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Abstract
Accurate localization of abnormalities within X-ray images is of the utmost importance 
for arriving at the correct diagnosis. Weakly supervised learning (WSL) aims to train deep 
learning models for object detection and localization using only image-level labels (without 
using localized annotation). Most existing WSL methods use a class activation map (CAM) 
to generate a localization map. However, CAM-based methods have been criticized for their 
lack of robustness. In this work, we present a novel weakly supervised multi-stage (WSMS) 
learning network for accurate and efficient classification and detection of abnormalities 
in X-ray images. WSMS trains to localize informative regions in the image with image-
level supervision. In the first stage, the WSMS network encodes the image into feature 
representations and localizes activated regions that contain the detailed structure of the 
image. The second stage proposes informative regions based on attention maps at different 
scales, which are used for detecting abnormalities without requiring part annotations. The 
final stage uses a shared weight encoder to determine if the detected region contains an 
object of interest. WSMS combines the objective from all stages that potentially increase 
the robustness. WSMS method achieves an accuracy of 97.9%, Kappa scores of 92.8%, 
Matthew’s correlation coefficient (MCC) of 92.8%, and AUC of 96.7% for classification 
on the benchmark datasets and outperforms the state-of-the-art results. WSMS was tested 
on multiple different datasets to ensure the generalizability and reproducibility of the 
model. This shows the potential usability of WSMS to significantly advance medical image 
analysis and improve patient care in healthcare. This method achieve SOTA results without 
using any localized annotated data. The proposed method also removes the need of highly 
tedious target abnormality annotation.
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1  Introduction

Interpreting musculoskeletal X-rays is a critical aspect of orthopedic care, as bone and 
joint problems affect a significant portion of the global population, estimated to be around 
1.7 billion people [1]. However, accurately interpreting musculoskeletal X-rays is a time-
consuming and resource-intensive process [2]. In particular, the accident and emergency 
(A&E) department requires timely and accurate clinical observations [3]. Prior approaches 
based on fully supervised learning [4, 5], have shown good performances in classifying 
and detecting abnormalities. However, these methods rely on expert-annotated precise 
labels, which can be a significant limiting factor because in many real-world scenarios, 
obtaining such precise labels can be difficult, expensive, or time-consuming [6]. Moreo-
ver, supervised methods are limited by the black-box nature of models, which hinders 
their widespread clinical adoption due to the difficulty of interpreting and explaining their 
decision-making process [7]. Providing visual evidence of the decision-making process by 
localizing informative regions in images corresponding to the target can be a way to test 
the black-box nature of a supervised model [7, 8].

Existing methods for unsupervised feature localization [9] rely on substantial amounts of 
unannotated data. Weakly supervised learning offers an alternative approach by providing 
image-level labels to train classification and localization models [10, 11]. Class activation 
map (CAM) [12] is indeed one of the most used approaches for weakly supervised object 
localization (WSOL) [13–15]. To create a CAM, Convolutional Neural Network (CNN) 
feature maps are globally average pooled, passed through an FC layer with softmax 
activation to generate class probabilities, and then weighted to generate the final localization 
map [12] CAM is used to identify the most discriminative regions of an input image that 
are associated with a specific object class [16]. However, CAM-based methods have been 
criticized for their lack of robustness due to sensitivity to the background [17], difficulty 
in localizing co-occurring object classes [18], limited expressiveness, and susceptibility to 
variations in object appearance [19]. Additionally, global average pooling (GAP) introduces 
bias by assigning a higher weight to features with less activated areas, which further 
contributes to CAMs’ shortcomings.

In this work, we propose a novel weakly supervised multi-stage (WSMS) learning 
network to address the challenges of object localization. Our approach is based on a weakly 
supervised object detection method [12], which has previously shown improved performance 
using data labeled with predefined classes. WSMS consists of three stages which aim to 
develop a more effective and robust model for classification and weakly supervised object 
localization. In each stage, we encode the image by the shared weight CNN into feature 
representation then We use an attention squeeze-and-excitation (SE) [20] module to calculate 
attention maps from the output of CNN followed by a fully connected layer (FC). WSMS 
localizes the informative region or object in a bounded box by the ensembles of the norm 
feature map and weighted attention map using binarization with an average. These two maps 
contain the structure of the informative region or object as shown in Fig. 1.

In the context of abnormality localization, the informative region or object in an 
input image is used to estimate the different discriminating regions based on scalar 
values obtained from the attention map. These discriminating regions are then used to 
localize the abnormality within a bounding box, as illustrated in Fig. 1. This approach 
enables the accurate and efficient detection of abnormal regions in medical images. 
Our approach is illustrated by the clear localization results in Fig.  1. A multi-stage 
neural network with shared parameters increases the robustness of object classification, 
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improves feature map generalization, and enhances the clarity of CAM and localization 
results. This approach can also be used to check the black-box nature of the model, by 
providing visual evidence of the decision-making process and localizing informative 
regions in images corresponding to the target. Overall, multi-stage neural networks 
with shared parameters hold significant promise for improving the performance of 
object localization and classification, while also providing valuable insights into the 
black-box nature of the model. The potential impact of our approach on orthopedic 
emergency room diagnosis is significant, promising increased accuracy and reduced 
turnaround times.

