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Abstract
Image stitching finds diverse applications in multimedia contexts, and creating panoramic 
images with this technique can be particularly challenging in near-uniform scenes. Traditional 
feature detectors often struggle to identify distinctive features concealed within these scenes. 
The problem arises from the presence of featureless or homogeneous content lacking the neces-
sary distinctiveness required to provide abundant and widely dispersed corresponding interest 
points. Such problems can result in unsatisfactory visual outcomes during the stitching process, 
manifesting as conspicuous artifacts like seams, ghosting, and geometric distortion due to insuf-
ficient matchable inliers between overlapping images. This paper presents a novel approach to 
feature detection, employing a nonlinear diffusion method that involves modifying the conduc-
tivity function of the partial differential equation. Inspired by the time dilation phenomenon in 
Einstein’s theory of special relativity, we incorporate the Lorentz factor into the conductivity 
function, enabling the construction of novel multiscale nonlinear scale spaces that can effectively 
detect features in homogeneous regions and accurately stitch multiple images. Our experimental 
findings reveal that the proposed method consistently surpasses other state-of-the-art techniques 
in detecting extensive features and enhancing image stitching quality in near-uniform scenes.

Keywords  Feature detection · Image stitching · Lorentz factor · Near-uniform scene · 
Nonlinear diffusion · Partial differential equation

1  Introduction

Image stitching is commonly used across diverse multimedia applications to enhance vis-
ual experiences and create immersive content. Examples include 3D modeling, virtual and 
augmented reality, educational multimedia, large-scale event coverage, aerial mapping, 
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e-commerce product presentations, architectural visualization, virtual tours, and more. 
The core algorithm of image stitching involves aligning and merging information from two 
or more images with overlapping field-of-view (FOV) to create a single composite image 
with a wider FOV and higher resolution. The image stitching process involves three key 
steps: firstly, extracting and accurately matching interest points between input images, then 
the overlapping images are subjected to deformation or warping, aligning them precisely 
using estimated geometric or homography transformation models (e.g., affine, similarity 
and projective transformation) [1]. Following the alignment process, images are blended 
and seam-cut to create a seamless, wider FOV image [2–4]. Hence, the quality of align-
ment and stitching results greatly depends on finding enough and correct matchable inter-
est points (also known as keypoints) between the input images [5].

Image stitching has undergone significant advancements, benefiting various aspects of 
daily life by overcoming FOV limitations in images or videos [6, 7]. However, stitching 
images with near-uniform scenes presents specific challenges compared to scenes featuring 
distinctive textures. In near-uniform or low-texture scenes like the skies, oceans, deserts, 
planets’ surface etc., traditional feature-based image stitching algorithms struggle to find 
enough distinctive features or keypoints to match and align the images accurately. This 
is due to the lack of distinctive content that can provide reliable corresponding interest 
points. Insufficient matchable interest points often lead to difficulties in estimating precise 
transformation models for alignment, resulting in visual artifacts (e.g., seams, ghosting and 
blurring) and geometric distortion in the stitched output.

Moreover, substantial image distortion problems can arise due to “clustering” or “con-
centration” of corresponding interest points in specific overlapping regions. This issue 
typically arises when many corresponding interest points are detected only in small or nar-
row feature-rich areas within the overlapping region, leaving fewer or no points in most 
near-uniform regions. Consequently, the stitching result is further degraded because the 
“clustering” corresponding interest points provide a poor fit for accurately estimating the 
transformation model. Despite ongoing efforts by researchers to develop improved image 
alignment and advanced image composition methods, addressing severe misalignment and 
distortion in stitching near-uniform scene images remains challenging [8].

Image stitching methods rely heavily on robust feature detectors to obtain match-
ing keypoints from overlapping images. Feature detection involves identifying inter-
est structures and primitives (e.g., points, lines, curves, and regions) that highlight the 
salient content of images (e.g., corners, edges, blobs, and ridges). While these meth-
ods perform well on feature-rich images, they encounter challenges when dealing with 
near-uniform scene images. A comprehensive survey on recent developments in visual 
feature detection, categorizing methods into edge, corner, and blob detections, is elabo-
rated by Li et al. [9]. The earliest feature detector used for image stitching algorithms 
dates back to the work of Harris corner features in 1988 [10]. Although it is a corner 
and edge features detector, it lacks scale invariance, affecting its accuracy in providing 
matches for images of different sizes. Later, Scale-Invariant Feature Transform (SIFT) 
[11] emerged and gained widespread adoption in computer vision and image stitching. 
SIFT exhibits remarkable distinctiveness and invariance to image scale, rotation and 
translation, as well as robustness against illumination and viewpoint changes. There-
after, researchers have expanded the feature detection method to enhance its robustness 
and efficiency, while making it more suitable for real-time systems by optimizing its 
computational complexity. Concerning filtering techniques, SIFT [11, 12] and Speeded 
Up Robust Features (SURF) [13] excel in detecting blob-like features by utilizing a pyr-
amid of Gaussian scale spaces. In contrast, CenSurE features [14] are estimated by two 
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variants of bi-level Gaussian approximation filters, allowing for rapid computation with 
integral images in real-time.

Gaussian smoothing does not preserve object boundaries. Both image details and 
noise are blurred to some degree in Gaussian scale spaces, resulting in a diminution 
in localization accuracy and distinctiveness of the interest points [15]. This problem 
can be addressed using nonlinear diffusion filtering, which could generate smooth scale 
spaces and simultaneously preserve the natural boundaries of regions and objects [16]. 
Thus, instead of Gaussian smoothing, several methods, such as BFSIFT [17], KAZE 
[15], A-KAZE [18] and SRP-AKAZE [19], have adopted nonlinear diffusion filtering 
to improve the searching performance of local extrema at different scale levels. Other 
techniques like MSER [20] use extremal regions, whereas FAST [21] and AGAST [22] 
use accelerated segment tests. The most recent methods, such as RIFT [23] and MSFD 
[24], utilize phase congruency to tackle nonlinear radiation distortion in multi-model 
images. Multiple features are also employed to address multi-modal image registration 
[25]. Some researchers place greater emphasis on refining feature descriptors like WLD 
[26], BRIEF [27], M-LDB [18], BRISK [28], ORB [29], FREAK [30] and DFOB [31]. 
Their goal is to expedite computation speed while minimizing storage demands.

