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Abstract
Recently channel attention mechanism playing a major role in improving the performance
of deep convolution neural networks. Even though there is an improvement in the perfor-
mance, but there is an increase in complexity of the model network. It is difficult for CNN
alone to correctly model the long-range dependencies of speech signals. The local receptive
field of the convolution limits the model’s ability to capture long-range dependencies across
input sequences. Moreover, LSTMs are easily prone to the problem of overfitting, and it also
requires a long time to train. To overcome the above drawbacks in the proposedmodel, dilated
dense blocks and GRUs are introduced. Based on multi-task learning, we propose a gated
convolutional recurrent network with efficient channel attention (GCRN-ECA) for complex
spectral mapping, which amounts to a causal system for monaural speech enhancement. Each
layer in encoder and decoder consists of dense block. Complex spectral mapping seeks to
predict the real and imaginary spectrograms of clear speech based on those of noisy speech,
thereby enhancing both the magnitude and phase responses of the speech. The advantage of
dilated convolutions in dense block is the receptive field increases with increasing dilation
rates, which are used to capture long-range speech contexts. And the dense connectivity pro-
vides a feature map with more precise target information by passing through multiple layers.
To represent the correlation between neighboring noisy speech frames, a two Layer GRU
is added in the bottleneck, which has the advantage of increased training speed because of
its simpler architecture. GRU captures the long-range dependencies across input sequences.
The advantage of GRU is that it is easier to modify and doesn’t require memory units,
which means it can train faster than LSTM. The ECA module can implement cross-channel
interaction without dimensionality reduction. An appropriate cross-channel interaction can
preserve performance while significantly decreasing model complexity. Our results reveal
that the proposed GCRN-ECA outperforms existing baselines in terms of quality and intel-
ligibility. The proposed model increases the average PESQ and STOI scores by 35.9% and
18.1%, respectively, for the Common voice dataset, and by 35.2% and 4%, respectively, for
the VCTK dataset compared to noisy speech.
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1 Introduction

In everyday listening environments, background noise distorts the speech signals. These kinds
of change, degrade the both quality and intelligibility of the speech. This is challenging
in applications like automatic speech recognition and speech intelligibility. This is also a
challenging task in case of monaural speech enhancement especially at very low signal to
noise ratio (SNR) In the speech processing community, many studies have been done on
monaural speech enhancement. Some of the Single channel speech enhancement techniques
are statistical based approaches [92]. Non-negative matrix factorization [40, 49, 81, 82, 105],
Deep Neural Networks [27, 36, 38, 39].

The advancement in speech and vision processing systems has enabled tremendous
research and development in the areas of human-computer interactions [70], biometric appli-
cations [89, 90], security and surveillance [79], andmost recently in computational behavioral
analysis [13, 16, 43, 76, 104], Audio-Visual Speech Enhancement [59, 60], Speech Sepa-
ration [1, 62] Automatic Speech Recognition [5], Human Listening and Live Captioning
[15], Accents Identification [57], automatic speaker age estimation [2]. Emotions can alter
the acoustic properties of speech, such as pitch, intensity, and duration. For example, speech
produced in a fearful statemight be higher in pitch and intensity compared to speech produced
in a neutral state. Emotions can also impact how speech is perceived. Listeners are often able
to accurately infer the emotional state of a speaker based on the acoustic cues present in their
speech. In [73] a feature vector by minimum number of elements is proposed for recogniz-
ing emotional states of speech. The low complexity spectral enhancement methods are very
suitable for hearing aids users [52]. The spectral subtraction technique, initially introduced
by Boll [4], uses the assumption of uncorrelated speech and noise to remove noise in speech.
This approach was further enhanced by Berouti et al [3]. to minimize the artifacts caused
by noise reduction. These methods can be generalized to enhance quality by appropriately
adjusting the parameters [42]. In line with this concept, Sim et al. [77] proposed a methodfor
optimal parameter selection based on minimum mean squared error. Additionally, Hu and
Yu [29] suggested an adaptive noise estimation method to improve quality.

Deep learning has revolutionized speech processing by autonomously extracting mean-
ingful features from raw speech signals, eliminating the need for manual feature engineering.
This advancement has led to significant improvements in speech processing performance,
particularly in challenging scenarios with noise, various accents, and dialects [58]. It is
commonly acknowledged that transcribing noisy speech using automatic speech recogni-
tion (ASR) systems trained on clean data results in notably reduced recognition accuracy.
This challenge is further exacerbated when working with child speakers. Children’s speech
features, such as pitch and formant frequency, vary significantly with age, presenting a sig-
nificant obstacle to accurate recognition. In [75], the authors explored methods to enhance
the noise robustness of ASR systems, focusing on children’s speech. They also proposed
the incorporation of a foreground speech segmentation and enhancement module to improve
noise robustness. A method for enhancing Dysarthric speech, designed specifically for indi-
viduals with cerebral palsy aged 40-60, was introduced in [50]. This method employed
Kepstrum analysis and was assessed using dysarthric speech samples. The evaluation encom-
passed monosyllabic and bisyllabic samples, which exhibit distinct Consonant-Vowel and
Consonant-Vowel-Consonant-Vowel patterns. The outcomes indicated notable changes in
formants and energy levels in the processed speech signal.