To the best of our knowledge, this paper represents the first attempt to propose 
weakly supervised learning for abnormality detection from X-ray images. The key 
contribution of this research is summarized as follows:

1.	 Proposing a novel weakly supervised approach to address abnormality detection in X-ray 
images using a multistage attention map learning approach that not only classifies the 
dataset but also provides a bounding box region of interest.

2.	 An attention module, SE-based attention map, is introduced for feature map learning to 
localize the informative region in different branches. Each branch is only supervised by 
the image label, thus avoiding the need for costly pixel-level annotations.

3.	 A comprehensive evaluation is conducted on a large dataset of X-ray images with four 
different abnormalities. The proposed model achieves promising classification results 
with excellent detection visualization. Furthermore, it outperforms SOTA models on 
two publicly available benchmarks for classification and localization by a significant 
margin, demonstrating the effectiveness of the proposed approach.

The rest of this paper is structured to guide the reader through our research process 
step-by-step. Section 2 reviews the relevant literature, setting the stage for the discus-
sion of our methodology. In Section 3, we explain the details of our proposed WSMS 
framework, including its underlying concepts and how it works. Section 4 presents our 
findings and provides a critical analysis of the results. Section 5 discusses our findings 
in the broader context of X-ray image analysis. Finally, Section 6 summarizes the key 
contributions of our research and suggests potential future directions.

Fig. 1   This image shows components of the Class activation map (CAM), normed feature map (ƒ) and 
weighted attention map ( F) from WSMS
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2 � Related work

The research on bone X-ray image classification and abnormality detection can be broadly 
divided into two areas: weakly supervised object localization and sophisticated abnormality 
localization. Early approaches for detecting abnormalities involved calculating neck-
shift angles, Gabor analysis, and gradient-based intensity methods [21]. Later, classifiers 
were combined using majority voting schemes, Bayesian theory [22], AdaBoost with 
classifier weighting based on performance [23], and probabilistic combination [24]. With 
the emergence of CNNs in machine learning, researchers have applied deep learning to 
medical image analysis, including musculoskeletal X-ray images. Previous studies have 
demonstrated that deep learning (DL) models can effectively detect abnormalities in medical 
images using supervised learning methods for classification and bounding box localization 
[3]. However, it has been shown that pre-training deep CNN on non-medical images can be 
a viable alternative for abnormality detection [25]. Previous research on bone abnormality 
detection has placed less emphasis on ensuring the model’s generalizability, with a greater 
focus on specific bone regions [26].

Researchers have used various techniques to extract features from pelvic CT and X-ray 
images for abnormality detection [27–29]. Adaptive filtering [30], boundary tracing [31], 
and wavelet transform [32] were applied to pelvic CT images, and an active shape model 
was developed for abnormality detection. Authors from [26] used stacked random forests 
based on feature fusion to detect abnormalities in X-ray images. Mathematical morphology 
has also been widely used for bone abnormality detection. Previous methods have consid-
ered the entire image to determine whether it is abnormal [33, 34], but they cannot local-
ize the abnormality to a specific bone region. To address this challenge, researchers have 
started working with annotated bounding boxes of the abnormality as ground truth and 
segmenting the region of interest using techniques like entropy-based segmentation [35, 
36]. Models such as ResNet [37] and Faster R-CNN [38] have been developed for abnor-
mality detection and medical image segmentation, using annotations and bounding boxes 
in training. The field of weakly supervised object localization (WSOL) is a crucial area 
of deep learning as it reduces the time needed for user annotations by training methods 
to localize objects using trained classifiers. Many approaches have been developed in the 
past for learning object detectors with weak supervision in various problems. OXnet [39] 
shows promise as a feasible and general solution for real-world applications by leveraging 
as much available supervision as possible.

For instance, Zho et al. [12] introduced a CAM to localize the region of interest to the 
target level via GAP, which failed to localize due to the bias towards small activation area, 
as put higher weight. Recent methods like POSL [40] and SPOL [41] use two network 
localization and classification. MMAL-net [42] localizes without adding any additional 
perimeter parameters and [16] bridges the gap between classification and localization by 
adding new parameters to the objective. Weakly supervised is widely applied in X-ray 
images [39, 43]. Most recent work has shown the potential of full object localization in a 
weakly supervised manner [44, 45]. Our method aims to address the model’s robustness by 
sharing parameters through the stages and localizing based on the feature map before GAP.

In Table 1 we provide a succinct overview of different weakly supervised object locali-
zation (WSOL) methods, detailing their operational principles and respective drawbacks. It 
contrasts approaches such as Class Activation Mapping (CAM) which targets highly discrimi-
native features, with techniques like Divergent Activation for WSOL (DANet) that also con-
sider less discriminative regions, aiming to enhance localization. The table also highlights the 
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limitations each method faces, particularly in achieving accurate object localization without 
relying on extensive manual supervision.

