfaceGAN. In contrast, since the hyperplanes are man-
ually set in our model, we can directly set them orthogonal.

• Since InterfaceGAN is defined on other state-of-the-art GAN models, it can be thought
as a two-stage GAN model. In contrast, the proposed hyperplane-based model is an
end-to-end deep learning model.

In details, the definition of hyperplane is given as

Definition 1 Given n ∈ R
d with n �= 0, the set

{
m ∈ R

d : nTm = 0
}
defines a hyperplane

in R
d , and n is called the normal vector.
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Fig. 3 Testing phase of the proposed model. Our model can complete two categories of facial attribute editing:
(a) demonstrates transferring a specific attribute (here, eyeglasses) from the exemplar to the target image,
which is by swapping the corresponding pair of units in the latent representations to achieve exact attribute
style transfer. Note that the swapping process is the same as in Fig. 2 (b) demonstrates facial attribute editing
by manipulating latent units along the direction of the normal vectors in the attribute-relevant latent space.
In this kind of tasks, it does not require exemplars to guide the model to generate novel images with specific
attributes (here, morphing of bangs removal)

123



Multimedia Tools and Applications

Given a hyperplane Hi with a normal vector ni associated with the i-th attribute, without
loss of generality, we assume that the positive set of the attribute lies in the half space with
nTi m > 0 (m ∈ R

d ), and the negative set locates in the other half space with nTi m < 0.
Then, the inner product betweenm and ni can be used as a metric to indicate which category
the i-th attribute of a sample belongs to. Note that the inner product is not a distance since it
will be negative.

The following proposition states that when considering only one CONV-BN-LeakyReLU
module (see Sec. 4.1 for the configuration), the latent representations of random samples
with attribute A from a normal distribute are very likely to locate close a given hyperplane,
which generalizes the result in [6].

Proposition 1 SupposeXA ∈ R
p1 is amultivariate random vector to attribute A, and suppose

XA � N (μA, �A). Let y be the ground truth label of sample x and ŷ be its predicted label
given by a classifier. Denote the output of a CONV-BN-LeakyReLU module as zA ∈ R

p2 ,
where the LeakyReLU is with hyperparameter α, 0 < α < 1. Then, given a predefined

hyperplane H with normal vector n, we have Pr(|nT zA| ≤ 2a
√

p2
p2−2 ) ≥ (1− 3e−cp2)(1−

2
a e

−a2/2) for any a ≥ 1 and p2 ≥ 4. Here c is a is fixed constant positive number.

Proof 1. Suppose the convolutional operator of CONV W ∈ R
p2×p1 is a convolutional

matrix, and let X̃A = WXA, μ̃A = WμA, �̃A = W�AWT ), then it is easy to prove that
X̃A � N (μ̃A, �̃A).

2. Suppose the output of BN is X̂ A, then the distribution of X̂ A converges to standard normal
distribution, i.e., X̂ A � N (0, Ip2).

3. Given an output of BN x̂A, define a diagonal matrix Ip2 as

(Ip2)i i =
{
1 if (x̂A)i ≥ 0
α if (x̂A)i < 0

.

Then the output of LeakyReLU at x̂A can bewritten as zA = LeakyReLU (x̂A) = Ip2 x̂A.
4. Without loss of generality, we fix n to be [1, 0, · · · , 0]T . Then nT zA = (zA)1. Hence, if

(x̂A)1 ≤ 2a
√

p2
p2−2 , (zA)1 ≤ 2a

√
p2

p2−2 , which means

Pr
(
|nT zA| ≤ 2a

√
p2

p2−2

)
≥
Pr

(
|nT x̂A| ≤ 2a

√
p2

p2−2

)

According to Property 2 in [6], since Pr(|nT x̂A| ≤ 2a
√

p2
p2−2 ) ≥ (1 − 3e−cp2)(1 −

2
a e

−a2/2), we have Pr(|nT zA| ≤ 2a
√

p2
p2−2 ) ≥ (1 − 3e−cp2)(1 − 2

a e
−a2/2), which ends

the proof. �	
When minimizing the linear separation loss defined in Sec. 3.7.4, the imposing constraint

drives the encoder to learn latent representations that can be separated by the hyperplane. The
evaluation results of InterFaceGAN [6] on the assumption that any binary attribute can be
separated by a hyperplane in the latent space also evidence such latent representations can be
learnt. In particular, when n orthogonal normal vectors are preset, the encoder can be trained
to learn attribute-relevant latent representations which can be separated by the corresponding
hyperplanes. In Sec. 4, experimental results also confirm that this assumption is reasonable
and the latent codes of positive samples and negative samples are distinguishable. Figure 4
demonstrates the learning process.
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Fig. 4 Without introducing a hyperplane, pairs of samples from the positive set and the negative set of the i-th
attribute may be inseparable in the latent space (Left). Given a hyperplane (or a normal vector), the encoder
can be trained to learn the latent representations of the positive samples and the negative samples that can be
separated by the hyperplane (Right)

