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Abstract
Problem Cancer is one of the deadliest diseases prevalent in the world. Survivability, 
early diagnosis, and accurate prognosis are of utmost importance for the therapeutics and 
clinical management of cancer patients. To achieve accurate and timely prediction of the 
survival of cancer patients, several machine-learning models based on genomic data have 
been proposed but a comprehensive review of recent applications in cancer survival predic-
tion is lacking.
This paper represents a review of the most recent application of machine learning and deep 
learning on cancer survival prediction, with a particular focus on the use of genomic data. 
It specifically targets the most prominent cancer types such as breast cancer, glioblastoma, 
lung cancer, renal cell cancer, and oral cancer.
Methods A systematic review approach is employed to analyze recent studies on machine 
learning techniques applied to cancer survival prediction. Emphasis is placed on method-
ologies utilizing genomic data due to its effectiveness in predicting survival outcomes.
Results This review highlights the efficacy of different machine/deep learning-based tech-
niques in predicting survival outcomes for different cancer types with genomic data. It 
also provides a summary of the contributions made by different research groups, critically 
examines the associated challenges, and suggests potential areas for further investigation.
Conclusion Machine learning and deep learning techniques, especially those utiliz-
ing genomic data, hold significant promise for accurate cancer survival prediction across 
diverse cancer types. Despite advancements, challenges such as data heterogeneity and 
model interpretability still persist. Further research is warranted to address these challenges 
and develop a comprehensive framework for cancer survival prediction applicable to vari-
ous cancer types. This review lays the foundation for future investigations in the area of 
cancer research.
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1 Introduction

Cancer is a deadly disease that caused about 10 million deaths worldwide in 2020 and 
will have the greatest relative increase by 2040 [1]. In the United States, one in ten adults 
has been infected with cancer disease [2]. These figures are not different for India, having 
the third rank in cancer cases around the globe [3]. The death rate due to cancer in India 
has been increasing rapidly since 1990 [4]. These figures are truly astonishing and scary. 
Usually, Cancer occurs due to the abnormal growth of cells [5]and metastasizes to various 
parts of the body through blood or lymph vessels [6]. Cancer cells acquire the needed space 
and nutrients of the healthy organ which then may lead to organ failure and can become a 
cause of death. Over the past decades, cancer research has been directed toward detecting 
cancer at its initial stages. The researcher’s continuous efforts led to the development of 
new techniques and strategies for the early prediction of cancer which helps in its treatment 
[7], like [8] Ostu’s thresholding technique for the segmentation of brain tumors using MRI 
images. Treatment of cancer patients further can be improved by survival time analysis [9]. 
The survival time refers to the duration between the date of diagnosis or initiation of treat-
ment for a disease, such as cancer, and the conclusion of the observation period. Predicting 
cancer survivability is challenging due to the complex nature of cancer disease which is 
influenced by various genetic and environmental factors. Additionally, incomplete or noisy 
data, limited sample sizes, and variability in data collection protocols pose obstacles to 
accurate prediction. It’s crucial for therapeutics and clinical management because timely 
and accurate predictions can guide treatment decisions and help improve patient outcomes.

The approach for assessing the effectiveness of a new treatment in a clinical trial is to 
measure the overall survival. The accurate prediction of survival time can provide doctors 
with a better approach to the treatment of a person who is suffering from a disease. In past 
decades, high-throughput technologies have been utilized to predict survival time which 
helps to define prognostic indices for mortality or recurrence of disease and to thoroughly 
investigate the outcome of treatment. Survival time is computed using clinical, image, or 
genomic data. Among the different types of data, genomic data is the most valuable to have 
an accurate prediction. Genomic data provide information about molecular mechanisms of 
cancer development and progression. At the same time, other data types like clinical data 
or imaging data do not capture genetic changes in cancer patients. But including genetic 
data for research, helps in predicting survival time accurately by exploring the complexi-
ties of disease and also enables in identification of biomarkers of survival. These genomic 
data can be obtained from various open-source platforms like Gene Expression Omnibus 
(GEO) [10] and The Cancer Genome Atlas (TCGA) [11, 12]. AI and Machine learning 
are useful in the medical and healthcare fields, including disease detection, healthcare ser-
vices, and industry applications. This review article concentrates on the application of both 
conventional machine learning and deep learning methods that utilize genomic data for 
predicting survival time. As genomic data becomes increasingly standardized and sophis-
ticated analysis techniques continue to evolve, it has the potential to significantly enhance 
the development of robust algorithms for predicting survival time.

The highly complex as well as expensive genomic data analysis is a significant bur-
den for clinicians in terms of diagnosis, prediction, and subsequent management. Corre-
spondingly, the diagnosis and treatment planning are stagnant and fallible, as these rely 
on the physician’s skills and expertise, which may be instinctive and inaccurate. Hence, 
quantitative measures are required and are best for the diagnosis. Advanced machine learn-
ing and deep learning techniques provide targeted solutions. By employing new learning 
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techniques, clinicians can enhance the treatment planning of patients and achieve better 
outcomes. The use of machine learning and deep learning techniques in utilizing various 
types of genomic data for predicting the survival time is shown in Fig. 1.