3 � Methodology

3.1 � Overview of CAM decomposition

If we have an image X of size C ×H ×W , we would like to have a representation that consists 
of approximately all the image’s information to classify it. Typically, a neural network 
comprises of convolutional layers followed by the average pooling and fully connected (FC) 
layer for classification is used to compute the CAM as follows:

where F ∶ RC×H×W
⇒ Rn×h×w represents features map before average pooling for (h , w) 

spatial dimension of the n channels. Wcl ∈ Rn are the weights of FC layer corresponding to 
the target class cl . Authors from [16] try to bridge the gap between the classification and 
localization by decomposing CAM in terms of cosine similarity map as follows:

where cos� is the cosine similarity between two vectors. A larger value of cos θ indicates 
a higher degree of alignment, while a smaller value suggests a lesser degree of alignment.. 
We define weighted feature space ( F  ) map that corresponds to every class of target as 
follows:

whereW ∈ Rn_class×n = [W1,…Wcl,…Wn_class ] and norm is taken for all the classes. Based 
on Fig.  1, CAM alone cannot localize the full informative object corresponding to its 
class level as it learns the difference between the classes which leads to poor localization. 
However, normed feature map ‖F(X)�� and weighted norm feature map F  contains more 
information to localize the object corresponding to its class-level. Object can be localized 
based on F  and f  where { = ‖F(X)�� . If the position (I, j) in f  is higher than the mean of 
normed feature map f  is part of object which we need to localize for ∀ I �[0, h], and j [0,w] . 
Mathematically:

where M̂(i,j) is the possible area of the object to localize. The final possible area is based on 
the area obtained by the ensemble of F  and f  . When the informative region is localized, the 
cropped image contains additional information that can provide additional insights into the 
image by looking at closure using the localized images. It does not require any additional 
parameters as it is based on the trained classifier model. By observing Fig. 1, the area with 
the higher value of f  are the area where the key parts are located, most of the time CAM 

(1)CAM(X) = WT
cl
F(X).

(2)CAM(X) = ‖Wcl‖‖F(X)��cos� ≤ ‖Wcl‖‖F(X)� �,

(3)F = ‖W ⋅ FA(X)‖,

(4)f =

∑h−1

i=0

∑w−1

j=0
f (i, j)

h × w

(5)�M(i,j) =

{
1 iff (i, j) > f

0 else
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indicates the joints of the bone which may be incorrect for tumor identification. We use a 
technique that involves dividing the image into overlapping windows, and then classifying 
each window as a foreground (marked as 1) or background (marked as 0) using Eq. 4(b). 
The overlapping windows are then moved across the image, allowing the classifier to 
process multiple regions of the image in a sliding manner.

3.2 � WSMS network

Our proposed model is inspired by fine-grained (FG) visual classification models. The 
architecture of Weakly supervised learning-based abnormality detection is shown in 
Fig. 2A.

The Proposed network consists of three stages, where each stage has an encoder (En) 
to encode the image, which is composed of convolutional neural networks for feature map 
(F(X)) followed by nonlinear activation Rectified Linear Units (ReLU). Squeeze-and exci-
tation (SE) block is then connected to the activation function to provide an attention map 
(AM) for the following stage. Each stage is supervised at the image-label, so a fully con-
nected layer is added after the SE module and a revised focal loss based on binary cross 
entropy is used as an objective function. A further explanation of all the stages of the pro-
posed architecture is mentioned below in detail.

3.2.1 � Main stage

In this branch, we encode the image using En to get the feature representation map (f&F) . A 
coordinate of the bounding box is generated using the intersection of the informative region by 
f  and F  which is shown in Fig. 2B. In this branch, full feature AM is used for classification 

Input image CNN Feature map GAP Attention Block Attention Map FC

Loss

Loss

Loss

Crop

Parts

Mul.
Ensemble

Localization
Look
closer

Parts image

Output Image

Final part

GAP

FC+ReLU

FC+sigmoid

Mul.

A B 

Fig. 2   A The full architecture of our proposed network consists of three branches, and in each branch, the 
same shape and same color represent the parameters shared. Attention block is used to calculate the atten-
tion map (AM) from the global average pooling by calculating the attention weights and multiplying (Mul) 
with feature mapping. B1, B2, and B3 represent the loss in each branch from the fully connected layer. B 
Attention block consists of two fully connected layers (FC) activated by ReLU and sigmoid respectively
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using the FC layer. Furthermore, the hypothetical object by the box is cropped from the image 
and passed to the object branch.

3.2.2 � Object stage

Cropped image (local image) is used get its feature representation by shared parameter 
of encoder from the main branch for classification. Then, based on local normed map 

(
fL
)
 

obtained from the En of second stage by passing the local image, we divide image into over-
lapping windows, and then classifying each window as a foreground or background. The over-
lapping windows are then moved across the image and cropped regions are shared to the third 
branch. Those regions cover the most informative part.

3.2.3 � Parts classification and muti‑scale stage

Object stage provides the discriminative regions in the local image by aggregating each win-
dow’s normed map fW with respect to channel and get its mean value fW  as follows:

hW × wW is spatial dimension of the window’s normed map. We rank the windows by 
fW  as higher value the higher information, as shown in Fig.  2A in red (for higher fW ) , 
orange, yellow, and green-colored windows. In this stage, cropped regions from the object 
branch is used for classification by shared parameters of the encoder shown in Fig. 2A by 
the same-colored CNN which also improves the robustness of the overall model. These 
cropped parts are combined to produce one possible box for abnormality.