After fixing the normal vectors and training the proposed model, modifying an attribute
without using exemplars is simple. We just need to move the semantic unit along the
corresponding normal vector, either forward or backward, until it crosses the separating
hyperplane. At this point, the attribute category of the image will be changed accordingly.
Thanks to the orthogonality between normal vectors, changing some attributes along their
respective vectors does not affect other attributes. This disentanglement of latent representa-
tions provides considerable convenience for editing multiple attributes simultaneously.

3.6 Adversarial training

To improve the effectiveness of facial editing, adversarial learning between Genc, Gdec and
Dadv is introduced tomake the generated images lookvisually realistic. The attribute classifier
Dcls is used to ensure that the swapped units do change their corresponding attributes properly.

3.7 Loss functions

In order to achieve the desired goals, we choose five loss functions to form the objective
function for training the modules of the proposed model. The following loss functions are
defined based on the example in Fig. 2 manipulating the i-th attribute.

3.7.1 Adversarial loss

Since the target images in the generation paths A
swapi (A,B)−−−−−−−→ C and B

swapi (B,A)−−−−−−−→ D in
Fig. 2 usually do not exist, we employ the adversarial loss [15] for restricting the generated
images having the i-th attribute that cannot be distinguished from the true ones. In this work,
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we leverage WGAN [25] with gradient penalty [26] as the adversarial loss for training Genc,
Gdec and Dadv:

LD
adv = − E[Dadv(A)] − E[Dadv(B)] + E [Dadv (C)]

+ E [Dadv (D)] + λgp

2

{
E p̂

[(∥∥∇ p̂Dadv( p̂)
∥
∥
2 − 1

)2]

+Eq̂

[(∥∥∇q̂Dadv(q̂)
∥
∥
2 − 1

)2]}
(4)

LG
adv = −E [Dadv (C)] − E [Dadv (D)] (5)

where p̂ and q̂ are uniformly sampled along straight lines between pairs of (A,C) and (B, D),
respectively. That is, p̂ = εA+ (1−ε)C, ε ∼ U(0, 1) and q̂ = εB+ (1−ε)D, ε ∼ U(0, 1).
When Genc and Gdec are fixed, we can optimize Dadv by minimizing LD

adv . Alternatively,
when Dadv is fixed, we can optimize Genc and Gdec by minimizing LG

adv .

3.7.2 Attribute classification loss

Remember that the attribute label vectors of A and B are yA = [yA1 , · · · , 1i , · · · , yAn ]T and
yB = [yB1 , · · · , 0i , · · · , yBn ]T . After swapping the i-th attribute, the attribute label vectors of
C and D should yC = [yA1 , · · · , 0i , · · · , yAn ]T and yD = [yB1 , · · · , 1i , · · · , yBn ]T . In order to
train the generator to generate images with proper latent attribute-relevant units as indicating
in yC and yD , the classifierDcls is introduced to predict whether a generated image is owning
the i-th attribute. We denote the posterior probability as Dcls(· | x), where x is a generated
image. Based on Dcls , the attribute classification loss is defined as the cross-entropy loss

LG
cls = E

[
− logDcls(ŷC | C) − logDcls(ŷD | D)

]
, (6)

where ŷ is a predicted attribute label vector. In addition, we can also define cross-entropy
loss for the original images A and B

LD
cls = E

[
− logDcls(ŷA | A) − logDcls(ŷB | B)

]
(7)

3.7.3 Reconstruction loss

To train the encoder-decoder architecture and learn good latent representation, we employ
the reconstruction loss. For the examples in Fig. 2:A → A

′
and B → B

′
, the reconstruc-

tions are A
′ = Gdec(Genc(A), yrA) and B

′ = Gdec(Genc(B), yrB), where yrA = yA
′ − yA =

[0, 0, · · · , 0]T and yrB = yB
′ − yB = [0, 0, · · · , 0]T . Hence, the reconstruction loss can be

defined as
LG
rec =

∥∥∥A − A
′∥∥∥

1
+

∥∥∥B − B
′∥∥∥

1
. (8)

Here we used �1 norm rather than �2 norm to measure the reconstruction error, because L1

norm can drive the model to generate more realistic images with sharp features.