The prediction of survival time for cancer patients comes with a few sequential steps: 
(1) preprocessing of genomic data, (2) dimensionality reduction, (3) feature selection, (4) 
model training, and (5) prediction of survival time. In the training stage, various type of 
genomic data (DNA Methylation [13], Copy number Alteration, mRNA, and other data-
types) is preprocessed. These features are then employed, either individually or in com-
bination, to reduce the dimensionality, and the model is trained using various machine-
learning techniques. Figure 2 illustrates these steps of survival prediction using machine 
learning techniques.

On the other side, advanced deep learning methods that utilize layered artificial neural 
networks (ANN) with supervised or unsupervised learning techniques automatically com-
bine feature selection, dimensionality reduction, and prediction into a single process. As 
deep learning models strive to discover concealed patterns and connections, they usually 
perform better in predicting survival time than traditional machine learning approaches. 
With the increasing availability of genomic data and advanced processing capabilities, 
deep learning is gaining popularity as a powerful tool for genomic data analysis.

Existing literature for predicting survival time in cancer patients often relies on clini-
cal or image data. However, these methods may not always provide accurate predictions, 
and these do not fully utilize the wealth of information available in genomic data. With 
genomic data, there is very little review on the survival prediction of cancer patients, but 
they are not too extensive and also there is no such comparison of different machine learn-
ing models which gives the idea of potential research in the future. This paper aims to 
comprehensively review the published literature regarding the use of machine learning and 
deep learning techniques for survival prediction of breast, glioblastoma, lung, renal cell, 

Fig. 1  Use of machine/deep learning techniques for survival prediction of cancer patients

Fig. 2  End-to-end framework for prediction of survival time using machine learning techniques
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and oral cancer. The primary outcome indicator is the various biomarkers of survival of 
these cancer types and the accuracy in the prediction of survival using genomic data.

The main contributions of this paper are as follows:

• Comprehensive review of the use of machine learning and deep learning techniques for 
survival prediction in various types of cancer.

• Analysis of the effectiveness of these techniques in utilizing various types of genomic 
data for predicting the survival time.

• Analysis of various feature selection methods for extracting the important features for 
survival prediction.

• Identification of potential areas for future research and improvement in this field.

The rest of this review is organized as follows. Section 2 provides a detailed overview 
of the machine-learning approaches for cancer survival prediction. Section  3 presents a 
discussion of these techniques. Finally, Section 4 concludes the review and provides direc-
tions for future research.

2  Machine learning approaches for cancer survival prediction

2.1  Public databases for genomic dataset

Datasets are extensively accessible and selected based on the discretion of various research 
groups. However, most of them opt to build algorithms utilizing well-established can-
cer patient databases to enhance the research value. The most well-known databases for 
genomic data are The Cancer Genome Atlas (TCGA) and the International Cancer Genome 
Consortium (ICGC). TCGA is the largest database with a dataset of more than 33 types 
of cancer that is freely available (https:// portal. gdc. cancer. gov/). Another well-established 
database is The  International Cancer Genome Consortium  (ICGC) (https:// dcc. icgc. org/) 
giving cancer researchers access to over 2,400 consistently analyzed genomes correspond-
ing to over 1,100 unique ICGC donors.

2.2  Performance measurements

In Cancer Research, different research groups utilize various algorithms with the use of 
different types of datasets. For comparison, various metrics are used by researchers. Some 
commonly used metrics are c-index, accuracy, sensitivity, specificity, mean mean squared 
error or mean absolute deviation, precision and recall, and overall survival time.

2.3  Selection procedure

The research was performed on the IEEE Xplore digital library, Web of Science, Science 
Direct, Google Scholar, and PubMed search engines using keywords “Genomic data”, 
“Survival” with “Breast cancer”, “Glioblastoma”, “Lung cancer”, “Renal cell cancer”, and 
“Oral cancer”. Afterward, these keywords are combined using the “AND” operator with 
“Machine Learning” or “Deep Learning” with “Survival prediction”. The articles that are 
in journals or conference papers were included. The inclusion criteria of the articles are 

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/)giving
https://dcc.icgc.org/)giving
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machine learning or deep learning models in the prediction of survival using genomic data. 
The most recent papers were included in the study.