Although deep learning (DL) has gained prominence in tackling intricate computer 
vision (CV) challenges lately, it may not always be the one-size-fits-all solution for every 
application. Some scenarios may benefit more from using traditional algorithms [32]. For 
example, when it comes to general image stitching, classical techniques like SIFT [11] and 
other classical feature detection methods [9] excel in their performance. On the other hand, 
DL relies on specific training datasets, leading to performance degradation when dealing 
with images outside its training set. In autonomous robotics, the limitations of robotic hard-
ware and the lack of real-time annotated data often make classic computer vision methods 
a practical choice for robot applications [33]. Hybrid approaches that merge classical algo-
rithms with DL have shown potential in addressing CV challenges that are not readily solv-
able by DL alone in the modern context [32, 34]. Conventional CV techniques can enhance 
DL performance in various applications, including panoramic stitching [35], simultaneous 
localization and mapping (SLAM), 3D vision, etc. [36]. As such, classical CV techniques 
remain significant in the present landscape. The main focus of this paper is on the con-
ventional image stitching method, utilizing a novel feature-based detection algorithm. This 
paper does not delve into DL, as it is beyond the purview of this paper.

In this paper, we propose a novel feature detection method to improve image stitch-
ing performance and reduce severe misalignment or projective distortion, especially in 
the presence of near-uniform or low-texture images. The contributions of our work can 
be summarized as follows:

a.	 Introducing a novel conductivity function in partial differential equation (PDE) based 
on the Lorentz factor to create an alternative nonlinear scale-space.

b.	 Presenting a robust feature detection approach that relies on Lorentz-modulated non-
linear diffusion scale-space. This technique substantially enhances the number of reli-
able corresponding or matching interest points in overlapping images, offering notable 
advantages, particularly for images with near-uniform or low-texture characteristics.

c.	 Broadening the evaluation criteria to assess the performance of corresponding or match-
ing interest points across images. We accomplish this by studying their spatial distribu-
tion and investigating the connection between their recall ( RC ) and spread-overlap ( So ) 
metrics, represented as the RC∕So score.
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The rest of this paper is organized as follows: Section II explains the related work. Sec-
tion III details the proposed method and evaluation metrics. Section IV reports the experi-
mental results and analyses. Finally, the paper concludes in Section V.

2 � Related work

In this section, we begin with a review of nonlinear diffusion filtering, followed by a con-
cise definition of the Lorentz factor within the context of time dilation.

2.1 � Nonlinear diffusion filtering

Scale-space filtering is a powerful image processing technique that decomposes an image 
into a series of gradually smoother images across increasing scales or time units. The 
derived image representations can extract potential interest features and be applied in many 
applications such as denoising, segmentation, and multiscale analysis [37]. Over the years, 
several approaches related to scale-space filtering have been developed, notably the linear, 
nonlinear isotropic, and nonlinear anisotropic diffusion models [38]. While these methods 
are designed to simplify images at multiple scales, the diffusivity of nonlinear diffusion 
models excels at improving edges.

According to [39], the earliest theory of linear scale-space has already been axiomati-
cally derived by Taizo Iijima. However, the ideas of linear scale-space introduced by 
Witkin [40] and Koenderink [41] are more popular among researchers. In brief, Witkin 
introduced the Gaussian scale-space representation by convolving the original image with 
a Gaussian kernel. With reasonable assumptions, Koenderink [41] and Lindeberg [37] 
showed that the Gaussian function and its derivatives are the only sensible linear scale-
space kernels. The Gaussian kernel is generally defined as follows:

where x and y are the Cartesian coordinates of the image plane, and � is the scale level. 
The Gaussian scale-space of an image, L(x, y, �) can be easily constructed by convolving a 
variable-scale Gaussian kernel with an input image, I(x, y):

where ∗ indicates the convolution operation in x and y . Gaussian kernel with larger scale 
level tends to produce simpler or smoother image representation. Similarly, Duits et  al. 
consider Poisson scale-space as a feasible alternative to Gaussian [42]. A recent technique 
finds that multiscale Poisson kernel produces stable features in scale space [43].

Gaussian scale-space is useful for noise reduction and emphasizes prominent struc-
tures at selecting coarser scales. The major downside of Gaussian smoothing is that it 
does not preserve object boundaries and the loss of localized structure details increases 
at coarser scales. This limitation can be addressed by the nonlinear diffusion approach 
proposed by Perona and Malik [16] for edge detection and image restoration. Nonlin-
ear diffusion is described as a partial differential equation (PDE) that regulates the 
prior information of image features through the diffusion coefficient in the filtering 
processing. Nonlinear scale-space appears relatively stable in the presence of noise 

(1)G(x, y, �) =
1

2��2
e−(x

2+y2)∕2�2

(2)L(x, y, �) = G(x, y, �) ∗ I(x, y)
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while keeping details or edges well localized. For an input digital image I , nonlinear 
diffusion can be formulated mathematically as:

where div is the divergence operator, g(x, y, t) is the conductivity function that defines 
the diffusion weight, and ∇ is the spatial gradient operator. The variable t in the function 
g(x, y, t) represents the ‘time’ scale parameter. It is used to enumerate iteration ‘time’ steps 
to lead the preceding image to simpler image representations in discrete implementation. 
Thus, the function g(x, y, t) controls the diffusion process, adapting it to each pixel’s local 
image differential structure.

Generally, there are three different formulations of conductivity functions. Perona and 
Malik [16] proposed the following conductivity functions in their work.

The parameter k is the contrast factor that controls the diffusion weight magni-
tudes concerning the image spatial gradient, thereby regulating boundaries sharpness. 
According to [15] and [16], the parameter k can either be fixed manually at a con-
stant value or automatically computed from the image gradient histogram. On the other 
hand, Weickert used a different form of the conductivity function g3 to rapidly decrease 
diffusivity where smoothing on both sides of the edge is stronger than smoothing 
across it [44, 45].