3.7.4 Linear separation loss

As discussed in Sec. 3.5, we hope that the latent representations of the positive set and
the negative set of one attribute can be separated by a hyperplane. Rather than to learn the
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hyperplanes, we preset the hyperplanes (i.e., the normal vectors of the hyperplanes) and train
the encoder and the decoder to learn latent representations satisfying the linear separation
constraints. Mathematically, given n orthogonal unit vectors [n1,n2, · · · ,nn] as the normal
vectors, suppose A is from the positive set of the i-th attribute and B is from the negative
set, ai and bi are the corresponding i-th latent semantic units of A and B. Without loss
of generality, assume that ai is labeled as “+1", and bi is labeled as “-1". The the linear
separation loss is defined as the hinge loss:

LG
ls = [

max
(
0, (1 − (+1)(nTi ai + bi ))

)

+max
(
0, (1 − (−1)(nTi bi + bi ))

)] (9)

where bi is a biased term.

3.7.5 Cycle-consistency loss

For the examples in Fig. 2, if we swap the i-th attribute of A and B twice, that is, for the paths

A
swapi (A,B)−−−−−−−→ C

swapi (C,D)−−−−−−−→ A
′′
and B

swapi (B,A)−−−−−−−→ D
swapi (D,C)−−−−−−−→ B

′′
, it is reasonable to

require that A and A
′′
, B and B

′′
should be identical. We employ a cycle consistency loss [17,

49, 50] to train the generator so that good latent representations can be learned and exactly
disentangled by the encoder to fit the preset sematic units, and useful information can be
preserved in the representations so that facial images can be recovered from the latent codes
by the decoder:

LG
cycle =

∥∥∥A − A
′′∥∥∥

1
+

∥∥∥B − B
′′∥∥∥

1
(10)

3.7.6 Full objective

Finally, we combine above losses to form the objective function of the proposed model to
optimize the generators and discriminators alternatively

LG = λ1L
G
rec + λ2L

G
cycle + λ3L

G
cls + λ4L

G
ls + LG

adv. (11)

LD = λ5L
D
cls + LD

adv (12)

where λ1, · · · , λ5 are tuning hyperparameters.

4 Experiments

Extensive experiments were conducted to evaluate the performance of the proposed model.
First, we describe the model configurations in Section 4.1. Then, we introduce the bench-
mark dataset and the baselines for comparison in Sections 4.2 and 4.3, respectively. The
experimental results on exemplar-guided editing and attribute-guided editing are presented
in Sections 4.4 and 4.5. Additionally, quantitative comparison results are provided in Section
4.6. Finally, an ablation study is performed in Section 4.7.

4.1 Model configurations

The encoder Genc is equipped with four down-sampling layers of Conv-Norm-LeakyReLU
block, where “Conv" represents the convolution operation, “Norm" means the batch nor-
malization [51], “LeakyReLU" is the LeakyReLU activation function. The decoder Gdec has
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four layers ofDeconv-Norm-LeakyReLUblock, which recovers the image back to its original
size and “Deconv" represents the transposed convolution operation. For the discriminators,
the binary classifierDadv uses four down-sampling layers of Conv-Norm-LeakyReLU block
followed by two layers of MLP-LeakyReLU, where MLP means fully connected layers, and
the attribute classifierDcls shares all convolutional layers withDadv , but owns two new layers
of MLP-LeakyReLU block.

The model was trained with Adam optimizer [52], setting β1 = 0.5, β2 = 0.999, with
batch size of 16 and a fixed learning rate of 0.0002 during 20 epochs. The coefficients in
Eq. (11), Eq. (12) and Eq. (4) are set as: λ1 = 100, λ2 = 1, λ3 = 10, λ4 = 1, λ5 = 1 and
λgp = 10. All experiments were performed in a Pytorch platform with a single NVIDIA
GTX TITAN X Pascal Graphic Card.