2.4  Machine learning approaches for survival prediction of cancer

Clinically, the survival prediction ability of cancer patients has a great impact as it helps 
in planning the treatment of patients [14]. This could be advantageous not only for the 
patients themselves but also for their families, who often undergo significant stress when 
dealing with cancer patients. In the long term, it could also result in cost savings for treat-
ment. Therefore, in cancer research, much research focuses on predicting the survival time 
of patients and on predicting survival time using imaging datasets, clinical datasets, and 
genomic datasets [15]. As genomic data increases the accuracy in the prediction of survival 
time, it is worth including this genomic data for the study. However, with the inclusion of 
genomic data, huge dimensionality becomes a major problem that needs to be considered. 
Thus, several researchers make use of dimensionality reduction techniques to deal with the 
problem of high dimensionality. The survival prediction model has two main components: 
dimensionality reduction or feature selection and prediction model. These techniques are 
mainly of two types namely supervised and unsupervised. A few popular feature selec-
tion or dimensionality reduction techniques are Principal Component Analysis (PCA) 
[16], Non-negative factorization (NMF) [17], and Factor Analysis [16], etc. With feature 
selection or dimensionality reduction methods, the feature can be reduced. Additionally, 
recent advancements in digital healthcare have focused on utilizing fog and cloud networks 
for cancer detection, introducing novel paradigms such as the Multi-Cancer Multi-Omics 
Clinical Dataset Laboratories (MCMOCL) Schemes which incorporate federated learn-
ing, auto-encoder, and XGBoost methods to improve accuracy, reduce processing delay, 
and enhance security in heterogeneous cancer clinics [18] and other studies have explored 
hybrid cancer detection schemes utilizing SARSA reinforcement learning and multi-omics 
data processing in fog cloud networks, aiming to enhance accuracy and reduce processing 
time in distributed clinical settings [19].

Machine learning techniques help in extracting meaningful patterns from complex 
genomic data which is not feasible by traditional analytical methods [20]. By incorporating 
machine learning techniques with genomic data, the survival time can be predicted accu-
rately. Several machine learning techniques can be used for the prediction and some com-
monly used techniques are Support Vector Machine (SVM), AdaBoost, Decision trees, and 
Random forest. While developing machine learning techniques for survival time predic-
tion using genomic data, research should consider various factors such as feature selection, 
model interpretability, and validation methodologies. Feature selection techniques aim to 
identify the most informative genomic features while reducing noise and overfitting. Model 
interpretability ensures that predictions are clinically actionable. Validation methodologies 
such as cross-validation and external validation assess model generalizability and robust-
ness across diverse datasets.

There are various challenges in applying machine learning to genomic data analysis for 
cancer survival prediction including data heterogeneity, incomplete data, feature biases, 
model overfitting, and interpretability issues. Limited sample sizes and imbalanced data-
sets can lead to biased model performance and poor generalizability. Furthermore, the 
complexity of genomic data necessitates sophisticated feature engineering and regulariza-
tion techniques to prevent overfitting and enhance model interpretability. Addressing these 
challenges is critical to ensuring the reliability and clinical utility of predictive models.
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Recent research on survival prediction using genomic data has focused on various can-
cer types such as breast cancer, lung cancer, colorectal cancer, ovarian cancer, glioblas-
toma, oral cancer, renal cell cancer, and cervical cancer. But this study focused on breast 
cancer, lung cancer, renal cell cancer, oral cancer, and glioblastoma. These cancer types 
represent a diverse spectrum of diseases with distinct molecular characteristics and prog-
nostic factors, making them ideal candidates for genomic data analysis to improve survival 
prediction accuracy.

Some researchers focused on finding the biomarkers of the survival time of cancer 
using various machine learning algorithms. Various studies revealed that different Long 
non-coding RNA (lncRNA) [15, 21–23], genomic instability derived lncRNA [24], and 
autophagy-associated long noncoding RNAs (ARlncRNAs) [25, 26] act as a biomarker 
for the prediction of survival time. Apart from lncRNA, the Fanconi anemia pathway can 
act as a prognostic biomarker for survival prediction [27]. Studies also demonstratedthat 
transfer learning-based deep features [28],radiomics signature [29], ten glucose metabo-
lism risk signature [30], prognostic index, stem cell-related gene signature [31], seven 
CPG-based signature [32], 6-gene signature [33], aggregated signature based on ligand-
gated channel pathways [34], Radiomics signature [35], TLS [36], APE1 Polymorphism 
[37], Tp53 [28], COL4A5, ABCB1, NR3C2 and PLG [26] can act as predictive biomark-
ers while 5-snoRNA signature [38], cancer-associated fibroblasts [39], TP53 [40]are not 
a promising predictor for survival prediction. Research has been also performed to show 
the importance of tumor environment [41], age [42], and oral hygiene [43] in the predic-
tion of survival time. Some authors identified various miRNA or mRNA genes [44, 45]and 
nomogram-based genes or miRNA signatures [45–49] which act as predictors for survival. 
Another study [50]implemented the ESTIMATE machine learning algorithm which identi-
fied IL10, IGLL5, and POU2AF1 prognostic biomarkers. The research was performed for 
lung adenocarcinoma risk by using Random forest, Univariate Cox, and SigFeature algo-
rithms which identified 16-gene expression having a high correlation with patient risk [51]. 
Another study showed the significance of somatic mutation in survival prediction [52]. A 
study on the effect of race on survival concluded that African Americans had prolonged 
survival [53] and another approach interpreted that the difference in survival rates depends 
on gender [54]. Identifying biomarkers associated with survival time is a key focus of 
research, but challenges persist in determining the most predictive feature among the vast 
genomic features.