The SEGAN [69] is an end-to-end SE model where only strided convolutions are used in
the generator and discriminator. In this model also only ordinary convolution operations are
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used. Even though the performance of the model is good but it suffers from computational
complexity.Wave-U-Net [56] is a time domain SEmodel with basic U-NET [41] architecture
with 1D ordinary convolution layers in the encoder and decoder with a 1D convolution as a
bottleneck. The CNN alone cannot well model the long-range dependencies of speech signal.
In all the existing models only, ordinary convolutional layers are used. The local receptive
field of the convolution limits the model’s ability to capture long-range dependencies across
input sequences. In CRN [86] model to further enhance the performance of U-NET [41]
the LSTMs are used in between encoder and decoder ofU-NET [41] to learn long term
dependencies of speech signals. Even though the performance of model is better the LSTMs
are easily prone to the problem of overfitting and it also requires a large time to train. LSTM
requires 4 linear layers (MLP layer) per cell to run at each time step. Linear layers require
large amounts of memory bandwidth to be computed. Speech enhancement performance is
influenced by CNN’s limited receptive field, which restricts its ability to extract long-range
dependency of speech sequences.

The existing baseline models, such as the SEGAN [69], Wave-U-Net [56], U-NET [41],
Masking [26], CRN [86], Self-attention [6], Autoencoder [66],Parallel RNN [51] are built
using convolution layers only. It is difficult for CNN alone to correctly model the long-range
dependencies of speech signals. The local receptive field of the convolution limits themodel’s
ability to capture long-range dependencies across input sequences.

To deal with the long range dependency of speech, some models [51, 86] incorporated
LSTMs in the bottleneck. Even though the performance of models [51, 61, 85, 108] is better,
the LSTMs are easily prone to the problem of overfitting, and it also requires a long time to
train. LSTM requires 4 linear layers (MLP layer) per cell to run at each time step. Linear
layers require large amounts of memory bandwidth to be computed. The Self-attentionmodel
computes attention scores by comparing each element in the input sequence with every other
element, resulting in a dense attention matrix. This computation becomes computationally
expensive as the sequence length increases.

In recent years, speech enhancement has been thought of as supervised learning [94],
based on the idea of time-frequency (T-F) Masking in computational auditory scene analysis
(CASA). For supervised speech enhancement, it is important to choose the right training
target [98]. On the one hand, training with a well defined target can improve speech quality
and intelligibility. On the other hand, the training target should be something that can be
supervised learning. In the T-F domain, a lot of training targets have been made, and most of
them can be put into two groups. One set includes targets like the ideal ratio mask (IRM) [98],
which characterize the time-frequency connections between noisy speech and clean speech.
There are other goals that are based onmapping, such as the targetmagnitude spectrum (TMS)
[25, 55] and the log-power spectrum (LPS) [103], which display the spectral characteristics
of clean speech.

Themagnitude spectrumof noisy speech is used to determine themajority of these training
goals, which is obtained using a short-time Fourier transform (STFT). So, most speech
enhancement algorithms only change themagnitude spectrogramand then use the noisy phase
spectrogram to resynthesize the improved time-domainwaveform. There are two reasonswhy
we are unable to improve the phase spectrogram. First, itwas found that the phase spectrogram
does not have a clear structure, this makes it hard to figure out the phase spectrogram of clean
speech [101]. Second, people thought that phase enhancement was not required to improve
speech [95]. But newer research by Paliwal et al. [67] shows that a correct phase estimate can
improve subjective and objective speech quality a lot, especially when the analytical window
for phase spectrum calculation is set up correctly. Following that, several phase enhancement
algorithms were developed for the separation of speech. Mowlaee et al. [72] used the mean
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squared error (MSE) to figure out the phase spectra of two sources in a mixture. Krawczyk
and Gerkmann [46] did phase enhancement on voiced frames but not on unvoiced frames.
Kulmer et al. [47] calculated the phase of clean speech by disassembling the instantaneous
noisy phase spectrum and temporal smoothing. T-FMasking can also take phase information
into consideration.Wang andWang [97] trained a deep neural network (DNN) to use the noisy
phase and an inverse Fourier transform layer to directly rebuild the time-domain enahnced
signal. The results suggest that combining training speech resynthesis with mask estimation
improves perceived quality while keeping objective intelligibility. The phase-sensitive mask
(PSM) is another way to do things [14].