4.2 Benchmark dataset

All the algorithms were evaluated on CelebFaces Attributes Dataset (CelebA) [53], which
contains 202599 face images of size 218 × 178 from 10177 celebrities. Each image was
annotated with forty binary labels describing facial attributes like hair color, gender and age.
In this work, we considered manipulating eight attributes, including “Bangs", “Eyeglasses",
“Mouth SlightlyOpen", “Smiling", “Mustache", “BlondHair", “Pale Skin" and “Young", due
to their certain representativeness in appearance. In the experiments, data were performed
preprocessing as follows: all the images were cropped in the central 170 × 170 region and
scaled down to 128 × 128, and the intensity value of each pixel was normalized to [−1, 1].

4.3 Baselines

We compared the proposed model with several state-of-the-art approaches: ELEGANT [22],
StarGAN [17], AttGAN [18] and STGAN [19], where ELEGANT [22] is a representative
instance-level attribute transfer model that is designed to transfer attributes along with cor-
responding styles between exemplars and target images, StarGAN [17], AttGAN [18] and
STGAN [19] are semantic-level attribute transfer models that manipulate different attributes
of target images by using different target attribute labels to guide the manipulation. For fair
comparison, all baselines are retrained on CelebA dataset using the public released codes by
the authors with default hyperparameters. Table 1 summarizes the capability of these models
in handling multi-attribute editing, attribute-guided editing and exemplar-guided editing.

4.4 Exemplar-guided facial editing

In this set of experiments, we compared the performance of the models on exemplar-guided
attribute editing tasks. Given an exemplar, the task is to transfer specific attributes of the

Table 1 Capability comparison with baselines and the proposed model in facial attribute editing

StarGAN AttGAN STGAN ELEGANT Our model

Multi-attribute � � � � �
Attribute-guided � � � �
Exemplar-guided � �
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exemplar to a target image. The transfer process of the proposed model is demonstrated in
Fig. 3(a). Since Stargan [17], Attgan [18] and STGAN [19] are not designed for exemplar-
guided editing, specific attribute labels are required for these three baselines.

The comparison results of transferring bangs and eyeglasses are shown in Fig. 5(a) and
(b). For each task, three target images and four exemplars with different bang styles or
eyeglasses were chosen, which are shown in the top row and the leftmost column in each
figure, respectively. The generated results of the proposed model are shown in Column 2-5,
the results generated by ELEGANT are shown in Column 6-9, and those given by Stargan,
Attgan and STGAN are shown in the last three columns.

As can be seen, for different bang styles and eyeglasses, the proposed model could learn
the representations of these attributes and transfer them to the target images precisely while
all other attributes in the target images were kept intact. For example, skin color, back-
ground, face identity and illumination of the generated images were perfectly preserved
with high visual quality. In contrast, although ELEGANT could generate images owning the
exemplars’ specific attributes, it failed to accurately transfer the specific attribute styles to the
target images. For instance, ELEGANT transferred different types of eyeglasses in the exem-
plars to black-rimmed glasses in the target images (see Column 6-9 of Fig. 5(b)), and didn’t
achieve desirable attribute styles for bangs neither (see Column 6-9 of Fig. 5(a)). In addition,

Fig. 5 Results of single-attribute facial editing. The results of our model and ELEGANT [22] were generated
by the guidance of exemplars and those of StarGAN [17], AttGAN [18] and STGAN [19] were generated by
the guidance of given attribute label vectors. (a) and (b) demonstrate editing results on attributes of “bangs"
and “eyeglasses". In each figure, the leftmost column is target images and the topmost row are exemplars with
specific attribute styles which were expected to be transferred to the target images by HyperplaneGAN (our
model) and ELEGANT. Zoom in for better resolution.
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Fig. 6 Comparison exemplar-guided results of the proposed model and ELEGANT [22]. The leftmost column
are target images and the topmost row of images are exemplars with specific attribute styles which are expected
to be transferred to the target images.

ELEGANT also suffered from distortion in facial details. More comparison results of the
proposed model and ELEGANT are displayed in Fig. 6. Notice that the exemplars’ attribute
styles are black glasses, left or right bangs, open-mouth or close-mouth smiling. Hyperplane-
GAN could precisely transfer the exemplars’ specific attributes and their attribute styles to the
target images, while ELEGANT failed to transfer these attribute details to the target images
again. For example, ELEGANT generated images with close-mouth smiling no matter the
exemplars were open-mouth smiling or close-mouth smiling.