Probing further, researchers compared the different machine learning methods in the 
survival prediction. For instance, the survival time was estimated by implementing vari-
ous algorithms namely: 1-Nearest Neighbor (1NN), Naive Bayes (NB), SVM, AdaBoost, 
Tree Random Forest (TRF), Radial Basis Function Network (RBFN), and Multilayer Per-
ceptron models, out of which Trees Random Forest model (TRF) which is a rule-based 
classification model turns out to be the best in prediction with the highest level of preci-
sion [55]. Furthermore, a study that used six different machine learning models AdaBoost, 
NB, SVM, RF, Adabag, Least-Squares SVM (LSSVM), and two classical methods Logis-
tic Regression (LR) and Linear Discriminant Analysis (LDA), for predicting survival time 
and metastasis of breast cancer concluded that SVM outshined other models by providing 
more accurate data [56].

Some researchers proposed new models for survival prediction using genomic data. 
In an experiment, Genomic data, and Pathological images Multiple Kernel Learning 
(GPMKL) model, based on Multiple Kernel Learning (MKL) used integrated pathological 
images and genomic data for survival time prediction. This model was created to execute 
feature fusion, which is a crucial aspect of breast cancer classification. The results indicate 
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that integrating genomic data with pathological images produces better outcomes than 
using either genomic data or pathological images alone, for GPMKL with 95% specificity, 
sensitivity, accuracy, and precision were increased by 4.3%, 0.9%, and 3.8% respectively 
as compared to Genomic data based Multiple Kernel Learning (GMKL) and improved by 
13.9%, 3.2%, and 16.4% as compared to Pathological images based Multiple Kernel Learn-
ing (PMKL) which proved GPMKL as deserving and useful in predicting human breast 
cancer survival [57].In another study, Immunohistochemistry was used to cluster the data-
set based on receptor status in which significant variables were ranked by the random for-
est variable selection method and there was a multiplatform network named Multimodal 
AutoEncoders (MAE) that was implemented to classify breast cancer patients based on 
their survival rates and their subtypes. Survival rate prediction was performed using mul-
titype modalities and the lowest mean square error was achieved with gene expression 
(0.16541). Moreover, decision tree (DT), NB, K-Nearest Neighbor (KNN), LR, SVM, RF, 
and gradient boosting trees (GBT) were implemented for the survival prediction which 
concluded that GBT and RF-based classifiers or regression models performed best [58]. A 
new algorithm Crystall was proposed for breast cancer which predicted the survival time 
of patients and classified the patients based on their survival time that is whether a patient 
would live longer than 5 years or not. The proposed one performed better for both prob-
lems and achieved a mean absolute error of 31.62 days for predicting how long a breast 
cancer patient will live within 5 years [59]. To improve the disease-free survival predic-
tion performance of lung squamous cell carcinoma, a novel method named LSCDFS-MKL 
was proposed, which is based on multiple kernel learning. The model used the Gradient 
descent algorithm for solving various kernel learning problems and integrated pathological 
images and genomic data. The method increased the specificity, accuracy, and sensitiv-
ity by 2.20%, 2.68%, and 7.14% than to using genomic data only and improved by 9.89%, 
24.11%, and 34.02% compared with pathological images only. The accuracy of LSCDFS-
MKL was 100% for the prediction of disease-free survival and performed better than other 
prediction methods [60].

A new Ordinal Multi-Modal Feature Selection (OMMFS) framework [61] was devel-
oped to identify the features from pathological images, DNA methylation, mRNA, and 
copy number variation and used a sparse canonical correlational analysis framework with 
ordinal survival information. The results showed that this method has a better performance 
in patient stratification and can be used as the general framework for any cancer type for the 
prediction of biomarkers or to predict the response of any treatment. Another stratification 
method based on the Elastic net penalized Cox proportional hazard regression model was 
designed to group the advanced-stage oral cancer patients into different risk groups using 
genetic and clinicopathological features [62], which helped create an online calculator.

A novel integrative model based on the Bayesian averaging model for renal cell carci-
noma was proposed, which used the dimensionality reduction technique PCA and Sparse 
PCA (SPCA) to generate features of the low dimension of three genomic data types and 
considered the interaction between the data types. The mean square error was calculated 
for both dimensionality reduction techniques and compared the results with and without 
the consideration of the interaction between data types. Results showed that the mean 
square error was the least for PCA with interaction (2.07). These models also validated 
the ccRCC-based biomarkers for renal cell carcinoma which was verified in the literature 
[63]. Another novel machine learning model [64]employed coherent voting networks and 
predicted the survival time of breast cancer accurately.

Other research [69] used the SVM model to investigate the relationship between glioma 
topographic location and molecular characteristics and suggested that tumor location plays 
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a role in glioma development and could be used to improve treatment and predict out-
comes. Another study [70] explored the role of anoikis resistance in breast cancer metasta-
sis and treatment optimization. Through a comprehensive analysis of mRNA and lncRNA 
profiles, ten key mRNAs and six lncRNAs associated with anoikis were identified using 
the LASSO Cox regression model. [71] integrated multi-omics data with clinical factors to 
identify significant biomarkers for Glioblastoma Multiforme (GBM) prognosis. Employing 
the Multimodal iterative Random Forest (MiRF) algorithm, 35 molecular features compris-
ing 19 genes and 16 proteins were isolated, distinguishing between short-term and long-
term survival as well as high and low Karnofsky performance scores. Another study [72] 
integrated histology and genomics using the probabilistic graphical model framework. It 
used the multilayer perceptron model to generate informative embeddings capturing under-
lying cancer properties by canonical correlation analysis (CCA) and penalized variants 
(pCCA), and the model generates informative. Other research [73] utilized multi-omics 
data from lung adenocarcinoma patients to improve survival prediction accuracy. By using 
novel feature extraction techniques and unbiased selection methods, 32 molecular features 
were identified from the TCGA dataset, achieving an AUC of 0.839 for a 2-year survival 
prediction model.