The results conclude that the signal-to-distortion ratio (SDR) is greater when PSM esti-
mation is utilized instead of just enhancing the magnitude spectrum. Williamson et al. [101]
found that the phase spectrogram does not have spectrotemporal structure, but that both the
real and imaginary parts of the clean speech spectrogram have clear structure and can be
learned this way. So, they made the complex ideal ratio mask (cIRM), which can take noisy
speech and reconstruct it sound like clean speech again. In their experiments, they employ
a DNN to estimate both the imaginary and real spectra simultaneously. CIRM estimation is
different from [46, 47, 72] in that it can improve both the phase spectrum and magnitude
of noisy speech. The results show that complex ratio Masking (cRM) improves perceived
quality more than IRM estimation, while improving objective intelligibility only slightly or
not at all. Fu et al. [18] then used a convolutional neural network (CNN) to estimate the
clean real and imaginary spectra from the noisy ones. The time-domain waveform is then
made from the estimated real and imaginary spectra. They also trained a deep neural network
(DNN) to turn noisy LPS characteristics into clean ones. Their results show that complex
spectral mapping with a DNN does better than LPS spectral mapping in terms of STOI and
PESQ.

In the last ten years, the use of CNNs and recurrent neural networks has greatly helped
supervised speech enhancement (RNNs). RNNs with long-term short-termmemory (LSTM)
are used to improve speech in [99, 100]. Chen et al. [7] came up with an RNN with four
hidden LSTM layers to deal with the problem of speaker generalization of noise-free models.
They found that the RNN works well with untrained speakers and does better on STOI than
a feedforward DNN. Furthermore, CNNs have also been employed to estimate masks and
map spectral data [17, 23, 71]. In [71], Park et al. did spectral mapping with a convolutional
encoder-decoder network (CED). The CED can remove noise just as well as a DNN or
an RNN, but it has a lot fewer trainable parameters. Grais et al. [23] also came up with a
similar architecture for encoders and decoders. We just made a gated residual network based
on dilated convolutions that can use long-term contexts and has wide receptive fields [88].
Convolutional recurrent networks (CRNs) take the ability of CNNs to pull out features and
the ability of RNNs to represent time and put them together. The CRNwas made by Naithani
et al. [61] by putting convolutional layers, recurrent layers, and fully connected layers on top
of each other in that order. In [108], a CRN architecture like this one was made. To make
CRN, CED and LSTMs and put them together, which is like a causal system [86]. Takahashi
et al. [85] made a CRN with many low-scale convolutional and recurrent layers.

However, since spectrogram of speech and the complex targets are inherently complex
valued, using complex networks could potentially lead to richer representations and more
efficient modeling [20, 32]. This occurs because complex models adhere to the rules of
complex multiplication, allowing them to simultaneously acquire the real as well as imag-
inary components based on previous knowledge. In prior research, the authors developed
complex models utilizing convolutional recurrent architecture, yielding encouraging results
[109, 110]. Lately, Transformer models [37, 68], particularly the Conformer architecture,
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have significantly enhanced sequence modeling capabilities [24]. Unlike recurrent learning,
the Conformer model utilizes self-attention [93] to capture overall dependencies within a
sequence, while also considering local dependencies through convolutional layers. There-
fore, it is highly desirable to extend the convolutional recurrentmodel into aConformer-based
model that utilizes full-complex networks for enhancing speech.

In [54, 65, 80, 84, 102], the authors proposed a DenseNet to reduce the number of dilated
convolution layers to cover the large receptive area. With DenseNet, we aggregate the early
and later layer features directly within a single convolution layer via dense skip connectivity.
It is inefficient to have many parameters, especially for high-resolution data, especially when
transforming local features into global ones. In [21], the authors proposed a network design
that combines the advantages of DenseNet with the advantages of dilated convolution. The
typical dilated convolutionswere indeed employed, and dilation factorswere computed based
on layer depth, resulting in significant aliasing.

We just came up with a new CRN to do complex spectral mapping for monaural speech
enhancement [87] in a preliminary study.ThisCRNwasmadeusing the architecture in [86]. In
this study, we improve the CRN architecture [87] and look at how complex spectral mapping
can be used to improve monoaural speech. First, each convolutional or deconvolutional layer
is replaced with a gated linear unit (GLU) block [10] followed by dense layer and efficient
channel attention [12]. Second, we add a linear layer on top of the last deconvolutional layer
to guess the real and imaginary spectra.

The main objective of the proposed work is that to improve the quality and intelligibility
of the degraded speech. The main advantage of GCRN is that it performance better than
normal CNN approaches. The output of GCRN is given to Dense layer. The main advantage
of dense layer is that it avoids vanishing gradient because the input of the given layer is
not completely depend on the previous layer but also other previous several layers. Also,
thinner (less number of channels) dense network outperform than wider dense network and
hence the efficiency of the parameter network improves. The output of dense is given to ECA
to improve information flow across layers by learning a dynamic representation without
reducing the parametric space dimension. The motivation of the proposed work is that we
want to improve the performance of the network and to improve the computational cost by
keeping the same dimensionality. Efficient Channel Attention (ECA) module extracts the
useful channels information by using a cross-channel interaction method without affecting
the channel dimensions. In module testing, choosing an adaptable kernel size K for the ECA
improved network performance significantly.

1. A gated convolutional recurrent network with efficient channel attention (GCRN-ECA)
for complex spectralmapping is proposed,which amounts to a causal system formonaural
speech enhancement. Each layer in encoder and decoder consists of dense block.

2. Convolutional Neural Networks (CNN) based techniques suffers from limited recep-
tive field. To overcome this effect, Gated Convolutional Recurrent Neural Networks is
proposed.