We optimized the overall loss of the images in the training set for all stages by sharing the 
parameter shown by the same color CNN in Fig. 2A using three types of loss function. Due to 
the class imbalance problem, we have used weighted cross entropy defined as, in the Eq. (6).

where.

•	 P(�) = p1, p2,… , pn are the predicted labels.
•	 Q =

{
q1, q2, I., qn

}
 are the labels for the corresponding instances in P(�)

•	 ℙ
(
qi = 1|pi

)
 is the predictive probability ∀qi ∈ 0,1 conditioned on P(�)

•	 T  is a set of all the abnormality parts.
•	 w

j

+ is the weight for all abnormal classes of part type j ∈ T
•	 wj

− is the weight for the normal class of part type j ∈ T.

To focus on misclassification due to the class imbalance problem, we have used focal 
loss which is defined in Eq. (7),

where CEt(�) is cross entropy at tth step with θ shared parameter defined in Eq. (6), β are the 
focal loss hyperparameter. It is clear from the Eq. (7), to get the loss for the tth step we need 

(6)FW =

∑hW−1

i=0

∑wW−1

j=0
fW (i, j)

hW × wW

(7)
CE

j

t(P(�),Q) = −
∑

pi∈P

∑
j∈T

w
j

+qilnℙ
(
qi = 1|pi

)
−
∑

pi∈P

∑
j∈T

wj
−
qilnℙ

(
qi = 0|pi

)

(8)FLt(�) =
1

N

∑N

i=1

(
1 − e−CE

i
t
(�)
)�

CEi
t
(�)
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to run in the entire mini batch size to get the mean which increases the computational cost. 
So instead of mean, we have used a scaler � . Rewriting Eq. (7) as,

So, we sum the losses of all stages to get the total loss:

where B1 , B2 , and B3 in FLt(�) represent the corresponding loss of the first, second, and 
third branches respectively. For N number of the part images, the third branch loss is 
defined as the sum of the focal loss of each part:

3.3 � Attention map module

CNN is used to encode the image into a feature map where we extract high-level features from 
images. Next, the output of CNN activated by ReLU is passed through the Attention map 
module shown in Fig. 2B, which computes attention weight for each F(X). Since each F(X) 
in F is predicted by a separate kernel, we assume that CNN may generate activation maps 
with unnecessary values across feature maps F(X). Our goal is to use F(X) relationships by 
scaling each channel according to the quality of representations produced by CNNs. To solve 
the problem, we employ a SE block. It aims to improve the overall network’s performance 
by emphasizing the importance of certain features that result in better localization. First, we 
apply global weighting to the F(X) of a given feature map to highlight the most essential 
features and suppress the less important ones. As a result, the encoder can focus on the 
prominent features of the image, resulting in improved performance. Additionally, attention 
is intended to increase WSMS’s modeling capacity and enable non-linearity between F(X) 
and attention map (AM) outputs. For F ∈ ℝ

C×h×w , attention map module reduces to s ∈ ℝ
C 

through global average weighting on each F(X). Thereafter, it is passed through fully 
connected layers activated by ReLU which reduces the number of feature maps C by C

r
 where 

r the reduction ratio is followed by fully connected layers to compute C important features 
corresponding to the image label. The steps are as follows:

where W1 ∈ ℝ
�

�
×C & B1 ∈ ℝ

�

�  are the weights & biases for first fully connected layer (FC) 
activated by ReLU followed by the second fully connected layer in which W2 ∈ ℝ

C×
C

�  & 
B2 ∈ ℝ

C are the weights & biases. The first FC layer consists of C
r
 nodes where information 

is squeezed by a reduction ratio of r . Finally, a tensor Z of the same spatial dimension as of 
F is generated as follows:

where • element-wise multiplication and Z ∈ ℝ
C×h×w is the final tensor containing recali-

brated attention map.

(9)FLt(�) = �
(
1 − e−CEt(�)

)�
CEt(�)

(10)Ltotal
t

(θ) = FLB1
t
(θ) + FLB2

t
(θ) + FLB3

t
(θ)

(11)FLP
t
(θ) =

∑N−1

i=0
FL

pi
t (�)

(12)S� = ReLU
(
W1 ⋅ s + B1

)

(13)S = �
(
W2 ⋅ S� + B2

)

(14)Z = S ⋅ F(X)
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3.4 � Feature localization and amplification

The normed feature map ƒ of the full image is binarized based on equation using mean thresh-
olding value as shown in Eq. 4(b). The pixels are connected according to their neighboring 
values if they are equal in value when pixels are mounted in a binary map. In this case, it refers 
to how many orthogonal hops a pixel must undergo to be considered a neighbor that will 
return all connected regions that are assigned the same value. We also find the area based on 
the feature map and select the intersecting region to produce a bounding box. If the interest-
ing area is zero, we assign a default bounding box of w width and h height (same as the spatial 
dimension of each feature). Finally, we select the region that covers the maximum activation 
area to look closer for the localization of informative region within X-ray with the bilinear up 
sampling method.

3.5 � Informative regions localization

Although the cropped local image contained the informative region with good probability, but 
idea is to localize the key part of the image. We use a feature map to search for the areas with 
higher activation, which indicates the location of critical parts in the local image (cropped 
image). So, we extract the feature map of the cropped image by sharing the En’s parameter 
to obtain the normed feature map ƒL for the selected region (the region of the window with 
height hW , and width wW ) and calculate the score by Average pooling with a kernel size of (
hw,ww

)
. Window size ( hw,ww ) is a hyperparameter to tune the different types of problems. 