Several machine learning algorithms have been implemented. However, the choice of 
algorithm often depends on specific cancer types and dataset characteristics.

Conventional machine learning models used in the prediction of survival of breast, glio-
blastoma, lung, renal cell, and oral cancer using genomic data are presented in Table 1. 
Machine learning algorithms predict cancer patients’ survival very efficiently but need 
time-consuming and complex pre-processing techniques. The problems faced by machine 
learning models can be minimized with the use of deep learning techniques.

2.5  Deep learning approaches for survival prediction of cancer

Deep Learning is an advanced method of machine learning for the processing of complex 
data. The process is regarded as deep because it comprises hidden layers, where the output 
of one layer is passed to the next. In contrast to traditional machine learning, deep learning 
algorithms typically do not require prior feature selection or extensive data pre-processing 
(although some pre-processing may be necessary). Instead, they employ either supervised 
or unsupervised training with multiple layers. In the existing literature, there were some 
review papers like [74] that review the various deep learning models based on multi-omics 
data for clinical implications and their challenges in using multi-omics data.

A deep learning method named Multimodal Deep Neural [75] was applied for sur-
vival prediction using clinical data, copy number alteration, and integrating gene 
expression. Three deep neural networks were constructed by taking into account the 
different data types to create a multimodal network. An Attention-based MultiNonnega-
tive Matrix Factorization (AMND) algorithm was designed by integrating gene expres-
sion and clinical data. Nonnegative Matrix Factorization algorithms [75] were used to 
compute eigenvector weights to extract useful information from gene expression and 
clinical data. After that, the summation of weights of eigenvectors was concatenated 
with clinical data to feed into deep neural networks for classification. Deep learning-
based concatenation autoencoder (ConcatAE) was developed to integrate features of 
different datasets and used cross-modality autoencoder (CrossAE) which predicts the 
overall survival time [77]. A new autoencoder-based feature extraction method named 
DeepSGP [78]was presented for glioblastoma patients which stratified the patients into 
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different survival groups with an accuracy of 0.83 and a prediction of overall survival 
with an accuracy of 0.89. Another artificial intelligence-based approach [79]was pro-
posed which used the SVM model on radiomic features and Cox-PH regression model 
with radiomics signature, clinical and genomics data to categorize the patients into dif-
ferent risk groups which gave the c-index of 0.75 with the combination of the data-
set and 0.65 for clinical data only. In a different deep learning model, deep orthogonal 
fusion [80]used multimodal data to predict the overall survival of glioblastoma patients 
with a c-index of 0.788. DeepSurv with multi-omics data [81] for oral cancer predicted 
survival time with a c-index of 0.94. A deep learning approach was used to analyze the 
tumor-infiltrating lymphocyte (TIL) profiles to identify the association with survival. 
Also, 16 out of 22 TILs were different for predicted risk groups [82]2.

The study [83] utilized machine learning and deep learning techniques to identify prog-
nostic biomarkers for predicting the time-to-development of oral cancer and stratifying sur-
vival among patients with premalignant lesions. Autoencoder deep learning neural network 
extracts features, which were further analyzed using a univariate Cox regression model. 
Supervised clustering based on encoded features distinguished high-risk and low-risk 
groups, while a random forest classifier identified gene profiles associated with oral can-
cer subtypes. Another research [84] introduced a hybrid deep learning model with clinical, 
gene expression, and copy alteration data for breast cancer prediction and survival predic-
tion of patients. A novel predictive model [85] using a graph convolutional network (GCN) 
and Choquet fuzzy ensemble, integrating multi-omics and clinical data was introduced. 
The model achieved competitive performance metrics, including an accuracy of 0.820 and 
a balanced accuracy of 0.769, outperforming baseline models and demonstrating its effi-
cacy in prognostic classification. A novel prognostic algorithm [86] by integrating pathog-
enomics and AI-based techniques. Machine learning and deep learning algorithms iden-
tified predictive features for survival outcomes, with the multimodal which outperforms 
unimodal and suggesting potential for personalized treatment strategies in oral cancer. A 
study introduced a Deep Convolution Cascade Attention Fusion Network (DCCAFN) for 
predicting lung cancer patients’ survival based on imaging genomics [87]. The DCCAFN 
demonstrated effectiveness in multimodal data fusion, aiding physicians in risk stratifica-
tion and personalized treatment decisions to improve patient’s quality of life.

These studies show the potential of deep learning in enhancing survival prediction accu-
racy across various cancer types. Table 2 shows the deep learning algorithms for survival 
prediction of breast, glioblastoma, lung, renal cell, and oral cancer using genomic data.

The comparison of various machine and deep learning algorithms for survival pre-
diction in terms of accuracy evaluation parameters are shown in Table 3 which can help 
the researchers to select the best algorithm for survival prediction.