3. The advantage of dilated convolutions in the receptive field increases with increasing
dilation rates, which are used to capture long-range speech contexts. And the dense
connectivity provides a feature map with more precise target information by passing
through multiple layers.

4. To represent the correlation between neighboring noisy speech frames, a two Layer GRU
is added in the bottleneck of Wave-U-NET [56], which has the advantage of increased
training speed because of its simpler architecture. GRU captures the long-range depen-
dencies across input sequences.
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5. The model is incorporated with a novel ECA network, which can improve information
flow across layers by learning a dynamic representation without reducing the parametric
space dimension. ECA chooses an adaptable kernel size (k) in model testing, which can
improve accuracy and efficiency by allowing cross-channel interactions while preserving
dimensions. ECA module can implement cross-channel interaction without dimension-
ality reduction.

The remainder of this paper is organized as follows. Section 2 discuss about monaural speech
in the STFT domain. Section 3 explains description of the system. Section 4 discuss about
experimental set up, Section 5 discusses the experiment outcomes. Section 6 concludes the
paper.

2 Monaural speech enhancement in STFT domain

Monaural speech enhancement separates the speech s[t] from the noise n[t] in the background.
A noisy mixture y can be modeled as

y[t] = n[t] + s[t] (1)

where time sample index is t. Applying STFT on both sides will lead us to

Ym, f = Nm, f + Sm, f (2)

where N, Y, and S are the STFTs of n, y, and s, and f and m are the indices for the frequency
bin and time frame respectively. In polar coordinates, Eq.(2) is written

∣
∣Ym, f

∣
∣ eiθ = ∣

∣Nm, f
∣
∣ eiθ S(m, f ) + ∣

∣Sm, f
∣
∣ eiθ S(m, f ) (3)

where θ and ‖|show the phase response and the magnitude response, respectively. In Clean
Speech’s target magnitude spectrum (TMS), the letter i stands for the “imaginary unit”. The
target magnitude spectrum (TMS) of clean speech is often used as a training target in most
spectral mapping-based approaches [25, 55].

In the reconstruction process, the estimated magnitude
∣
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which offers a distinct perspective. So, Eq.(2) can be re-written as
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(4)

where superscripts (i) and (r) stand for the imaginary and real components, respectively. The
cIRM [101] is as defined as

M = Y (r)S(r) + Y (i)S(i)

(

Y (r)
)2 + (

Y (i)
)2 + i

Y (r)S(i) − Y (i)S(r)

(

Y (r)
)2 + (

Y (i)
)2 (5)

The noisy spectrogram can be turned into the improved spectrogram by adding an estimate
of the cIRM M̂ is

S = M̂ × Y (6)

where the “X” multiplication complex operator. Signal Approximation [33] performs the
Masking by reducing the difference between clean speech and estimated speech. The defini-
tion of the loss for cRM-based signal approximation (cRM-SA) is:

SA = |cRM × Y − S|2 (7)
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where (‖|) is the complex modulus. Spectral mapping is learned from the real and imaginary
spectra of noisy speech (Y(r) and Y(i)) to those of clean speech (S(r) and S(i)). The time-
domain signal is obtained by combining the estimated real and imaginary spectra.Williamson
et al. [101] claimed that it is not a good idea to use a DNN to try to predict the real and
imaginary components of the STFT.We show that complex spectral mapping is always better
than magnitude spectral mapping, complex ratioMasking, and complex ratioMasking-based
signal approximation in terms of STOI and PESQ.

3 Description of the system

3.1 Convolutional recurrent network

A convolutional recurring network [86] was built, which is simply an encoder-decoder archi-
tecture with LSTMs between the encoder and the decoder. There are five convolutional
layers in the encoder, while the decoder has also five deconvolutional layers. Two LSTM lay-
ers describe temporal dependencies between the encoder and decoder. The encoder-decoder
structure is constructed symmetrically, with the number of kernels increasing in the encoder
and decreasing in the decoder. A stride of 2 is used in both convolutional and deconvolutional
layers with frequency dimension to aggregate the context along the frequency direction. In
those other terms, the frequency dimensionality of the feature maps is halved in the encoder
and doubled in the decoder, ensuring that the output has same form as the input. Also we
used Skip Connections to connect each encoder layer’s output to the input of the matching
decoder layer.

3.2 Gated linear units

The way information moves through the network is controlled by “gating” mechanisms,
which could make it possible to model more complex interactions. They were first developed
for RNNs [28]. In a recent study on convolutional modelling of images, Van den Oord et al
[64]. used an LSTM-style gating mechanism. This led to masked convolutions:

y = tanh (x ∗ W1 + b1) � σ (x ∗ W2 + b2)

= tanh (v1) � σ (v2)
(8)

Let v1 = x ∗W1+b1 and v2 = x ∗W2 +b2, whereW ’s and b’s denote kernels and biases,
respectively, and σ denotes the sigmoid function. The symbols ∗ and ◦ represent convolution
operation and element-wise multiplication, respectively.The gradient of the gating is