The nonlinear scale spaces generated by these three forms of conductivity function are 
somewhat dissimilar: g1 favors high-contrast edges, g2 favors wide regions over smaller 
ones, and g3 favors intraregional smoothing over interregional blurring. According to 
Alcantarilla et al. [15], g1 and g3 are more suitable for corner detection, whereas g2 is better 
suited for detecting blob-like features.

2.2 � Time dilation phenomenon: lorentz factor

According to Einstein’s theory of special relativity, time dilation is fundamentally 
described as a phenomenon in which there is a difference in elapsed time between two 
events, measured by two clocks that are either moving relatively to each other or due to a 
gravitational potential difference between their proximity locations [46]. Generally, time 
dilation can be expressed as:

(3)
�I

�t
= div(g(x, y, t) ∙ ∇I)

(4)g1 = ���

(
−
|∇I(x, y, t)|2

k2

)

(5)g2 =
1

1 +
|∇I(x,y,t)|2

k2

(6)g3 =

{
1 , |∇I|2 = 0

1 − exp
(
−

3.315

(|∇I(x,y,t)|∕k)8

)
, |∇I|2 > 0

(7)Δt = � △ t�
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where Δt is the elapsed time for the clock observed in motion, Δt� is the elapsed time for 
the clock observed at rest, and � is a scaling factor determining how much time is relatively 
stretched and contracted. � is also known as the Lorentz factor and is defined from the Lor-
entz transformations [46] as:

where v is the velocity of the moving object and c is the speed of light. Since 𝛾 > 1 , the Δt 
measured in the clock in motion is longer than the Δt� measured in the clock at the resting 
reference frame. This phenomenon is known as time dilation. In simple terms, the faster 
the object moves through space, the slower the object moves through time.

3 � Our method

This section introduces a newly devised conductivity function inspired by the concept 
of time dilation, which provides mathematical principles for the proposed method. Sub-
sequently, we explain the feature detection algorithms and the steps for image stitching. 
Finally, we elaborate on the performance evaluation method.

3.1 � Conductivity function formulation

As previously stated, the idea of the proposed method draws inspiration from the phenom-
enon of time dilation and involves modifying the Lorentz function. Analogously, the Lor-
entz function expressed in (8) can be extrapolated to approximate an improved conductiv-
ity function that defines the diffusion weight in the diffusion equation.

Let’s consider an input image in which its image spatial gradient in each pixel is repre-
sented as ∇I(x, y, t) . According to (3), filtering the image to simpler scale space representa-
tion requires a diffusion weight, g , to preserve object boundaries (i.e., high image gradi-
ent) and to smooth non-boundaries or homogenous regions (i.e., low image gradient). In 
other words, the greater the image gradient in image space, the slower the image gradient 
degrades over the time scale. This characteristic indeed performs analogously to the Lor-
entz function. Thus, by replacing the variable v and the constant c in (8) with the image 
spatial gradient |∇I(x, y, t)| and the contrast parameter k , respectively, we obtain a newly 
found conductivity function expressed as:

Since the magnitude of image spatial gradient |∇I(x, y, t)| for a digital image is typically 
0 to 255, we take the absolute value of � to avoid any complex numbers when computing the 
square root term of g4. In our experiments, we manually select a value between 0.1 and 0.9 for 
the parameter k because it generally yields considerably stable diffusivity output.

Figure 1 demonstrates how image spatial gradients |∇I(x, y, t)| are affected under differ-
ent conductivity coefficients for a fixed parameter k . As shown in Fig. 1, we can see that the 

(8)
� =

1
√

1 −
v2

c2

(9)
g4 =

1
����1 −

�∇I(x,y,t)�2

k2

���

=
1
√
�
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conductivity coefficient of g4 tends to have a stronger impact on smaller image gradients (i.e., 
homogenous regions) when compared to the standard g2 . However, the g4 coefficient for 
|∇I(x, y, t)| ≥ 2 is notably high, leading to potentially blurry scale space at coarser scales. To 
reduce this blurry effect, we revise the g4 function by raising it to the power of 4, resulting in a 
new function, g5.

For |∇I(x, y, t)| = 1 , the modified g5 also demonstrates a stronger coefficient, as shown 
in Fig. 1. A strong coefficient for g5 is expected to rapidly smooth the homogenous regions. 
On the other hand, the g5 coefficient approaches zero when |∇I(x, y, t)| ≥ 2 , which explains 
that a high image gradient (i.e., object boundaries) is expected to degrade at a much slower 
rate over the time scale, or in other words, the object boundaries remain well-preserved at 
coarser scales. The improved g4 and g5 functions generate distinct scale space image struc-
tures, convincingly improve near-uniform scene feature detection and image stitching, as fur-
ther explained in Section IV.

3.2 � Building nonlinear scale spaces

To build nonlinear diffusion scale spaces from a digital image, we use Weickert’s modified 
semi-implicit scheme, namely the Additive Operator Splitting (AOS) [44, 45] scheme, to 
numerically approximate the nonlinear partial differential equation (PDE) in discretized form. 
In the AOS scheme, discretization of (3) can be expressed in a vector–matrix notation as:

where Lt represents the nonlinear scale spaces at evolution time t , Al is the block of tridi-
agonal square matrices, � is the step size, m is the number of dimensions ( m = 2 in our 
method), and Id is the identity matrix. Under consecutive pixel numbering along the direc-
tion l , the operators 

(
Id − m�Al

)
 interpret one-dimensional diffusive interaction along the 

axes are diagonally dominant tridiagonal matrices of a linear system of equations. Such 
a linear system of equations in the AOS scheme can be efficiently solved by the Thomas 

(10)
g5 =

1
(
1 −

|∇I(x,y,t)|2

k2

)2

(11)L
t+1 =

1

m

∑
m

l=1

(
Id − m�A

l

)−1
L
t

Fig. 1   The variation of conduc-
tivity coefficients g2 , g4 and g5 
with fixed parameter k against 
image spatial gradients ∇I
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algorithm or the Tri-Diagonal Matrix Algorithm (TDMA) [45, 47]. For every step size � in 
AOS scheme, all coordinate axes are treated the same way to create discrete nonlinear scale 
spaces.