2.6  Feature selection methods for survival prediction of cancer

Dimensionality reduction techniques can help reduce the number of features in a dataset 
by identifying a smaller set of representative features that capture the most important 
information. However, even after dimensionality reduction, there may still be redundant 
or irrelevant features in the remaining set of features. The researchers have used feature 
selection methods that can help address this issue by identifying and selecting only the 
most relevant features for a particular task. The following are the methods that are com-
monly used by researchers for dimensionality reduction or feature selection techniques.
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Table 3  Comparison of various machine and deep learning methods for survival prediction of cancer 
patients using genomic data in terms of accuracy

Reference Model Accuracy Type of Cancer

 [15] Cox Regression 0.714 Breast Cancer
 [25] Cox Regression 0.809 Renal Cell Cancer
 [28] DeepSurv 0.81 Oral Cancer

Cox proportional hazard model 0.756
Random Forest 0.77

 [32] Multivariate Cox Regression 0.821 Renal Cell Cancer
 [38] LASSO 0.704 Oral Cancer
 [49] LASSO with nomogram 0.792 Renal Cell Cancer
 [51] LASSO 0.753 Lung Cancer
 [52] Multiple Kernel Learning 0.9808 Breast Cancer
 [55] Naïve Bayes 0.95 Breast Cancer

1-Nearest Neighbors 0.91
Support Vector Machine 0.94
Tree Random Forest 0.96
AdaBoost 0.94
Multilayer Perceptron 0.95
RBF Network 0.95

 [56] Logistic Regression 0.93 Breast Cancer
Linear Discriminant Analysis 0.93
Support Vector Machine 0.92
Naïve Bayes 0.92
Random Forest 0.92
AdaBoost 0.89
Least-square SVM 0.91

 [57] GPMKL 0.86 Breast Cancer
 [58] Multimodal Autoencoders 0.91 Breast Cancer
 [59] Crystall 0.9276 Breast Cancer
 [60] LSCDFS-MKL 0.8022 Lung Cancer
 [66] Autoencoders 0.81 Breast Cancer
 [69] SVM 0.71 Glioblastoma
 [75] Multimodal Deep Neural Network by integrating 

Multi-dimensional Data
0.826 Breast Cancer

Logistic Regression 0.76
Random Forest 0.791
Support Vector Machine 0.805

 [76] Attention-Based Multi-NMF Deep Neural Network 0.848 Breast Cancer
 [77] ConcatAE 0.962 Breast Cancer

CrossAE 0.963
 [78] DeepSGP 0.89 Glioblastoma
 [82] CIBERSORT 0.972 Oral Cancer
 [83] Autoencoder Deep Learning Neural Network 0.916 Oral Cancer
 [84] Convolutuonal Neural Network 0.98 Breast Cancer
 [85] Choquet Fuzzy Ensemble 0.82 Breast Cancer
 [87] DCCAFN 0.831 Lung Cancer



Multimedia Tools and Applications 

1 3

 I. Factor Analysis:- Factor analysis is a dimensionality reduction technique that simpli-
fies complex data sets by identifying underlying factors or dimensions that explain 
the patterns and relationships in the data. It identifies key factors that contribute to 
the variance in the data [88].

 II. Principal Component Analysis (PCA):-PCA is a widely used dimensionality reduc-
tion technique that identifies the key features or components that explain the variance 
in a dataset. It works by transforming the original variables into a new set of uncor-
related variables called principal components, which capture the most important 
information in the data [89].

 III. Sparse PCA:-Sparse PCA is a variant of PCA that produces sparse solutions by 
promoting sparsity in the loadings of the principal components. This means that it 
identifies a smaller number of key features or components that contribute most to 
the variance in the data while setting the remaining loadings to zero [90].

 IV. Kernel PCA:-Kernel PCA is a nonlinear dimensionality reduction technique that 
extends the linear PCA to handle nonlinear relationships in the data. It works by 
projecting the data into a high-dimensional feature space using a nonlinear kernel 
function and then applying PCA to the resulting kernel matrix. This allows it to 
capture nonlinear variations in the data and identify the key components that explain 
the variance in the feature space [91].

 V. LASSO:-LASSO (Least Absolute Shrinkage and Selection Operator) is a dimen-
sionality reduction technique that selects a subset of relevant features by imposing a 
penalty on the absolute values of the regression coefficients. This encourages sparsity 
in the model and effectively sets some of the coefficients to zero, leading to a simpler 
and more interpretable model [92].

 VI. Autoencoder:-Autoencoder is a neural network architecture that can be used for 
unsupervised dimensionality reduction. It works by encoding the input data into a 
lower-dimensional representation, also known as a latent space, and then decoding 
it back to the original dimensions. The encoder and decoder are trained together to 
minimize the reconstruction error between the input and output data. By constraining 
the size of the latent space, the autoencoder can effectively reduce the dimensionality 
of the input data, while preserving its essential features [93].

 VII. Fselector:- In Fselector feature selection, the F-test is used to measure the depend-
ence between each feature and the target variable. The F-test calculates a score for 
each feature, which represents the degree of correlation between the feature and the 
target variable [94].