∇ [tanh (v1) � σ (v2)] = tanh′ (v1) ∇v1 � σ (v2)

+ σ ′ (v2) ∇v2 � tanh (v1)
(9)

where tanh′ (v1) , σ ′ (v2) ∈ (0, 1) are both in the interval (0, 1), and the prime symbol denotes
differentiation. As the network depth increases, the gradient vanishes gradually because of
the downscaling factors tanh′ (v1) and σ ′ (v2). To address this issue, Dauphin et al. [10]
introduced Gated Linear Units (GLUs):

y = (x ∗ W1 + b1) � σ (x ∗ W2 + b2)

= v1 � σ (v2) .
(10)
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The gradient of the GLUs

∇ [v1 � σ (v2)] = ∇v1 � σ (v2) + σ ′ (v2)∇v2 � v1 (11)

includes a path v1�σ (v2)Without downscaling, which you can be treated as amultiplicative
skip link that makes it easier for gradients to flow through layers. Figure 1(a) & (b) shows
that a deconvolutional GLU block, called “DeconvGLU,” is similar to a convolutional GLU
block, except that it has deconvolutional layers instead of convolutional layers.

3.3 Dense block

The idea behind densely connected network is that feature reuse in which an output at a given
layer is reused multiple times in the subsequent layers. i.e., the input to the given layer is
not only the output of previous layer but also the outputs of previous several layers. This
type of network has two advantages. First, it avoids vanishing gradient because the input
of the given layer is not completely depend on the previous layer but also other previous
several layers. Second, Thinner (less number of channels) dense network outperform than
wider dense network and hence the efficiency of the parameter network improves. Finally,
the dense connection can be defined as

yl = g
(

yl−1, yl−2, . . . .yl−D
)

(12)

yl denotes the output at the layer l, g is the function in the single layer, D represents depth of
dense connections. The proposed network uses dense block after each layer in encoder and
decoder. The dense block is shown in Fig. 2.

Fig. 1 Diagram of convolutional GLU and deconvolutional GLU
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Fig. 2 Dense block

The dense block consists of five convolution layers followed by layer normalization and
ReLu. The input of given layer is formed by the output of previous layer along with the
outputs of several previous layers. The input channels increases linearly with the successive
layers as C,2C,3C,4C,5C. The output of each convolution has C channels

3.4 Efficient channel attentionmodule

The speech signal characteristics of convolutional neural networks are usually obtained by
integrating spatial and channel dimensions on a local receptive field. Based on the significance
of the channel, to improve the selected channel features and suppress channels that are less
useful in the present work. In [96], we see the reviewed model of Squeeze-and-Excitation
(SE) in [30]. In the Squeeze-and-Excitation module, global average pooling (GAP) for each
channel is appliedfirst separately based on the input features. In order to capture cross-channel
interactions, it requires two fully connected non-linear layers. The dimensionality of channel
is reduced by using this method, and reducing the dimensions has negative impact on network
prediction. Hence, a one-dimensional convolution is employed on the fully connected layer
of the SE module to increase the efficiency of channel attention. In this paper, the Efficient
channel attention (ECA) module is proposed as a novel cross-channel interaction network
without reducing the dimensionality. A significant improvement has been made to the overall
network calculation speed as well as its prediction results as compared with the previous SE
module. This module is structured as shown in Fig. 3. In the ECAmodel, the input channel is
first sent through the global average pooling (GAP) layer and then employs a 1D convolution
for local channel interaction. The 1D convolution kernel size is the same as the convolution
kernel, and the kernel size parameter is used to calculate the coverage of cross-channel
interaction. The 1D convolution layer by default sets the padding value equal to half of the
kernel and it takes the integer part. Local cross-channel interaction is completed and then
it is sent to the sigmoid function. The sigmoid function output is element-wise multiplied
with the input channel and its product as an ECA module output. To determine the mapping
relationship(ψ) between the number of channels and kernel size(k), the number of channels
should be 2n. The eq. (2) gives the mapping relationship (ψ), where b and γ are set to 2 and
1:

k = ψ(C) =
∣
∣
∣
∣

log2 C

γ
+ b

γ

∣
∣
∣
∣
odd

(13)
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Fig. 3 Efficient channel attention mechanism

where |γ |odd represents the closet odd number of γ . It is possible to calculate the extent
cross-channel interaction by selecting k. ECA improves accuracy and efficiency by allowing
cross-channel interactions while preserving dimensions. Due to this, it attempts to add ECA
modules in this paper.