Prior to building the scale space image structures, the first step is to compute a set of 
evolution times ti from which we find the step size �

(
= ti+1 − ti

)
 to apply in (11). The scale 

spaces are arranged in a sequential discrete octaves o and sub-levels s and analyzed via up-
scaling SURF’s box filter to approximate second-order Gaussian derivatives [13, 48]. Each 
octave-sublevel pair value is then mapped to a corresponding filter size as:

with an initial filter size f0 (= 9 × 9) corresponding to the Gaussian derivatives of ini-
tial sigma �0 (= 1.6 in our method). When filter size increases, the associated Gaussian 
scale also increases and can be easily calculated because the filter layout ratio remains con-
stant. Since nonlinear diffusion works in time units, the set of discrete scale sigma �i can be 
matched to their corresponding time units ti by using:

where N is the total number of 2-dimensional arrays of scale space image structures. For 
our method, we chose to create an array of 12 scale space image structures, which will be 
divided into 5 octaves, each comprises 4 sublevels. The first octave consists of 4 sequential 
scale spaces, and the remaining octaves comprise the last 2 scale spaces from the previous 
octave and the following sequence of 2 scale spaces.

For an input image of a near-uniform scene, Fig. 2 shows the difference between non-
linear scale-space structures computed using conductivity functions from (5), (9) and (10) 
for several contrast factors k . Each scale space image in Fig. 2 is cropped to square shape 
from its original dimensions, and only the 12th layer of the scale space image is presented 
for every conductivity function and contrast parameter k . As shown in Fig. 2, each con-
ductivity function performs at a different diffusivity rate, generating scale space images 
with distinctive degree of smoothness. When compared to the standard g2 , the proposed 
g4 smooths the input images at a much faster rate and results in expediting blurry struc-
tures in the output scale space, whereas g5 smooths the input image at a much slower rate 
and maintains most of the image’s prominent structures. At increasing contrast factors, g2 
and g4 generated scale spaces develop blurry effects and rapidly lose the most prominent 
structures. In contrast, almost all the structural information of g5 generated scale spaces are 
well preserved, and the strong image edges remain unaffected even at higher evolution time 
units.

3.3 � Feature detection and description

In search of scale-invariant interest points, we employ Hessian matrix by converting all 
nonlinear scale spaces into integral images, enabling fast computation to be later imple-
mented using box filters [13, 48]. For every integral image, the scale-normalized Hessian 
determinant matrix is determined through the application of box filters to approximate the 
Laplacian of Gaussian [13]. The Hessian determinant essentially acts as a measure of blob 
responses, which will be further examined in the non-maxima suppression process. Only 
Hessian responses above a predetermined threshold will be retained to regulate detec-
tion capability. After thresholding, non-maximum suppression is performed in a 3 × 3 × 3 

(12)fi = 3((2o × s) + 1), i = {0…N}

(13)ti =
1

2
�2

i
, i = {0…N}
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neighborhood of sequential scale spaces to find candidate points [11]. A point is classified 
as an interest point only if it is greater than its 8 neighbors in the current scale space and 9 
neighbors in the scale spaces above and below. Lastly, a 3D quadratic function will inter-
polate adjacent data points for sub-pixel accuracy and stable localization [11], eliminat-
ing unstable candidates with low contrast or inadequate edge localization. The interpolated 
extrema location is capable of providing substantial improvement in matching and stability.

Every identified interest point must define its distinctive feature description for image 
matching purposes. The feature description is extracted from a square region on the original 
input image, aligned to a dominant orientation at each interest point. The dominant orienta-
tion can be determined by calculating the Gaussian weighted Haar-wavelet responses within 
a circular neighborhood of radius 6 �i around the interest point [13]. Wavelet responses are 
then summed within a rotating circular segment of π/3 around the interest point, with the 
longest vector signifying the dominant orientation of the interest point. The final step in 
defining the feature description is to build the descriptor vector for each interest point. We 
apply the M-SURF descriptor by computing Haar-wavelet responses in the horizontal and 
vertical directions relative to the dominant direction (i.e., represented as dx and dy ) over a 
larger square region grid of size 24 �i×24 �i , which is split into smaller 4 × 4 square subre-
gions with 2 �i overlapping zone from the original input image [15]. In each subregion, 
wavelet responses are weighted using a subregion-centered Gaussian and aggregated into a 
4-dimensional descriptor vector, denoted as dv =

�∑
dx,

∑
dy,

∑��dx��,
∑���dy

���
�

 . This con-
tributes to an overall length of 64 (= 4 × 4 × 4) element feature vector for each interest point. 
Each descriptor vector is normalized to a unit vector to achieve contrast invariance.

3.4 � Image stitching

To stitch a pair of overlapping scene images successfully, it is essential to have a substan-
tial number of accurately matched interest points between the images. In this study, we 

Fig. 2   Example of nonlinear scale-space images computed using conductivity functions g2 , g4 and g5 for 
several contrast factors k. Each processed image is obtained by cropping the 12th layer of the scale-space 
image into a square shape
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use the matching algorithm in the VLFeat open-source library [49] to obtain a collection 
of indexed corresponding interest points and their squared Euclidean distance. To exclude 
outliers, we use the M-estimator SAmple Consensus (MSAC) algorithm [50], to provide 
better matching of the correct matches or inliers between the images. Given the inher-
ent randomness in the MSAC algorithm, the count of inliers may exhibit slight variation 
between each execution, though the differences are generally inconsequential. To get the 
highest possible number of inliers, we employ an iterative approach, execute the MSAC 
algorithm in 20 trials. Finally, we estimate the global geometric transformation model that 
aligns, warps, and blends the overlapping images, resulting in a decent stitched representa-
tion. Table 1 recaps the proposed method and all the related algorithms used in our image 
stitching procedure.