 VIII. mRMR:- The mRMR algorithm selects features by maximizing the relevance cri-
terion and minimizing the redundancy criterion. It first selects the feature with the 
highest relevance and then selects additional features that have high relevance but 
low redundancy with the previously selected features. This process continues until 
the desired number of features is selected [95].

 IX. Non-negative Matrix Factorization (NMF):- The NMF algorithm decomposes a 
given matrix X into two non-negative matrices W and H, where W represents the set 
of basis vectors (latent features) and H represents the set of coefficients (weights) that 
combine these basis vectors to approximate the original matrix X. The NMF algo-
rithm seeks to find the best values for W and H such that their product approximates 
the original matrix X [96].

 X. Log-rank test:- The Log-rank test works by dividing the population into two or more 
groups based on the values of a given feature. It then calculates the survival function 
for each group and compares them using a statistical test such as the log-rank test or 
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the Wilcoxon test. The p-value obtained from the test indicates whether the survival 
curves are significantly different or not. If the p-value is below a certain threshold 
(e.g., 0.05), it suggests that the feature is an important predictor of survival [97].

 XI. Minimal Depth:- The algorithm works by constructing a decision tree using all avail-
able features and calculating the minimal depth of each feature. The features with the 
smallest minimal depth are considered the most important, as they appear closer to 
the root of the decision tree and have a greater influence on the final decision [98].

 XII. Linear Correlation:- The algorithm works by calculating the Pearson correlation 
coefficient between each feature and the target variable. The Pearson correlation 
coefficient measures the linear relationship between two variables, ranging from -1 
(perfect negative correlation) to 1 (perfect positive correlation), with 0 indicating no 
correlation. Features with a high absolute value of the Pearson correlation coefficient 
are considered strongly correlated with the target variable and are selected for further 
analysis [99].

 XIII. Transfer Learning learning is a feature selection algorithm used in machine learning 
to identify the most relevant features for a target task by leveraging knowledge from a 
related source task. The algorithm works by first training a model on a related source 
task using a large set of features. The trained model is then used to extract features 
from the source task that are relevant to the target task. These extracted features are 
then used as the input for a model trained on the target task [100].

 XIV. Scree Plot:- Scree plot feature selection is a graphical method used in the principal 
component analysis (PCA) to identify the most important principal components 
(PCs) and, consequently, the most relevant features in a dataset. To use scree plot 
feature selection, the number of principal components to retain is selected based on 
the elbow in the scree plot. The corresponding PCs and their corresponding loadings 
(weights) are then used as the most important features in the dataset [101].

The comparison of various machine learning models based on the dimensionality reduc-
tion or feature selection method is shown in Table 4. Despite the advancements in feature 
selection, challenges remain in identifying the most informative features for survival pre-
diction. The selection of appropriate feature selection methods depends on specific datasets 
and cancer types representing an ongoing research gap in the field.

Overall, machine learning and deep learning approaches hold promise for enhancing 
cancer survival prediction, and addressing research gaps related to feature selection, algo-
rithm selection, and model interpretability is essential for advancing the field and translat-
ing findings into clinical practice.

3  Discussion

Machine learning techniques have shown promising results by improving the accuracy of 
survival time prediction of cancer patients. By integrating multiple types of omics data, 
such as DNA methylation, copy number alteration, and mRNA expression, machine learn-
ing algorithms can identify patterns and relationships that may not be apparent through 
individual omics analyses. Numerous studies have investigated the identification of bio-
markers for predicting the survival time of cancer patients using various machine-learning 
algorithms. Different Long non-coding RNA (lncRNA) [12, 16–21], the Fanconi anemia 
pathway [22], transfer learning-based deep features [23], radiomics signature [24, 30], ten 
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glucose metabolism risk signature [25], prognostic index, stem cell-related gene signature 
[26], seven CPG-based signature [27], 6-gene signature [28], aggregated signature based on 
ligand-gated channel pathways [29], TLS [31], APE1 Polymorphism [32], Tp53 [23, 35], 
COL4A5, ABCB1, NR3C2 and PLG [21], and ESTIMATE machine learning algorithm 
[47] have been found to act as prognostic biomarkers. In contrast, 5-snoRNA signature 
[33], cancer-associated fibroblasts [34], and TP53 [35] have not shown promising results 
for survival prediction. Additionally, the effect of the tumor environment [36], age [37], 
and oral hygiene [38] on survival time prediction has been investigated. Some authors have 
identified various miRNA or mRNA genes [39–42] and nomogram-based genes or miRNA 
signatures [40, 43–46] that act as predictors for survival. Several studies have compared 
different machine learning methods, including 1-Nearest Neighbor (1NN), Naive Bayes 
(NB), Support Vector Machine (SVM), AdaBoost, Tree Random Forest (TRF), Radial 
Basis Function Network (RBFN), Multilayer Perceptron, AdaBoost, Least-Squares SVM 
(LSSVM), Logistic Regression (LR), and Linear Discriminant Analysis (LDA) [52, 53]. 
The TRF and SVM models have been found to provide the best results in predicting sur-
vival time and metastasis of breast cancer [52, 53]. Some researchers have proposed new 
models for survival prediction using genomic data, including GPMKL based on Multiple 
Kernel Learning (MKL) [54], Multimodal AutoEncoders (MAE) [55], and Crystall [56]. 
These models have demonstrated improved accuracy and precision in predicting human 
breast cancer and lung squamous cell carcinoma survival time.

