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Abstract
Subspace clustering has shown great potential in discovering the hidden low-dimensional 
subspace structures in high-dimensional data. However, most existing methods still face 
the problem of noise distortion and overlapping subspaces. To tackle this problem and 
ensure that each sample is only assigned to a single subspace, a new method is proposed 
in this paper. Specifically, a two-way learning technique is introduced by inducing data 
manifold via two representative structures. The first is a low-rank structure learned directly 
from original data. The second structure is an affinity matrix obtained via a k symmetric 
nearest neighbor graph. By further introducing a dual regularization term, both structures 
are allowed to guild themselves adaptively to find robust clustering directly without spec-
tral post-processing. In order to evaluate the effectiveness of the proposed method, sev-
eral experiments are conducted on multiple benchmark datasets. The experimental results, 
evaluated using six standard metrics, clearly demonstrate that the proposed method outper-
forms state-of-the-art methods.

Keywords Subspace clustering · Clustering · Unsupervised learning · Manifold learning

1 Introduction

Due to the so-called "curse of dimensionality," many traditional clustering algorithms often 
do not perform well on high-dimensional data [1]. Thus, subspace clustering (SC) was 
conceived to handle such a problem. SC operates under the assumption that high-dimen-
sional spaces can be represented as a union of multiple lower-dimensional subspaces, with 
each subspace corresponding to a different underlying factor or pattern in the data [2]. 
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The obtained subspace structure is further used as data prior in constructing an affinity 
matrix for clustering, usually through spectral post-processing. Notably, sparse subspace 
clustering (SSC) [3] and low-rank representation (LRR) [4, 5] are two popular methods 
for constructing the affinity matrix. Unlike SSC, which assumes each data point can be 
represented as a linear combination of a limited number of other data points in the same 
subspace, LRR believes that the data can be represented as a low-rank matrix. The choice 
between the two methods often depends on the specific characteristics of the dataset. For 
example, LRR is exceptional when it comes to dealing with the influence of noise and out-
liers [6, 7]. Moreover, many researchers have also proposed hybrid methods that combine 
the sparsity effect of SSC and the global nature of LRR to improve the performance of SC.

Notably, Wang et  al. [8] proposed a low-rank subspace sparse representation (LRSR) 
framework for subspace segmentation, which can recover and segment embedding sub-
spaces simultaneously. Zhu et al. [9] introduced the low-rank sparse subspace (LSS) clus-
tering method. LSS addresses the problems associated with the two-stage approach of 
traditional graph clustering methods by avoiding spectral post processing. LSS method 
dynamically learns the affinity matrix from the low-dimensional space of the original 
data by using a transformation matrix to project the original data to their low-dimensional 
space, conducting feature selection and subspace learning, and utilizing the rank constraint 
to obtain the clustering results directly. Sui, Wang and Zhang [10] presented a subspace 
clustering method that formulates the problem as structured representation learning. Spe-
cifically, they discovered that propagating a low-rank structure promotes sparsity in the 
data representation, resulting in a more robust clustering description. Therefore, their pro-
posed method leverages two cascade self-expressions to implement the propagation. Xia 
et al. [11] proposed a nonconvex low-rank learning framework, which exploits the low-rank 
property of nonlinear data and induces a high-dimensional Hilbert space that approaches 
the true feature space. Recently, Teng et al. [12] introduced a new method, called kernel-
based sparse representation learning with global and local low-rank label (KSR-GL3). 
KSR-GL3 uses the global and local low-rank label constraint to ensure the semantic invari-
ance, low-rankness, and discrimination of features during learning. Despite the successes 
of these existing SC methods, most of them still face the problem of noise distortion and 
overlapping subspaces, which can result in samples being wrongly assigned to more than 
one subspace. The ideal is for each sample to only belong to one subspace.

To address the above problem, this paper proposes a new method that induces data man-
ifold via two representative structures. Motivated by the robustness of LRR, we begin by 
learning a low-rank matrix to characterize the original data and capture its global structure. 
In order to facilitate our approach, a two-way manifold learning strategy is incorporated 
into our model such that an affinity matrix is learned simultaneously through a k-symmet-
ric nearest neighbor graph of data. Thus, we further introduced a dual regularization term 
to enable the LRR and the affinity graph to guide each other adaptively to better capture 
both global and neighborhood structures of the data together, which leads to more accurate 
clustering results. By imposing several non-negative constraints and a rank constraint on 
the affinity matrix, we also avoid spectral post processing procedure, allowing us to obtain 
the final clustering results directly to prevent extra computational cost. Our main contribu-
tions are as follows.