The basic idea for selecting the window size is to cover the many distinct parts as possible. 
Localization is based on the binary map obtained from the activation map of each window 
by mean thresholding ƒW the window defined in Eq. (5). Non-Maximum Suppression (NMS) 
[38] is applied after scoring to select the fixed number of parts in images so fewer redundant 
parts are in each region.

3.6 � Possible abnormality detection

From the informative region’s localization section, the larger the value of ƒW, larger is the 
information that part contains. We combine w windows to detect the abnormality by discount-
ing the value window for decreasing the value of f W after shorting.

Then final window value ( U(x, y, x + h, y + h) ) is given by:

where,� ∈ R(0,1] and for wn number of the proposed windows U
(
xi, yi, xi + wwi, yi + hwi

)
 

is sizes of the window∀i ∈
[
1,wn

]
 . But U(x, y, x + w, y + h) is a part localized in the local 

image cropped from the original image and resized in the size of the original image, so to 
get the reflection on the original image, we proposed a simple flowchart shown in Fig. 3.

(15)U
(
x, y, x + ww, y + hw

)
=
∑wn

i=1
� iU

(
xi, yi, xi + wwi, yi + hwi

)
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4 � Experiments results and analysis

4.1 � Dataset description

Abnormality dataset  To evaluate our models, a dataset comprising of 5 types of abnormalities, 
namely, fracture, tumor, dislocations, metal implant, and arthritis along with normal bone 
images was curated. The images were collected from various regions of the human body, with 
the majority of the fractured images being sourced from the MURA dataset [1]. Other classes 
of this dataset are collected by the radiologist. In this work, we have conducted experiments 
based on two classes i.e., normal, and abnormal classes for training. The size of the training 
dataset is 38.7k in which 16.7k are the abnormal images from five different abnormalities and 
16k are the normal bone images and the test dataset consists of 6k images with 1k abnormal 
images collected by the same radiologist. This entire dataset has X-ray images in both normal 
and abnormal cases.

HAND Fracture  The class imbalance problem is the most important problem in medical 
images for weakly supervised learning especially in our method. So, to check the 
effectiveness of our model in a class imbalance class environment, we have used a Hand 
dataset from MURA [1]. This dataset consists of 5.5k images in trainset with 26.7% 
fractured images and 460 images in test set with 41% fractured images.

CUB 200 2011  For FG classification and localization of objects, we use the CUB dataset to 
test the SOTA performance of our proposed model. The CUB-200–2011 dataset contains 
11,788 images across 200 bird species categories, with annotations for part locations, 
attributes, and bounding boxes, suitable for supervised learning tasks involving fine-grained 
visual categorization..

Stanford Cars  The Stanford Cars dataset is a collection of images of vehicles, along with 
their associated labels, that was collected by researchers at Stanford University. It contains 
more than 16,000 images of 196 cars, consisting of models made by various manufacturers. 
To check the SOTA performance of the proposed model on classification, we use Stanford 
Cars (CAR) dataset.

Fig. 3   Visualization of the output from our proposed weakly supervised fine-grained detection model at 
each step. Crop is the first localized informative region and Parts are the proposed region in Crop which 
produces the Final Part. The last images are abnormal in white box, which reflects the Final Part on input 
Image
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4.2 � Experimental setup

4.2.1 � Implementation details

The input images were pre-processed to a size of 448 × 448 to obtain the augmented 
images for the first and second branches, as illustrated in Fig. 2A. The original image was 
cropped based on the coordinates from the first branch, and the input in the second branch 
was also scaled to a height and width of 448 . For the part branch, all images were reshaped 
to a height and width of 224 . We selected a window with a broad range of scale catego-
ries: {[6 × 6, 7 × 5], [8 × 8, 6 × 10, 7 × 9], [10 × 10, 9 × 11, 8 × 12]} and used 14 × 14 as the 
size of f  in Eq. 4(a). The number of part images wn was set to 7 , where w1n = 2 , w2n = 2 , 
and w3n = 3 were the number of wide varieties of scales. Different pre-trained baselines 
on ImageNet were used as the backbone within the same-colored CNNs shown in Fig. 2A. 
During model training, no other annotations were used except for the images’ class labels. 
We optimized the loss using SGD, with an initial learning rate of 1 × 10−4 and a minibatch 
size of 5 on RTX A4000 GPU. PyTorch was used as the codebase for implementation.

We use various performance measures including (Area Under the Curve) (AUC) 
[46], Cohen’s Kappa (KAPPA) [47], Matthews Correlation Coefficient (MCC) [48], and 
Accuracy. AUC measures the degree of separability between the positive and negative 
classes. AUC is calculated by plotting the Receiver Operating Characteristic (ROC) curve, 
which is a graph of the True Positive Rate ( TPR =

TP

TP+FN
 ) against the False Positive Rate 

( FPR =
FP

FP+TN
 ) at various threshold settings, and then computing the area under this curve. 