3.5 � Evaluation method

Assessing the performance of feature detectors and descriptors is a fundamental aspect 
of computer vision. The evaluation metrics introduced by Mikolajczyk et  al. [51, 52], 
are widely adopted in various studies involving local features. However, it is worth not-
ing that these metrics, including repeatability and recall measures, may not directly reflect 
the performance of image stitching in the context of the extracted inliers. For example, an 
effective feature detector will deliver high repeatability. Still, it does not guarantee that the 
stable inliers extracted from such feature detector are sufficient for yielding decent image 
stitching. The quality of image stitching relies on the presence of sufficient quantity of 
stable inliers and their well-distributed spatial placement within the images’ overlapping 

Table 1.   Summary of algorithms used in image stitching procedure (Algorithm 1) and the proposed method 
(Algorithm 2)

Algorithm 1 Feature detection, description, matching and image stitching 
Input Images In, Gaussian sigma , octave o, sub-level s, initial sigma o, and contrast factor k
Output Final stitched image Io 
 

1. Feature detection and description: 

     for  

a. Denoise In with Gaussian kernel Ln 

b. Use PDEaos function to compute N nonlinear scale spaces Li 

c. Extract Hessian determinant and Laplacian sign response map from each Li 
d. Apply non-maximum suppression 

e. Extract 64 elements feature vector 

     end for  
2. Apply matching algorithm provided in VLFeat library [40] 

3. Exclude outliers using MSAC algorithm [41] 

4. Estimate global geometric transformation model 

5. Warp and blend images In Io 

Algorithm 2 PDE-based nonlinear diffusion scale space filtering  

Input Gaussian denoised images Ln, octave o, sub-level s, initial sigma o and contrast factor k
Output Set of integral nonlinear scale space images Li,  
 
function PDEaos 
for  

a. Compute a set of filter size fi 

b. Compute corresponding discrete scale sigma i  

c. Compute evolution times ti 

d. Compute step size ti+1 - ti 

e. Compute diffusivity matrix Al(Ln) for the desired k 
f. Solve vector-matrix (11) using AOS and TDMA algorithms 

g. Convert nonlinear filtered images to integral images Li 

end for 
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regions. Therefore, we employ the latest evaluation metrics, such as Spread-overlap (So) 
metric and the RC∕So score, which we believe are well-suited for evaluating the image 
stitching performance [53].

Recall ( RC ) Measure  To match a pair of planar scene images, a detected interest point xi 
in image Ii will typically be repeated in image Ij as the corresponding point xj . Recall ( RC ) 
is defined as the number of inliers divided by the number of corresponding points visible 
within the overlapping scene [51]. In mathematical notation, the recall ( RC ) measure can 
be expressed as:

where Nm is the number of inliers or correct matches, and Nc is the number of corre-
sponding points. Generally, a repeated point xi will not be precisely detected at the position 
xj , but rather in the neighborhood of xj , denoted by � . Hence, Nc(�) can only be satisfied if 
the location uncertainty of xi does not exceed � in size within the neighborhood of xj [54]. 
Instead of � , we employ the classical approach to determine the number of correspondences 
based on the smallest Euclidean distance (multiplied by a threshold value of 1.5) between 
each interest point’s feature vectors in both images Ii and Ij . According to [51], the number 
of inliers is defined based on a maximum overlap error ( �S = 0.5) measuring the accuracy 
of matching corresponding regions under a homography transformation. As an alternative 
way to exclude outliers, we use M-estimator SAmple Consensus (MSAC) algorithm [50] 
to determine the number of inliers based on the maximum distance error (i.e., 1.5 pixels) 
from an interest point in image Ii to its projective corresponding point in image Ij.

Spread‑overlap ( S
o
 ) Measure  Inspired by Marmol et al. [55], we develop the spread-over-

lap ( So ) metric to compute the spatial distribution of interest points across the overlap-
ping region between images. Marmol et al. constructed a uniform 10 × 10 grid cell mask 
on the image inside the view of arthroscope’s eyepiece. They calculated the ratio of num-
ber of grid cells containing at least one interest point. Instead of using a 10 × 10 grid cell 
mask, we partitioned the entire image area into square grid cells, each occupying 0.25% 
of the total image area. This approach yielded a consistent grid of 400 square covering the 
entire image area, regardless of the image’s size. To ensure each grid cell is big enough to 
hold a few interest points, we use sample images with at least 100 × 100 pixels or higher 
in our study. The spread-overlap ( So ) measure is thus defined as the number of grid cells 
within the overlapping region that contain no less than one inlier, according to the follow-
ing expression:

where no refers to the number of valid grid cells contain at least one correct match or inlier, 
and No is the total number of grid cells ( No = 400 ) overlaid only the overlapping region.

RC∕S
o
 Score  The score is computed as the ratio of the recall ( RC ) to the spread-overlap 

( So ) measures. In principle, the RC∕So score measures how well the inliers’ spatial distri-
bution estimates the global homography transformation, which is used to stitch the over-
lapping images precisely with minimal misalignment or distortion. A higher value of the 

(14)RC =

|||Nm

(
𝜖s
)|||

||Nc(𝜖)
||

> 0

(15)So =
no

No

=
no

400
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RC∕So score can lead to obvious misalignment, distortion, or even failure in image stitch-
ing, primarily due to lack of inliers and their narrowed or concentrated distribution within a 
small area of the overlapping region. To illustrate this, consider a set of 30 inliers (depicted 
as red dots in Fig. 3) with an RC measure of 0.750 (equivalent to 75%). These inliers are 
scattered in three distinct distribution patterns across the overlapping region (see Fig. 3(a)-
(c)). The overlapping area is divided into a 7 × 5 uniform square grid cell for simplicity. 
When inliers are widely scattered in the overlapping region, the RC∕So score is likely to 
be closer to a value of one (see Fig. 3(a)-(b)). This suggests that in Fig. 3(a), the inliers are 
more reliable for achieving decent alignment in image stitching. Conversely, when inliers 
are intensely concentrated within a smaller area, as shown in Fig.  3(c), a higher RC∕So 
score would be reached, indicating a greater probability of misalignment, distortion, or 
even failure in image stitching. This happens because the narrow spread of inliers provides 
insufficient information for accurate estimation of the global homography transformation 
needed for proper image stitching.