As discussed above, Stargan, Attgan and STGAN cannot learn the attribute label vectors
from the exemplars automatically. Therefore, we need to manually provide the attribute label
vectors for them. From Fig. 5(a) and (b), we can see that all these three models succeeded in
generating images with specific attributes and preserving the identities, but the styles of the
attributes are unpredictable. Besides, there still exist other shortcomings in the results, for
example, artifacts in StarGAN, variation of hair color in StarGAN and AttGAN, variations
of skin color and image brightness in STGAN. The reason for the variation in StarGAN and
AttGAN is that the attributes may be enhanced or weakened by the generators to ensure
that images generated under the guidance of attribute labels can be correctly classified by
the discriminators. For instance, in the first example of Fig. 5(a), Zuckerberg’s image was
labeled as brown hair, when adding bangs, the hair color of the image generated by StarGAN
was dark brown hair even though the hair color of the original image was light brown, while
in the second example of Fig. 5(a), the hair color of the image generated by AttGAN was
lighter than its original.

For multiple facial attributes editing by exemplars, we demonstrate the results in Fig. 7,
where images in the leftmost column are exemplars and the descriptions on the left of the
exemplars are the attributes which were expected to transfer to target images in the topmost
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Fig. 7 Results of multiple-attribute facial editing. The results of the proposed model and ELEGANT [22]
were generated by the guidance of exemplars and those of StarGAN [17], AttGAN [18] and STGAN [19]
were generated by the guidance of attribute label vectors. The leftmost column are the exemplar images and
their attributes which were expected to guide multiple-attribute editing. The topmost row are target images.
Zoom in for better resolution.

row. Similar to single attribute editing, distortion of facial details became more severe for
ELEGANT, and it failed to transfer some attribute styles such as eyeglasses, mustache,
smiling, to target images. As for the other three models, some generated images were not
manipulated as expected, for instance, AttGAN and STGAN failed to edit age attribute. The
shortcomings of these models mentioned above still existed. In contrast, our method always
performed well for multi-attribute editing and all the attributes could be transferred precisely.

4.5 Attribute-guided facial editing

One of the very important features of the proposed model is that it is capable of manipulating
images by given specific attributes without exemplars involved, which benefits from the
hyperplaneswe have defined in the attribute-relevant latent space.Consequently, the proposed
model can also be used for semantic-level attribute editing asStarGAN,AttGANandSTGAN.
Given an input image, the proposed model manipulates the latent codes corresponding to the
attributes we concern. In detail, when considering editing the i-th attribute, we change the
i-th attribute-relevant unit ai along the direction of the normal vector ni of the corresponding
hyperplane, that is, ai ← ai +αni , whereα is the step size. Then the new latent representation
and the residual attribute vector are concatenated as the input for the generator. Once the sign
of the distance from ai to the i-th hyperplane is changed, which means ai passes through the
hyperplane, it is expected that the i-th attribute of the generated images should be changed
from the negative set to the positive set or vice versa. SinceELEGANTcannot do the attribute-
guided facial editing, we only compared the proposed model with StarGAN, AttGAN and
STGAN for this task. The comparison results are presented in Fig. 8
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Fig. 8 Comparison results of semantic-level facial attribute editing. The proposed model were compared
with other three attribute-guided models: StarGAN [17], AttGAN [18] and STGAN [19]. Zoom in for better
resolution.

As can be seen, although the baselines were able to do semantic-level attribute editing,
there still existed some limitations. For instance, there were artifacts in the images generated
by StarGAN, resulting in the loss of facial details, which led to the failure of preserving
identity. As for AttGAN, there was a halo above the head while editing hair color and the
editing of age was also unsatisfactory (see the first example in Fig. 8). STGAN was able to
preserve personal identity well, but it still could not successful modify age attribute (see the
first example in Fig. 8). In contrast, the proposed model could modify the attributes more
precisely and realistically, and both the identity and the facial details were well preserved.

Figure 9 demonstrates the morphing effect of the proposed model. As we can see, the
attribute morphing of the generated images are smooth and natural. When α > 0 and the new
ai located on the positive side of the hyperplane, the i-th attribute of the generated images
became obvious; when α < 0 and ai located on the negative side of the hyperplane, the i-th
attribute faded. This generation procedure is illustrated in Fig. 3(b).
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Fig. 9 Attribute morphing results of hyperplane-based facial attribute editing by the proposed model. For each
group, the leftmost texts describe how the attributes were changing from the original images as the step size
α was increasing or decreasing.