Here we use the notation from the confusion matrix and represent TP (True Positive) as 
cases that are both Actual Positive and Predicted Positive, FN (False Negative) as cases 
that are Actual Positive but Predicted Negative, FP (False Positive) as cases that are Actual 
Negative but Predicted Positive, and TN (True Negative) as cases that are both Actual Neg-
ative and Predicted Negative. A higher AUC value indicates a better model performance. 
In discrete terms, AUC can also be approximated by summing the areas of trapezoids 
formed by the points on the ROC curve:

where i represents each point on the ROC curve and n is the total number of points. KAPPA 
is a statistical measure used to assess the agreement between two raters who each classify 
items into mutually exclusive categories. It accounts for the possibility of the agreement 
occurring by chance. The KAPPA is calculated using the observed agreement ( Po ​) and the 
expected agreement ( Pe​):

Here, Po ​ represents the relative observed agreement among raters, while Pe represents 
the hypothetical probability of chance agreement and calculated as follows:

AUC ≈
∑n−1

i=1

(
FPRi+1 − FPRi

)(TPRi+1 + TPRi

2

)
,

KAPPA =
Po − Pe

1 − Pe

Po =
TP+TN

n

Pe =
(TP+FN)(TP+FP)+(FP+TN)(FN+TN)

n2



Multimedia Tools and Applications	

1 3

MCC is a balanced measure of the quality of binary classifications, taking into account 
true and false positives and negatives. It is especially useful when the classes are of differ-
ent sizes. MCC is calculated with the formula:

And accuracy measures the proportion of correct predictions:

4.2.2 � Baseline

We have used Resnet18, Resnet34, Resnet50, Resnet101, and inception [41] as a backbone 
pretrained on Imagenet21k for the feature map.

4.3 � Comparison with baseline network

An experimental evaluation was conducted on the largest abnormality dataset to compare 
with well-established baseline models for weakly supervised fine-grained detection and 
classification. These classification results are shown in Table 2 for the performance meas-
ures discussed. With a good margin of more than 8.8% AUC, 12.6% KAPPA, 12.6% MCC, 
and 3.9% Accuracy, our proposed model exceeds the baseline models.

4.4 � Comparison SOTA

To compare the model’s performance against the state-of-the-art (SOTA), we conducted 
comprehensive experiments on publicly available datasets for fine-grained (FG) classifica-
tion. The results are reported in Table 3. The table presents a comprehensive comparison 

MCC =
(TP×TN)−(FP×FN)√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Accuracy =
TP+TN

TP+TN+FP+FN

Table 2   Comparison results on 
Bone Abnormality dataset with 
baseline models

Methods Measure Abnormality

Proposed model AUC​ 96.7%
KAPPA 92.8%
MCC 92.8%
Accuracy 97.9%

Resnet-50 [37] AUC​ 87.6%
KAPPA 78.8%
MCC 79.0%
Accuracy 94.0%

Inception Net [41] AUC​ 87.9%
KAPPA 80.2%
MCC 80.2%
Accuracy 90.0%

Dense Net [49] AUC​ 74.8%
KAPPA 70.5%
MCC 69.8%
Accuracy 76.0%
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of various models’ performance on the CUB and CAR datasets for fine-grained image 
classification. Several key observations can be made from the results. First, the choice of 
backbone architecture plays a significant role in the model’s performance, with models 
using ResNet50 as the backbone consistently achieving high accuracy on both datasets. 
For instance, models like MAMC, DFL-CNN, TASN, LIO, BNT, ASD, and API-Net, all 
based on ResNet50, achieved accuracy rates above 86% on CUB and above 92% on CAR. 
Second, the proposed WSMS-Net, also based on ResNet50, achieved competitive accuracy 
rates of 89.2% on CUB and 95.0% on CAR, outperforming several SOTA models such 
as RA-CNN, KP, NTS-NET, and HBP. These results suggest that the WSMS-Net model 
effectively leverages the full feature map, leading to improved localization and classifica-
tion performance.

Our proposed net outperforms the SOTA models on the CAR dataset by more than 
0.1%. Specifically, our model achieved an improvement of over 0.4% compared to exist-
ing methods. However, when compared with the very recent P2P-Net [63] on the CUB200 
dataset, our model lagged by just 0.3%. Finally, it is noteworthy that the performance on 
the CUB dataset is generally higher compared to the CAR dataset, indicating the difficulty 
of the CAR dataset due to its complex nature and diverse car models. The discriminative 
parts found in these datasets (See Fig. 4) can be valuable for further improving the perfor-
mance of classification models.