1) We propose a new method that uses two-way representative structures to effectively cap-
ture the data manifold and improve clustering performance, unlike, traditional subspace 
clustering methods, which obtain clustering through one data structure.
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2) We avoid spectral post-processing procedures by constraining the learned affinity matrix 
with a rank constraint and several nonnegative constraints in order to directly derive the 
clustering matrix.

3) Extensive experiments are performed to evaluate the effectiveness of the proposed 
method. The results shows that our method performs better than state-of-the-art meth-
ods (SOTA) in six evaluation metrics.

The rest of this paper is structured as follows. Section 2 presents the related works. The 
proposed method formulation is described in Section 3. Results and analysis are provided 
in Section 4 while Section 5 concludes the paper.

2  Related work

Over the years, several SC approaches have been proposed to tackle the problem of sub-
space segmentation. These methods can be categorised based on their approach to learning 
an affinity matrix. In the following paragraphs, we describe those LRR based methods that 
are closely related to our proposed approach. Firstly, given an unlabelled data matrix X , the 
traditional LRR model can be formulated as.

where X ∈ ℝ
d×n is used as the self-dictionary to learn a low-rank matrix A ∈ ℝ

n×n to char-
acterize the data such thatAij , is only non-zero if samples xi and xj are members of the same 
subspace. E ∈ ℝ

d×n is an error matrix to capture the error components since real-world 
data are not always clean. Thus, considering that data corruption is usually sample specific, 
the L21-norm is imposed to encourage the columns of E to be zero. The goal is to recover 
clean data through the product of the original data and a low-rank matrix. That is, using XA 
while eliminating corrupt samples through the constraintE = X − XA . Specifically, in order 
to reveal the true membership ofX , LRR expects that A would have a k block diagonal 
structure. However, this is difficult to obtain in complex applications, so LRR also expects 
that when the block diagonal fails to hold, spectral clustering [13] (via a spectral post-
processing of A) may ensure the robustness of the segmentation, which is also very uncer-
tain. As a result, various methods have been proposed to strengthen the robustness of LRR.

Structure-constrained LRR (SC-LRR) [14] uses a predefined weight matrix to ana-
lyse the structure of multiple disjoint subspaces and reveal their relationship for cluster-
ing. Laplacian regularized low-rank representation (LRLRR) [15] incorporates hypergraph 
Laplacian regularization to capture intrinsic non-linear geometric information in data. 
LRLRR was motivated by LRR’s inability to consider non-linear geometric structures 
within data, which may result in the missing locality and similarity information during 
the learning process. Low-rank representation with adaptive graph regularization (LRR_
AGR) [16] integrates a distance regularization term and a non-negative constraint to ena-
ble simultaneous exploitation of global and local information for graph learning. A novel 
rank constraint is also introduced to encourage the learned graph to have clear clustering 
structures. Adaptive Structure-constrained Low-Rank Coding (AS-LRC) [17] combines 
an adaptive weighting-based block-diagonal structure-constrained low-rank representation 
and the group sparse salient feature extraction into a unified framework. First, AS-LRC 
performs latent decomposition of given data into three matrices: a low-rank reconstruction 
by a block-diagonal codes matrix, a group sparse locality-adaptive salient feature part, and 

(1)min
A,E

‖A‖∗ + �2‖E‖2,1,s.t. X = XA + E,
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a sparse error part. The auto-weighting matrix is computed based on the locality-adaptive 
features, encouraging the codes to be block-diagonal, and avoids the problem of choos-
ing optimal neighbourhood size or kernel width for weight assignment. Furthermore, con-
sidering that it is difficult for SC-LRR to determine the best value for the corresponding 
parameter of the constraint term, an Improved structured low-rank representation (ISLRR) 
[18] was introduced as an extension of SC-LRR. ISLRR includes the structure information 
of datasets into the equality constraint term of LRR, avoiding the need to adjust the extra 
parameter. Similarly, SinNLRR [19] uses an adaptive penalty selection method to avoid 
sensitivity to the parameters. Also, a non-negative and low rank structure is imposed on the 
affinity matrix to ensure more robust and accurate clustering results.