4 � Result and discussion

In our experiments, we validate the effectiveness and robustness of the proposed feature 
detection method by stitching various pairs of images and assessing the detected inter-
est points using evaluation metrics discussed in the previous section. To implement the 
proposed method and the related algorithms for image stitching and evaluate their perfor-
mance, we use the MATLAB computer vision system toolbox along with the mexOpenCV 
interface in our research. Additionally, we adapt and make use of certain algorithms pro-
vided in Ralli diffusion code [47], OpenSURF library [48] and VLFeat open-source library 
[49] to accomplish the proposed feature detection and description algorithms. The effec-
tiveness of our feature detection method is subsequently validated against various state-of-
the-art methods, including MSER, SIFT, SURF, BRISK, KAZE, A-KAZE, AGAST, ORB, 
and the recent upright variant of RIFT (denoted as U-RIFT). Table 2 provides a summary 

 = 0.771; RC/So = 0.972 SoSo  = 0.571; RC/So = 1.313 So = 0.200; RC/So = 3.750 (c)(b)(a)

Fig. 3   Explanation of the RC/So scores in the context of 30 sample inliers within 7 × 5 square grid cells in 
the overlapping region. The recall (RC) measure is set to 0.750 with red dots indicate inlier locations
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of these methods based on their feature detector, associated descriptor, the targeted fea-
tures, and data types. The default settings for each method are basically retained in our 
experiments. This study is carried out on a Windows 10 64-bit computer equipped with an 
Intel core i5-6300U CPU operating at 2.40 GHz and 8.00 GB of RAM.

Concerning the experimental datasets, we use 25 benchmark (available for download at 
[15, 52, 56]) and 75 real-world image pairs to evaluate and compare our method with state-
of-the-art feature detectors, both quantitatively and qualitatively. Figure 4 shows 5 exam-
ples of benchmark image pairs, including ‘bikes’ and ‘trees’ for image blur, ‘leuven’ for 
illumination change, ‘iguazu’ for Gaussian noise, and ‘ubc’ for JPEG compression. Each 
set of benchmark images consists of 6 same-scene images that gradually change their pho-
tometric transformation, respectively. The real-world images contain scenes where certain 
regions within the image content exhibit homogeneity or low-textured characteristics. As 
discussed in Section I, near-uniform scene images tend to lead to less accuracy and sensi-
tivity for state-of-the-art feature detection methods due to near-homogeneous or low-tex-
ture content. These sample images are sourced from publicly available datasets compiled 
by previous researchers (refer to [57–60] for examples), online resources from the NASA 
Photojournal [61], and images captured by the authors in real-world scenarios (available 
upon request). All color images are converted to grayscale before processing in feature 
detection and image stitching algorithms.

Table 2   Summary of feature detection and description methods used for validation

Detector Descriptor Feature Type Data Type

Corner Edge Blob Region nonbinary binary

MSER SURF - - - √ √ -
SIFT SIFT - - √ - √ -
SURF SURF - - √ - √ -
BRISK BRISK - - √ - - √
KAZE M-SURF - - √ - √ -
A-KAZE M-LDB - - √ - - √
AGAST FREAK √ - - - √ -
ORB BRIEF √ - - - - √
U-RIFT U-RIFT √ √ - - √ -

(a) Bikes (b) Trees (c) Leuven (d) Iguazu (e) Ubc 

Fig. 4   Examples of benchmark image pairs with (a)-(b) image blur, (c) light change, (d) Gaussian noise, 
and (e) JPEG compression, used for feature detector performance comparison
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4.1 � Benchmark image analysis

For ease of reference, the proposed feature detectors that utilize partial differential equa-
tions (PDE) with the new conductivity g4 and g5 will be referred to as ePDE-g4 and ePDE-
g5 in the following discussion. Knowing that the diffusion weight is regulated by the con-
trast factor k (as expressed in (9) and (10)), Fig. 5 illustrate how the performance of our 
proposed feature detectors, ePDE-g4 and ePDE-g5 , varies across various value of the con-
trast factors k for the 25 benchmark image pairs (see Fig. 4). For each contrast factor k , we 
compute and average the evaluation response of each feature detector across all benchmark 
images. As shown in Fig.  5(a)-(b) for ePDE-g4 , both the average number of inliers and 
spread-overlap measure experience a declining trend at higher values of the contrast factor 
k . The result is not unexpected because the nonlinear scale spaces generated by ePDE-g4 
generally contain poorer local structure information at higher contrast factor k (see Fig. 2). 
On the other hand, the performance of ePDE-g5 is reasonably stable, with only a slight fall-
off observed across contrast factors k . Its detected inliers are greater in quantity and spread 
wider within the overlapping region when compared to ePDE-g4 . This is because the 
dominant structure of nonlinear scale spaces generated by ePDE-g5 is prominently well-
preserved (see Fig. 2), due to its stable diffusivity regulated by (10). Figure5 (c) shows that 
ePDE-g4 can hold marginally more inliers than ePDE-g5 for their detected corresponding 
feature points. In Figure 5(d), the average RC∕So result for ePDE-g5 is comparatively more 
consistent than ePDE-g4 , which implies that ePDE-g5 is likely to create less distortion to 
the final stitched image. Based on the results in Fig. 5 and considering computation com-
plexity concern, we choose a value of k (= 0.5) for the proposed method in the subsequent 
experiments.