4.5 � Localization interpretation

The Percentage of Correctly Localized (PCL) region is used to evaluate the accuracy of a 
localization method in determining the location of an object or informative region with an 
IOU of over 50%. Using an ensemble of two ResNet-50 layers, the Attention Object Learn-
ing Module achieved a PCL of 85.1% after one epoch with a pre-trained ImageNet21k 
backbone. However, as training progressed, the PCL decreased to 71.1% because the CNN-
based network focused more on the most prominent regions. Our proposed model, which 

Table 3   Comparison with SOTA 
models on their backbone. SOTA 
performance is highlighted by 
bold

Methods Backbone CUB (%) CAR (%)

Bilinear-CNN [50] VGG 84.1 91.3
RA-CNN [9] VGG19 85.3 92.5
KP [51] Resnet50 86.2 92.4
MAMC [52] Resnet50 86.3 93.0
PC [53] DenseNet-161 86.9 92.9
HBP [54] VGG-16 87.1 93.7
Mask CNN [55] Resnet50 87.3 -
DFL-CNN [56] Resnet50 87.4 93.8
NTS-NET [57] Resnet50 87.5 91.4
TASN [58] Resnet50 87.9 93.8
LIO [59] Resnet50 88.0 94.5
BNT [60] Resnet50 88.1 94.6
ASD [61] Resnet50 88.6 94.9
API-Net [62] Resnet101 88.6 94.9
P2P-Net [63] Resnet34 89.5 94.9
WSMS-Net (Proposed) Resnet50 89.2 95.0
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combines the attention and backbone modules, achieved the highest accuracy of 77.2%, 
surpassing recent weakly supervised methods (See Table  4). However, the PCL also 
decreased to 73.4% as training progressed, which is still better than the Attention Object 
Localization Module (AOLM) (see Table 3) [42].

4.6 � Visualizations

4.6.1 � Localization

The second column of Fig.  4 shows the localization of informative parts for the X-ray 
abnormality, CUB, and CAR datasets based on the test images. The visualization 

X-ray Image
aera

evita
mrofnI

straP
X-ray Image RGB Duck Image RGB Car Image

tupnI

Fig. 4   Localization of crops and discriminative part localization. We use red, orange, yellow, and green 
colors to indicate the order of the windows by fW   

Table 4   Localization 
performance on CUB. “Yes” 
represents the training from 
scratch of the attention module 
(AM)

Methods Training from 
scratch

PCL (%)

ACOL No 46.0
ADL No 62.3
SCDA No 76.8
MMAL [42] No 85.1 (drop to 71.1)
Our (F(X)& AM) Yes 77.2 (drop to 73.4)
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demonstrates that our model accurately focuses on the informative region of the image 
without any information loss in the crop part.

4.6.2 � Discriminative part

Fig. 4 Part column visualizes the location of the discriminative part by our net. This figure 
displays regions with the highest average activation values on different scales using red, 
orange, yellow, and green boxes, with the red box representing the highest average activa-
tion value. The most discriminative features, which are similar to human perception, are 
found in the joint of bone abnormality dataset, the head and beak of birds, and the head-
light front-side of cars

4.7 � Abnormality location

The results of the model on bone abnormality detection in X-ray images from the test data-
set are depicted in Fig. 5. The white box in the figure indicates bone abnormalities such 
as bone tumors, joint dislocations, arthritis, and metal inside the bone. In the third col-
umn of the figure, a unique bone tumor abnormality identified by the radiologist is shown 
in the white box. The radiologist verified all abnormality detections from the test dataset. 
The model has demonstrated its capability to perform in complex cases that even a human 
expert found difficult to diagnose.

4.8 � Comparison with weakly supervised CAM

In Fig. 6, we compare CAM from the first branch of WSMS resnet50 backbone and CAM 
from training resnet50. CAM highlights the significant area in the image that helps in clas-
sification and confirms our model’s smooth training. Drawing a bounding box from the 
CAM (WSMS) produces similar localization results as our proposed method, demonstrat-
ing the agreement between CAM (WSMS) and our method. However, CAMs cannot iden-
tify the regions responsible for errors in an image, making it challenging to determine the 
necessary improvements to increase accuracy, as evident in the first and second images 
of Fig. 6. In contrast, our method provides a clear idea of the required bounded box, as 
depicted in Fig. 6. The figure also ensures the robustness of the model because of multi-
stage training compared to normal CAM. Our method carefully inspects the image in the 
first branch, followed by the second branch that decides on windows with different confi-
dence. These windows have a low probability of being incorrect as the first branch ensures 
accuracy, and we combine all windows to form the final bounded box.

4.9 � Ablation study

4.9.1 � Effect of Attention module

In Fig.  6, the second and third columns display localization using the feature map and 
attention map assembled with the feature map of the image in the first column of Fig. 6, 
respectively. The fourth and fifth columns of Fig.  7 show abnormality detection in the 
white box corresponding to the image. The impact of attention maps (AM) on classifica-
tion performance is presented in Fig.  8. Although the results of localization are similar 
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in both cases, the AM-based localization is highly focused on the weighted feature map, 
resulting in more accurate results, as seen in the fifth column verified by the radiologist. 
The use of AM not only improves the localization and abnormality detection accuracy but 
also enhances the classification performance, which is reported in Fig.  8. Compared to 
F(X)-based classification performance, AM outperforms it by a significant margin (17.8% 
of AUC, 23% of KAPPA, 23% of MCC, and 6.3% of accuracy) due to its effectiveness in 
improving the network’s discriminative power by emphasizing important features and sup-
pressing less important ones.