3.5 Gated Recurrent Unit (GRU)

Combining the forget and input gates in LSTM into a single one, GRU is introduced with
two gates rt and zt , named reset and update gates, respectively. GRU as a variation of LSTM
is faster and computationally more efficient than LSTM, while in some cases, it yields even
better performance on less training data. The extension of theGRUmodel in the given figure is
displayed through multiple unified hidden layers. The module structure of GRU is repetitive,
which is more straightforward than long and short-term memory because each recurrent
neural network feature of the module is the same. It has only two doors, the updated door
and the reset door, namely zt and rt in Fig. 4. The update gate is used to supervise the extent
to which the knowledge of the previously hidden state is extended to the current state. The
greater the value of the update gate, the more knowledge of the previous state is introduced.
Therefore, if the reset gate is used to adjust the degree of knowledge transfer of the past
state, the smaller the value of the reset gate, the more it will be transferred. Therefore, the
capture of short-term dependence is usually in the cyclic activation of the reset gate, while
the long-term dependence is in the activation of the update gate. A gate controller zt, controls
the both the input gate and forget gate. When zt=1, the forget gate is closed and the input gate
is open. When zt=0, the forget gate is open, and the input gate is closed. At each step, the
previous (t-1) memory is saved, and the input of the time step is cleared. GRU uses tow gates
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Fig. 4 Block diagram of GRU

instead of three gates like LSTM. So GRU reduces network complexity as well as improves
the performance. each layer models the temporal dynamics of speech. The reset gate rt is
used to determine how much of the previous memory information needs to be retained. The
smaller rt is the lesser information from the previous state is written. The gate zt is used to
control the extent of which the state information from the previous moment is brough into
the current state. The larger zt is the more state information from previous moment is brought
in.

3.6 Network architecture

This research tends to add to the CRN architecture outlined in [87] to perform complex
spectral mapping. The resulting CRN includes GLUs, and gated convolutional recurrent
network (GCRN), dense block and ECA.

Figure 5 shows our proposed design for the GCRN structure. As shown in [18], the real
and imaginary spectrograms of noisy speech are treated as two different input channels.
Figure 5 shows that the encoder and GRU modules are used to estimate both real and imagi-
nary components, while real and imaginary spectrograms are approximated by two different
decoder configurations. This design is based on multi-task learning [48, 107], which means
that related prediction tasks are learned at the same time by sharing information across tasks.
Estimating the real and imaginary parts is a part of spectral mapping that is connected to
two other tasks [101]. We will assume that all signals are analysed at 16 kHz. Using a 20-ms
Hamming window, a set of time frames are made in which each pair of frames overlaps by
50%.We use spectra with 161 dimensions, which is the same as a 320-point STFT (16 kHz X
20 ms). Remember that the number of feature maps in each decoder layer doubles when skip
connections are used. We use a kernel size of 1X3, which will not affect the performance.
After each convolutional or deconvolutional GLU block is followed by an exponential linear
unit (ELU) [8] activation function and a batch normalization [34] operation.
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Fig. 5 Proposed GCRN-ECA structure
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4 Experimental setup

The Voice Bank + DEMAND [91] dataset serves as the basis for both training and testing.
It consists of 11,572 pairs of clean and noisy speech for training, along with 824 noisy clips
designated for testing. We use the Common Voice corpus [9] to test our system, which is
a publicly available voice dataset, powered by the voices of volunteer contributors around
the world. People who want to build voice applications can use the dataset to train machine
learningmodels. The data set contains 1653880(1.6million) utterances from 84659 speakers.
From the CommonVoice, we select the English corpus and randomly choose 2000 utterances
for the training set and 400 utterances for the validation set, respectively. The test set is also
taken fromCommonVoice, which consists of 400 utterances.We built training and validation
sets using different types of noise from Noizeus [63], consisting of white, pink, restaurant,
and babble noises. Five SNR levels are used to test the noise mixture i.e.,-6dB, -3dB, 0dB,
3dB and 6dB. We used cross-validation for validation set.

Hyperparameters: There are two convolutional layers with 256 filters. We have the stride
as 1 and 16 and the filter size is 11 and 32 for respective layer. The hidden size of the lstm
is 1024 and there are two layers. The batch size is 32. Initial standard deviation is 0.02. A
pretraining section is done of 10 epochs The learning rate starts at 1e-3 decays by 0.5 until
it reaches a minimum of 1e-6 and the optimizer is the Adam Optimizer. Early stopping is
implemented, otherwise it runs for a maximum of 200 epochs.

4.1 Experimental results and analysis

The short-time objective intelligibility (STOI) [83], the perceptual evaluation of speech qual-
ity (PESQ) [31] and the signal to noise ratio (SNR) is used as the objective metrics. The
experiment results are compared with the existing techniques Wiener [74], SEGAN [69],
Wave-U-Net [56], U-NET [41], Masking [26], CRN [86], Self-attention [6], Autoencoder
[66], Parallel RNN [51].

Table 1 shows PESQ values for the existing techniques like wiener [74] , SEGAN [69],
UNET, CRN, Self-attention, Auto encoder and Parallel RNN. In case of babble noise, the
PESQ values at -3 dB and 0 dB are 1.83 and 2.08 respectively for SEGAN [69]. The PESQ
values at -6dB and 3 dB are 1.85 and 2,41 respectively in case of U-NET [41]. For CRN
method, at -3dB and 6dB the PESQ values are 2.24 and 3.02 respectively. For Autoencoder
[66] method, the PESQ values at 0 dB and 3dB are 2.90 and 3.17 respectively. The proposed
method yields PESQ values of 2.42, 2.94, 3.47 for the input test SNRs of -6dB, 0dB and
6dB respectively. The proposed method shows better results than other techniques. In case of
street noise, Wave-U-NET [56] gives PESQ values of 1.70 and 2.11 respectivley at the input
SNRs of -6 dB and 0 dB. The PESQ values at input SNR of -3dB and 3dB are 2.46 and 2.86
respectively for Self attention [6] method. For the proposed method the PESQ values of 3.11
and 3.27 for the input test SNRs of 3dB and 6dB.