Figure 6 shows the performance results for various feature detectors by averaging their 
evaluation responses across benchmark images. Given that these benchmark images are 

Fig. 5   Performance analysis of the proposed feature detectors ePDE-g4 and ePDE-g5 against contract factor 
k. For each evaluation metric, the results are obtained by averaging the evaluation responses for each con-
tract factor k across 25 pairs of benchmark datasets (see Fig. 4)
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generally feature-rich but gradually become blurry, dimmer, lossy or noisy (see Fig.  4), 
ePDE-g5 offers a more significant number of inliers than other state-of-the-art feature 
detectors except ORB, KAZE and AKAZE as shown in Fig. 6(a). As expected, ePDE-g4 
generates lesser number of inliers when compared to ePDE-g5 due to its vague structure 
of nonlinear scale spaces (see Fig. 2). Despite having a lesser number of inliers, ePDE-g4 
still outperformed MSER, SURF, AGAST and BRISK in detecting stable inliers. As shown 
in Fig. 6(b), ePDE-g4 and ePDE-g5 produce broader spread of inliers across the overlap-
ping region than other feature detectors. Their spread-overlap performance is relatively 
equivalent to KAZE and AKAZE over feature-rich images. Figure  6(b) also shows that 
both ePDE-g4 and ePDE-g5 could hold at least 70% of correct matches from their detected 
interest points, which imply that they can generate enough reliable and matchable interest 
points within the overlapping region. In Fig. 6(c), both ePDE-g4 and ePDE-g5 have RC∕So 
scores closer to the value of one (similar to SIFT, ORB, KAZE and AKAZE), suggesting 
that their detected inliers are more reliable in estimating proper alignment for feature-rich 
image stitching. An example in Fig. 7 demonstrates that both ePDE-g4 and ePDE-g5 can 
detect more inliers, not only widely spread across the overlapping region but also increase 
its detection capability at smoother, dimmer, lossy and near-uniform areas when compared 
to other state-of-the-art feature detectors.

4.2 � General images analysis

In this section, we further examine the performance of the proposed method by com-
bining the benchmark images and an additional 75 pairs of real-world and near-uniform 
scene images. These images are arbitrarily gathered from various datasets (captured by 
authors, researchers’ datasets, and online resources), where certain areas of these images 
are either near-uniform or featureless. To determine the image stitching success rate for 
each feature detector, as shown in Fig.  8, we visually inspect the end result of every 
image stitching process based on how well the images pairs are aligned to each other, 
devoid of any visible severe distortion effects on the final stitched image. The image 
stitching success rate is calculated based on the percentages of the number of correctly 
stitched images out of the 100 pairs of sample images. As shown in Fig. 8, the perfor-
mance of both ePDE-g4 and ePDE-g5 stands out when it comes to stitching near-uniform 
scene images, achieving a success rate of no less than 98%, which surpasses other feature 
detectors that achieved success rate below 95%. MSER shows the worst performance in 
our study, demonstrating only a 62% success rate.

Fig. 6   Performance analysis of the proposed method compared to other state-of-the-art feature 
detection methods. Each datum is obtained by averaging the evaluation responses across benchmark 
images (see Fig. 4)
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Most of the unpleasantly stitched images generally occur when the detected inliers are 
insufficient and intensely scattered within a smaller area of the overlapping region. Figure 8 
also clarifies that even some popular feature detectors, like KAZE that holds the greatest 
number of detected inliers, do not necessarily reflect its capability to achieve a better suc-
cess rate for near-uniform scene image stitching. KAZE scores 5% lower in its image stitch-
ing success rate than the proposed ePDE-g4 and ePDE-g5 . This implies that both ePDE-g4 
and ePDE-g5 are comparatively more robust and sensitive than other feature detectors in 
near-uniform scene image stitching, as they create sufficient inliers within the overlapping 
region. The advantage of both ePDE-g4 and ePDE-g5 is further supported by their inliers’ 
spread-overlap results, as shown in Fig.  9(a), which reveals their potential to produce a 
larger number of widely distributed inliers within the overlapping region when compared 

TSAGA)d(FRUS)c(TFIS)b(RESM)a(

EZAKA)h(EZAK)g(BRO)f(KSIRB)e(

-EDPe)j(TFIR-U)i( -EDPe)k(

Fig. 7   Both ePDE-g4 and ePDE-g5 demonstrate a significantly wider distribution of inliers when compared 
to other feature detection techniques in their resulting ‘leuven’ stitched images. White circles and cross 
markers indicate the approximate inlier locations

Fig. 8   Success rate of image 
stitching and the average number 
of inliers for various feature 
detectors across 100 pairs of 
sample images. Both ePDE-g4 
and ePDE-g5 achieve a success 
rate of 98% or higher when com-
pared to other feature detectors
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to other feature detectors. Although KAZE demonstrates an impressive result in terms of 
the average inliers count and spread-overlap (as shown in Fig. 9(a)), it does not appear to 
excel in stitching near-uniform images, as indicated in Fig. 7, Fig. 10, and Fig. 11. By visu-
ally inspecting over 100 pairs of images, we notice that KAZE and A-KAZE generally per-
form well over feature-rich regions but not in the near-uniform areas. To support this claim, 
we provide a comparison of final stitched images for the detected inliers between KAZE 
and ePDE-g5 , as illustrated in Fig. 10.

For each feature detector, the evaluation metrics in Fig.  9 are expressed as average 
values across the 100 pairs of sample images. Figure  9(b)-(c) illustrates additional per-
formance comparisons together with the number of inliers for various feature detectors, 
i.e., the recall ( RC ) measure and the RC∕So score, respectively. Figure  9(b) shows that 
all feature detectors can retain at least 65% of their corresponding interest points on aver-
age as inliers, except for ORB, which scores only 56.4% in the recall measure. The recall 
outcomes for both ePDE-g4 and ePDE-g5 are regarded as reasonably satisfying. This is 
because the success of image stitching typically depends more on the quantity and distribu-
tion of inliers than on the recall percentage of correct matches. As depicted in Fig. 9(c), 
both ePDE-g4 and ePDE-g5 outperform other feature detectors by expressing the RC∕So 
ratio closer to one, which implicitly suggests that the detected inliers are expected to be 
more precise in approximating decent image alignment. Hence, we can anticipate precise 
image stitching from the proposed ePDE-g4 and ePDE-g5 , given their capability to identify 
sufficient inliers with more extensive spatial distribution. This is, in fact, important for the 
precise estimation of alignment between near-uniform scene images. On the contrary, a 

Fig. 9   Performance analysis for various feature detectors over 100 pairs of sample images that consist of 25 
pairs of benchmark images and 75 pairs of real-world near-uniform scene images

ePDE-

KAZE 

(a) Stitched images 1 (b) Stitched images 2 (c) Stitched images 3 (d) Stitched images 4

Fig. 10   The ePDE-g5 exhibits a notably wider spread of inliers compared to KAZE, leading to less dis-
tortion in stitched images (specifically Fig. 10(a) and (b)). White circles and cross markers represent the 
approximate locations of inliers
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higher RC∕So ratio tends to create noticeable image distortion, often leading to failure in 
image stitching.