4.10 � Class imbalance problem in weakly supervised learning

The hand training dataset has an issue of class imbalance, with only 27.77% of data belong-
ing to the ’ + ’ class and 73.22% belonging to the ’-’ class, which may be one of the reasons 

Fig. 5   The abnormality detected region is in the bounding box. The area in the fourth column indicates 
Bone Tumor
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for models performing worse than expected. To address this problem, various loss func-
tions based on cross-entropy have been employed, including the weighted cross-entropy 
(WCE) loss function (Eq. (6)), the mean focal loss (MFL) (Eq. (7)), and the α focal loss 
(Eq. (8)). In our experiments, the α-WFL loss function has shown the highest MCC score 
and approximately the same accuracy as the highest-performing loss function based on 
accuracy. As a result, we have used α-WFL for all our experiments. Results of our models 
with different loss functions are presented in Table 5.

4.11 � Model baselines

Figure 9 shows the results of our Net on the CUB200 dataset with different baseline mod-
els. As the baseline model complexity increases (from resnet18 to resnet101 and xception), 
accuracy generally improves, except for resnet101 which improves accuracy compared to 
the xception net. This is because resnet101 is a deeper and broader version of resnet50, 
allowing it to learn more complex and nuanced features from the data, potentially improv-
ing accuracy on some tasks. However, this also means that training resnet101 may require 
more computation resources and may be more prone to overfitting if the training data is 

Fig. 6   Visual comparison with weakly supervised CAM
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Fig. 7   Effect of attention module (AM) on localization (crop) and abnormality detection compared to fea-
ture maps (F(X)s)

Fig. 8   Effect of attention module (AM) on feature map (F(X)) on Bone Abnormality datasets
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insufficient or the regularization is not strong enough. Across all the baseline models, our 
WSMS net is outperformed by the resnet50 baseline (see Fig. 9).

5 � Discussion

Weakly supervised learning is a promising approach for medical image analysis, offer-
ing potential benefits in terms of scalability, cost-effectiveness, and accuracy. With fur-
ther research and development, weakly supervised learning methods have the potential to 
greatly improve the field of medical image analysis.

In the development of weakly supervised learning for medical image analysis, we pro-
pose a WSMS learning network. The proposed weakly supervised learning approach in 
this research paper has shown promising results in addressing the challenge of abnormality 
detection in X-ray images. The WSMS approach, which leverages the available supervision 
to the maximum extent possible, not only classifies the abnormality dataset but also pro-
vides the region of interest in the form of a bounding box. This approach enables the model 
to learn discriminative features and focus on relevant regions in the X-ray images for better 
classification and localization performance.

Table 5   Effect of loss function 
for class imbalance in weakly 
supervised learning

Loss Functions MCC Accuracy

CE 0.41 0.71
WCE 0.46 0.75
MFL 0.45 0.75
WMFL 0.50 0.79
α-FL 0.52 0.78
α-WFL 0.54 0.78

Fig. 9   Variety of baseline for WSMS net on CUB dataset
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Using CAM and attention maps improves the model’s interpretability, providing visual 
evidence of the decision-making process and facilitating verification mitigating some of 
the black-box aspects of the classifier. The multi-stage architecture with shared parameters 
increases the robustness and generalization performance of the model by enabling it to 
learn more complex and abstract features. The experimental results demonstrate the effec-
tiveness of the proposed approach, outperforming several state-of-the-art methods in terms 
of classification accuracy and achieved clear visualization of the area of interest.

However, we recognize that there is room for improvement in the proposed approach. 
More advanced attention mechanisms and architectures can be explored to further improve 
the interpretability and localization performance of the model. Additionally, the use of 
more diverse and larger datasets can be investigated to evaluate the generalization perfor-
mance of the proposed approach in real-world scenarios.

A notable limitation of our weakly supervised method is its suboptimal performance 
on datasets with class imbalances. Despite incorporating objective functions designed 
to mitigate this issue, the model’s reliance on positive samples during training remains a 
challenge, particularly for representing features of less prevalent classes. This limitation 
suggests the necessity for continued exploration of strategies to counter class imbalance 
in weakly supervised learning, especially within the context of medical imaging. Also, in 
future wanted to explore the explainability of the method and outcome [64, 65]. Overall, 
the proposed weakly supervised learning approach shows substantial potential for address-
ing the challenges of abnormality detection in X-ray images, and further research in this 
direction can lead to significant advancements in medical imaging applications.

6 � Conclusion

The proposed approach in this work addresses the challenge of abnormality detection in 
X-ray images through a weakly supervised multistage attention map learning approach. 
The use of a multistage neural network with shared parameters increases the robustness 
of the model in classification and feature map generalization, resulting in clearer attention 
maps and better object localization. Comprehensive experiments demonstrate that the 
model outperforms SOTA baseline models in terms of classification and abnormality 
localization quality. The proposed model achieves SOTA results in the classification and 
localization of images, as demonstrated through the analysis of two public benchmarks. 
This approach is promising for real-world applications as it leverages as much available 
supervision as possible, but still requires some level of supervision. The ability to provide 
a region of interest in the form of a bounding box in addition to classification provides 
a useful tool for medical professionals in identifying abnormalities and their locations 
in X-ray images. Overall, this work has the potential to significantly impact the field of 
medical image analysis and improve diagnostic accuracy in clinical settings.

Future work could explore the use of additional sources of supervision or a more 
comprehensive weakly supervised approach to further improve the accuracy and robustness 
of the proposed method. Additionally, further evaluation and comparison with state-of-the-art 
methods could provide insight into the effectiveness and practicality of this approach.
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