Comparative performance of STOI is shown in Table 2. In case of street noise, SEGAN
[69] gives STOI values of 64.4 and 75.6 respectively at the input SNRs of -6 dB and 0 dB.
The STOI values at input SNR of -3dB and 3dB are 78.2 and 89.1 respectively for Self
attention [6] method. For the proposed method the STOI values of 91.9 and 95.4 for the input
test SNRs of 3dB and 6dB. In case of babble noise, the STOI values at -3 dB and 0 dB are
69.4 and 75.8 respectively for wiener [74] . The STOI values at -6dB and 3 dB are 67.2 and
72.2 respectively in case of U-NET [41]. For CRN [86] method, at -3dB and 6dB the STOI
values are 77.9 and 92.1 respectively. For Autoencoder method, the STOI values at 0 dB and
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3dB are 88.3 and 92.7 respectively. The proposed method yields STOI values of 78.5, 90.3,
96.6 for the input test SNRs of -6dB, 0dB and 6dB respectively. The proposed method shows
better results than other techniques.

Table 3 shows SNR values for the existing techniques like wiener [74], SEGAN [69],
UNET, CRN, Self attention, Auto encoder and Parallel RNN. In case of babble noise, the
SNR values at -3 dB and 0 dB are -2.18 and 1.19 respectively for wiener [74] . The SNR
values at -6dB and 3 dB are -2.71 and 6.19 respectively in case of U-NET [41]. For CRN [86]
method, at -3dB and 6dB the SNR values are 4.36 and 12.3 respectively. For Autoencoder
method, the SNR values at 0 dB and 3dB are 10.2 and 13.3 respectively. The proposed
method yields SNR values of 6.07, 11.98, 17.26 for the input test SNRs of -6dB, 0dB and
6dB respectively. The proposed method shows better results than other techniques. In case
of street noise, SEGAN [69] gives SNR values of -4.12 and 1.17 respectively at the input
SNRs of -6 dB and 0 dB. The SNR values at input SNR of -3dB and 3dB are 7.19 and 12.31
respectively for self-attention method. For the proposed method the SNR values of 13.54 and
16.56 for the input test SNRs of 3dB and 6dB.

5 Discussion on results

The SEGAN [69] is an end-to-end SE model where only strided convolutions are used in
the generator and discriminator. In this model also only ordinary convolution operations are
used. Even though the performance of the model is good but it suffers from computational
complexity. The SEGAN [69] has the PESQ of 2.06& 1.99 on average in babble and street
noise environments which is better than wiener [74] model. The SEGAN [69] has the STOI
of 76.82 & 75.84 on average in babble and street noise environments which is better than
wiener [74] model. The SEGAN [69] has the SNR of 1.72 & 0.926 on average in babble and
street noise environments which is better than wiener [74] model. The reason for enhanced
result is that the deep learning models can automatically learn relevant features directly from
the input data. Moreover, the wiener [74] model is sensitive to noise type. The limitation of
SEGAN is its computational complexity. The Wave-U-NET [56] is a time domain SE model
with basic U-NET [41] architecture with 1D ordinary convolution layers in the encoder and
decoder with a 1D convolution as a bottleneck. TheWave-U-NET [56] has the PESQ of 2.15
& 2.07 on average in babble and street noise environments which is better than wiener [74]
model. TheWave-U-NET [56] has the STOI of 77.92 & 76.58 on average in babble and street
noise environments which is better than wiener [74] model. The Wave-U-NET [56] has the
SNR of 2.95 & 1.88 on average in babble and street noise environments which is better than
wiener [74] model and SEGAN [69]. The performance is poor at low SNRs.