4.6 Quantitative analysis

As it is well known, the quality of transferred images is closely related to the quality of
image reconstruction. For instance, Fig. 10 showcases the reconstructed images of three
facial images produced by the proposed model and the baselines. To facilitate comparison,
the original images are displayed in the top row in each group.

Upon closer examination, it can be observed that the reconstructions generated by Star-
GAN and AttGAN were less convincing compared to other algorithms. Attributes of the
manipulated images generated by guidance of attribute labels are excessively emphasized,
for instance, brown hair for input A,mustache for input B and blond hair for input C. This par-
tially explains why StarGAN andAttGAN yielded less satisfactory results. STGAN achieved
better reconstructions than StarGAN and AttGAN, which sometimes exhibited increased
sharpness but enhanced illumination. In contrast, our proposed model and ELEGANT are
able to preserve facial details throughout the reconstruction process.

To evaluate the image quality quantitatively, three metrics were used in this work which
were listed in Table 2, including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM) [54] and Learned Perceptual Image Patch Similarity (LPIPS) [55].
For PSNR and SSIM, the higher value means more similar between source images and their
reconstructed images. For LPIPS, which evaluates similarity on deep features of images by
feeding the reconstructions to pre-trained networks, such as VGG [56] or AlexNet [57], the
lower value means the more similar. In addition, in order to demonstrate the complexity
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Fig. 10 Results of image reconstruction by the proposed model, ELEGANT [22], StarGAN [17], AttGAN
[18] and STGAN [19]. Zoom in for better resolution.

Table 2 Quantitative comparison
results for the quality of the
reconstructions given by the
proposed model and the
baselines, in terms of PSNR,
SSIM, and LPIPS. The best
results are in bold font

Model PSNR SSIM LPIPS #params(G)

StarGAN 21.66 0.78 0.119 8.5M

AttGAN 30.81 0.91 0.031 43.4M

STGAN 21.72 0.66 0.061 225.1M

ELEGANT 27.75 0.88 0.041 10.2M

Our Model 37.87 0.96 0.009 3.1M

Numbers of the parameters of the generators are also listed in the right-
most column
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Fig. 11 Ablation study on the function of the cycle-consistency loss and the residual attribute. Two groups of
samples were generated by HyperplaneGAN and its two variants, transferring bangs from the exemplars to
the target images.

of model architecture, numbers of parameters of the generators are also listed in the table.
Benefited from the constraints on reconstruction, cycle-consistency and residual attribute,
the proposed model achieved the best performance in term of all the metrics. Note that the
proposed model also has the smallest number of parameters for the generator.

4.7 Ablation study

We studied the function of the cycle-consistency loss and the residual attribute during the gen-
eration. We introduced two variants of HyperplaneGAN: one without the cycle-consistency
loss and one without the residual attribute, in comparison with the original configuration.
The comparison results of these models are demonstrated in Fig. 11.

Without the cycle-consistency loss, although the variant could generate images with spe-
cific attributes according to the exemplars, it also brought some unwanted changes and detail
loss. For example, we wanted to change the bangs of examples in Fig. 11, but the variant also
changed the hair styles. The possible reason is that without the cycle-consistency constraint,
the generator tends to ignore details of original image so that the generated images are not
consistent with the original. On the other hand, without introducing the residual attribute vec-
tors, although the variant could achieve attribute transferring from the exemplars, but it tended
to generate images that pander to the attribute classifier, resulting in the intensification of
smiling attribute. This phenomenon of attribute intensification also happens in StarGAN and
AttGAN. In comparison, the original configuration of the proposed model could overcome
these problems and generated more realistic and consistent results in the experiments.

5 Conclusion

To integrate the concepts of attribute-guided facial attribute editing and exemplar-guided
facial attribute editing, learning a disentangled representation and understanding its inherent
characteristics in the latent space is a key factor for the success of an editing model. With
this insight, we proposed an encoder-decoder model based on the adversarial learning, with
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assumption that facial images attributes are linearly separable in the latent space. We also
designed novelmodules and a training pipeline to form a unified and consistent transfermodel
for both types of facial editing. Extensive experiments demonstrated that proposed model
is competent to accurately transfer specific attributes to the target images for both kinds of
editing and generated more convincing results. However, our model was trained only on the
low-resolution version of the CelebA dataset, and the performance of the model on other
datasets, including non-face datasets, has not been verified. For future work, in addition to
low-resolution static images, we aim to strengthen the ability of the proposed method in
dealing with high-resolution images. We can also consider how to add temporal constraints
for video facial editing.
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