A variety of deep learning-based methods have been applied to predict survival in can-
cer patients using multimodal data, including clinical data, copy number alteration, gene 
expression, and radiomic features. These methods include Multimodal Deep Neural [62], 
Attention-based MultiNonnegative Matrix Factorization (AMND) [62], ConcatAE [77], 
CrossAE [77], DeepSGP [66], SVM model [67], Cox-PH regression model [67], deep 
orthogonal fusion [68], DeepSurv [75], and TIL profiling [76]. These methods have dem-
onstrated high accuracy in predicting overall survival, with c-index values ranging from 
0.75 to 0.94.

To the best of our knowledge, this is the first review of the application of Machine 
Learning to survival prediction by making use of genomic data for breast, glioblastoma, 
lung, renal cell, and oral cancer. In the review, most of the studies used the open-access 
database. However, there are certain issues with public databases like data is not updated at 
regular intervals. Therefore, research should focus on collecting data from different private 
or public hospitals by obtaining ethical consent from patients and hospitals.

Various feature selection methods used by researchers are Fselector [65], autoencoder 
[58, 78],mRMR [75], NMF [76], Long Rank test [61], minimal depth [65], DeepSGP [78], 
Transfer learning [23], Linear correlation [60] and ScreePlot [75]. There is a need to com-
pare the various feature selection methods in predicting the survival time of cancer for can-
cer. This would help the researchers to choose the best feature selection method.

The size of the dataset of cancer patients used in the current study is between 100 to 
2000 and genomic data has a large number of features that are difficult to process with 
machine learning algorithms. Therefore, there is a need to use appropriate feature selection 
or dimensionality reduction techniques to select important features. Also, the dataset con-
tains outliers, noise, and missing values. In future studies, researchers should not only use 
appropriate machine learning methods but also consider various preprocessing and feature 
selection methods.

The most commonly used algorithms in this review are Cox regression, LASSO regres-
sion, Random forest, and Machine kernel learning, and only a few studies used the deep 
learning approaches. In future studies, deep learning approaches should be explored for 
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the survival prediction of cancer patients using genomic data. Different techniques can be 
combined to produce the best results.

There are various areas where further investigation or improvement can be performed 
such as comparing the results by applying both early and late integration for multi-omics 
data which can lead to selecting the best integration approach for survival prediction. It has 
further scope to consider intra and inter-interaction effects between different data types of 
multi-omics data. There is a need to compare various feature selection techniques to iden-
tify the most effective methods for predicting cancer survival. This would help researchers 
choose the best approach based on the specific characteristics of their dataset. While tradi-
tional machine learning methods like Cox regression, LASSO regression, Random forest, 
and Machine kernel learning have been commonly used, only a few studies have explored 
deep learning approaches. There is scope for applying deep learning approaches for sur-
vival prediction using multi-omics data. Further, machine learning and deep learning tech-
niques can be combined to achieve the best performance which can be further explored.

4  Conclusion

The paper is a comprehensive review of the most recent machine learning-based 
approaches for predicting cancer patient survival, with a focus on the use of genomic data. 
The paper covers various cancer types, including breast cancer, glioblastoma, lung can-
cer, renal cell cancer, and oral cancer, and discusses the use of different machine learning 
techniques, such as random forests, support vector machines, neural networks, and deep 
learning algorithms. This paper also highlights the challenges involved in developing accu-
rate survival prediction models, such as the need for large and standardized datasets with 
detailed genomic and clinical information. In addition, various dimensionality and feature 
selection methods are also compared, which can help improve the accuracy and generaliz-
ability of the models.

The key contribution of the research is to highlight the impact of machine and deep 
learning in the survival prediction of cancer patients. This review paper helps research-
ers explore the potential of an integrative approach to genomic data in survival prediction, 
which helps clinicians make informed decisions that further improve treatment outcomes.

Despite the advancements highlighted in this review, several limitations persist in the 
field of cancer survival prediction. One notable limitation is the access to standardized 
data, which may introduce biases in the prediction. Deep learning and machine learn-
ing started a new revolution in the survival prediction of cancer patients and there is still 
much scope for further improvement. Data from cancer patients have different formats, 
e.g., miRNA, mRNA, copy number variation, clinical data, etc. With the advancement of 
new technologies, working with these data types has become easy but there is still a need 
to explore various feature selection or dimensionality reduction techniques for handling a 
large number of features of genomic data. Addressing these limitations will be crucial for 
realizing the full potential of machine learning in survival prediction.

In the coming times, work should continue focusing on testing and improving the algo-
rithm and state-of-the-art models to improve cancer patients’ survival prediction. Moreo-
ver, there is a great scope to work with time-series data of cancer patients for better prog-
nosis and to improve survival time. The impact of early and late integration of genomic 
data on survival prediction can further be explored.
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