Fig. 11 presents the resulting stitched near-uniform scene images, each highlighting the 
estimated position of detected inlier within the overlapping region. These images are pro-
vided for qualitative comparisons among various feature detectors. For each comparison 
in Fig. 11, the state-of-the-art method produces the first image, while the second image is 
created using the proposed ePDE-g5 method. Stitching these images (as shown in Fig. 11) 
is undoubtedly challenging because of their relatively homogeneous and low-texture 
image content. When limited inliers are tightly clustered in a small region, it generally 
offers less information to an accurate estimation of the global geometric transformation 
between overlapping images. This often results in noticeable misalignment, ghost effects, 
and image distortion. Such problems can be seen in Fig.  11. For example, the stitched 
images produced by BRISK and KAZE, illustrated in Fig. 11(e) and Fig. 11(g), exhibit 
distortion, while MSER, AGAST and U-RIFT appear to produce severe misalignment, 
as seen in Fig. 11(a), Fig. 11(d), and Fig. 11(i), when compared to the end products of 
ePDE-g5 . Notice also that the majority of the state-of-the-art feature detectors face chal-
lenges in detecting a sufficient inlier, as illustrated in examples in Fig. 11(b), Fig. 11(c), 
Fig. 11(f), and Fig. 11(h)), particularly when working with near-uniform scene images. 
Considering these comparisons and analyses, the proposed methods demonstrate superior 
performance in image stitching when compared to other state-of-the-art methods, particu-
larly for the near-uniform scene images. This is achieved by generating a more extensive 
and widely distributed set of inliers. 

However, this enhancement comes at the expense of increased computation complexity 
compared to other state-of-the-art methods (see Table 3). As shown in Table 3, the runtimes 
are averaged across 20 images, highlighting the fastest execution times observed for each 
investigated feature detection method. The longer runtime of our method is primarily due to 
the iterative process involved in generating comprehensive nonlinear diffusion scale-space 

(a) MSER vs ePDE-  (b) SIFT vs ePDE- -EDPesvFRUS)c(

(d) AGAST vs ePDE-  (e) BRISK vs ePDE- -EDPesvBRO)f(

 (g) KAZE vs ePDE-  (h) A-KAZE vs ePDE-  (i) U-RIFT vs ePDE-

Fig. 11   Examples demonstrating how the ePDE-g5 method surpasses other feature detection techniques in 
terms of the spatial distribution of inliers within the overlapping region of the resulting stitched images (in 
grayscale). White circles and cross markers represent the approximate locations of inliers
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representations and detecting extensive inliers in our feature detection method. While we 
acknowledge that the longer execution runtime is a significant concern for real-time applica-
tions, we believe that the trade-off in computational cost is well justified by the substantial 
improvement in image stitching quality and overall performance of our proposed method. In 
future work, we aim to explore optimization techniques, including patch-based methods that 
operate on localized image patches instead of the entire image, as well as the potential appli-
cation of deep learning strategies to mitigate computational complexity challenges without 
compromising the effectiveness of our approach.

5 � Conclusion

Inspired by Einstein’s theory of special relativity, we have developed a new feature detec-
tion method based on Lorentz-modulated nonlinear scale spaces. This approach aims to 
enhance the performance of image stitching, particularly in challenging near-uniform 
scenes that often lack distinctive features due to their featureless or low texture nature. 
Our method addresses this challenge by incorporating the Lorentz factor into the formu-
lation of the conductivity function of partial differential equation (PDE). This results in 
novel nonlinear scale spaces that offer richer multiscale structural information, making fea-
ture detection more robust. Our experimental results show that our method significantly 
outperforms many state-of-the-art methods, such as MSER, SIFT, SURF, BRISK, KAZE, 
A-KAZE, AGAST, ORB, and U-RIFT. Indeed, our method significantly enhances feature 
detection efficiency and the spatial distribution of inliers across the overlapping region of 
near-uniform scene images. Although KAZE and A-KAZE excel in feature-rich regions, 
its performance tends to decline in near-uniform areas. This paper primarily focuses on the 
conventional image stitching approach, utilizing a novel feature-based detection algorithm. 
We do not delve into deep learning (DL) as it is not within the scope of this study.

Furthermore, we have extended the evaluation method for image stitching performance 
by employing the latest criteria measures: the spread-overlap So measure and the RC∕So 
score. These criteria offer several advantages over conventional evaluation metrics for 
assessing the performance of feature detectors and image stitching. The spread-overlap 
So measure provides valuable information about the inlier’s spatial distribution within the 
overlapping region. On the other hand, the RC∕So score is a reliable indicator to determine 
the success rate of image stitching. They are both of utmost importance in accurately eval-
uating the effectiveness of feature detectors and image stitching.

Our proposed feature detection method can be applied to enhance a wide range of mul-
timedia applications, including panoramic stitching, virtual tours, surveillance, satellite 
imaging, automobile vision, virtual reality, immersive full dome visualization, and more. 
In line with our future interest, we intend to apply this method to enhance the fusion of 
astronomical images, thereby improving their matching accuracy for precise image stitch-
ing. Astronomical images often capture scenes that are near-uniform, featuring dim and 
blurry objects against a primarily uniform and noisy background. Detecting sufficiently 
correct and matchable feature points in these overlapping images for precise alignment is a 
challenging task. The difficulty often results in misalignment, severe distortion, and visible 
artifacts (such as ghosting and blurring effects), leading to misinterpretations of astronomi-
cal studies. We firmly believe that our proposed Lorentz-based nonlinear diffusion feature 
detection holds the potential in addressing and improving the challenges associated with 
astronomical image stitching.
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