The U-NET [41] is a basic U-NET [41] model with encoder-decoder architecture. Even
though the encoder extracts better features from noisy speech it is also necessary to deal
with long term dependency of speech signal. The U-NET [41] has the PESQ of 2.23 &
2.24 on average in babble and street noise environments which is better than wiener [74]
model. The U-NET [41] has the STOI of 78.94 & 78.02 on average in babble and street
noise environments which is better than wiener [74] model. The U-NET [41] has the SNR
of 3.40& 2.91 on average in babble and street noise environments. The CNN models such as
SEGAN [69] , Wave-U-NET [56] and U-NET [41] alone cannot well model the long-range
dependencies of speech signal. In all the existing models only, ordinary convolutional layers
are used. The local receptive field of the convolution limits the model’s ability to capture
long-range dependencies across input sequences. In CRN [86] [55] model to further enhance
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the performance of U-NET [41] the LSTMs are used in between encoder and decoder ofU-
NET [41] to learn long term dependencies of speech signals. The CRN [86] has the PESQ
of 2.56 &2.45 on average in babble and street noise environments which is better than
wiener [74] model. The CRN [86] has the STOI of 82.66& 81.72 on average in babble and
street noise environments which is better than wiener [74] model. The CRN [86] has the
SNR of 7.01& 6.01 on average in babble and street noise environments which is better than
SEGAN [69], Wave-U-NET [56] and U-NET [41]. Even though the performance of model
is better the LSTMs are easily prone to the problem of overfitting and it also requires a
large time to train. LSTM requires 4 linear layers (MLP layer) per cell to run at each time
step. Linear layers require large amounts of memory bandwidth to be computed. Speech
enhancement performance is influenced by CNN’s limited receptive field, which restricts its
ability to extract long-range dependency of speech sequences. Autoencoder [66] model does
not use any attention mechanism for better feature extraction. Later attention mechanisms
are added to selectively focus on relevant features of the speech signal that are important
for enhancement. The Self attention [6], has the PESQ of 2.82 & 2.66 on average in babble
and street noise environments which is better than wiener [74] model. The Self attention [6],
has the STOI of 86.26 & 83.74 on average in babble and street noise environments which
is better than wiener [74] model. The Self attention [6], has the SNR of 9.91 &7.81 on
average in babble and street noise environments which is better than U-NET [41] models and
CRN models. The limitation of self-attention is it results in a dense attention matrix. This is
computationally expensive as the sentence length increases.

The existing baseline models, such as the SEGAN [69], Wave-U-NET [56], U-NET [41],
Masking [26], CRN , Self-attention [6], Autoencoder [66], Parallel RNN [51] are built using
convolution layers only. It is difficult for CNN alone to correctly model the long-range
dependencies of speech signals. The local receptive field of the convolution limits themodel’s
ability to capture long-range dependencies across input sequences. To dealwith the long range
dependency of speech, some models [51, 86] incorporated LSTMs in the bottleneck. Even
though the performance of models [51, 61, 85, 108] is better, the LSTMs are easily prone to
the problem of overfitting, and it also requires a long time to train. LSTM requires 4 linear
layers (MLP layer) per cell to run at each time step. Linear layers require large amounts
of memory bandwidth to be computed. The Self-attention model computes attention scores
by comparing each element in the input sequence with every other element, resulting in a
dense attentionmatrix. This computation becomes computationally expensive as the sequence
length increases.

To overcome the above drawbacks in the proposed model, dilated dense blocks and GRUs
are introduced. First, the advantage of dilated convolutions in the receptive field increases
with increasing dilation rates, which are used to capture long-range speech contexts. And the
dense connectivity provides a feature map with more precise target information by passing
through multiple layers. Second, to represent the correlation between neighboring noisy
speech frames, a two Layer GRU is added in the bottleneck of U-NET [41], which has the
advantage of increased training speed because of its simpler architecture. GRU captures the
long-range dependencies across input sequences. The vanishing gradient problem is solved
by GRUs using update gates and reset gates. The flow of information into and out of memory
is controlled by the update and reset gates, respectively. The advantage of GRU is that it
is easier to modify and doesn’t require memory units, which means it can train faster than
LSTM and also give performance results as fast as LSTM. Moreover, the ECA module
can implement cross-channel interaction without dimensionality reduction. An appropriate
cross-channel interaction can preserve performance while significantly decreasing model
complexity. Hence, the performance of the model is enhanced compared to existing models,
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such as SEGAN [69] , Wave-U-NET [56] , U-NET [41], Masking [26], CRN [86] , Self
attention [6], Autoencoder [66], Parallel RNN [51].

6 Subjective assessment using VCKT dataset

Subjective assessment using VCKT dataset are shown in Table 4. Subjective listening test
methodology is designed by ITU in recommendation ITU-T P.835 [35]. This methodology
was designed to evaluate the speech quality along three dimensions: signal distortion (CSIG),
background distortion (CBAK) and overall quality (COVRL). This evaluation removes the
uncertainty of listeners in listening tests by increased readability in terms of rating given to
the enhanced speech on a five-point scale. The mean opinion score (MOS) for CSIG, CBAK
and COVRL scales are described [31].

7 Conclusion

In this work we proposed a gated convolutional recurrent network with efficient channel
attention (GCRN-ECA) for complex spectral mapping, which is a causal system for monau-
ral speech enhancement. Each layer in encoder and decoder consists of dense block. The
advantage of dilated convolutions present in dense block is the receptive field increases with
increasing dilation rates, which are used to capture long-range speech contexts. And the dense
connectivity provides a feature map with more precise target information by passing through
multiple layers. The GRU captures the long-range dependencies across input sequences. The
ECAmodule can implement cross-channel interaction without dimensionality reduction. An
appropriate cross-channel interaction can preserve performance while significantly decreas-
ingmodel complexity. Our results reveal that the proposed GCRN-ECA outperforms existing
convolutional neural networks (CNN) and CRNs in terms of quality and intelligibility. The
proposed method yields higher objective and subjective scores than existing techniques. The
findings showed that the proposed model outperforms other competitive baseline methods in
both PESQ and STOI metrics across the extensive VCTK and Common voice datasets.
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