Recently, some adaptive affinity graphs methods have emerged. For example, Adap-
tive Low-rank Representation (ALRR) [20] adaptively learns a dictionary  from the data 
to make the obtained model more resistant to the negative impact of noise. Adaptive Data 
Correction-based Graph Clustering (ADCGC) [21] works to improve clustering perfor-
mance by removing errors and noise from the original data. Adaptive Graph Regulariza-
tion from Clean Data (RLRR-AGR) [22] unifies graph construction and subsequent opti-
mization in a framework to capture the data’s underlying non-linear geometric information. 
Despite the effectiveness of these adaptive methods over the fixed graph ones, one draw-
back is that the data’s manifold structure is pre-captured using a non-flexible low-rank 
matrix, which is a disadvantage. Especially in cases where the data is severely corrupted, 
resulting in a significant distance between similar samples and causing unrelated samples 
to remain together. In such cases, the constructed graph may not accurately represent the 
actual geometric structure of the data. Hence, our proposed method induces the geometric 
structure of the data via a two-way representative technique to ensure that only similar 
samples are connected while samples from different classes do not stay together.

3  The proposed method

This section formulates the proposed method and provides an optimization method to solve 
it.

3.1  Model formulation

To achieve excellent performance in subspace clustering, an accurate k block diagonal 
subspace structure, with each sample belonging to one subspace is required [23]. But 
most SC methods are not robust enough to guarantee that because; (1) they focus either 
on local or the global data structure and simply assume that similar samples habitu-
ally reside close to one another (and the corrupt ones always stay far away from others, 
including their likes) in reconstructing each sample with similar ones using the self-
expressiveness property of data. In actuality, two unrelated samples could stay close 
and be regarded as similar due to corruption causing the data to be arbitrarily distrib-
uted. Thus, the subspace structure learned in this way would have negative correlations 
embedded in it. (2) they construct an affinity matrix from such a subspace structure in 
advance for subspace clustering through a spectral post-processing procedure. In other 
words, an error in the first step may impact the final step. To address this, our core 
idea in this paper is to allow two representative subspace structures to guide each other 
to simultaneously capture the neighbourhood and global data structures through a dual 
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regularization term without spectral post-processing procedure. Thus, by adopting the 
LRR (A ) of Eq. (1) as our first structure, we further learn the second structureB ∈ ℝ

n×n . 
For this, we use the k-nearest neighbour graph approach to generate a matrix P ∈ ℝ

n×n 
fromX . This involves identifying k symmetric nearest neighbours for each sample in 
X using Euclidean distance as the distance metric (Reference [24] contains a detailed 
explanation of k-nearest neighbor graph). The spectral clustering algorithm is then 
applied directly to obtain the affinity matrix B through the low-dimensional embedding 
matrix of P as follows.

where constraints B1 = 1 and B ≥ 0 is to ensure that the entries of B are non-negative. The 
low embedding matrix Q is used to obtain the affinity matrix B because, according to Zhan 
et al. [25], such an embedding matrix can guarantee a block diagonal structure. Ideally, for 
such validation, B can be used directly for clustering. However, to further ensure a robust 
solution, since A and B are obtained independently, we want to align both structures to cap-
ture the global and neighbourhood structures of data simultaneously. Thus, we introduce 
a dual regularization term ‖B − A‖2

F
 , with the Frobenius norm applied to further enforce a 

block-diagonal solution. Therefore, combining Eq. (1), Eq. (2) and the dual regularization 
term, we arrive at the following model.

As depicted by Eq.  (3), A and B matrices are simultaneously learned by allowing 
them to approximate one another to find more better solution adaptively. Therefore, 
unlike most existing approach, we avoid the spectral post processing procedure by 
imposing a rank constraint rank

(
LB

)
= n − c on the Laplacian matrix of B to allow it to 

denote our clustering structure using Theorem 1. So, our proposed model described in 
Fig. 1 is:

where LB = DB − B such that DB ∈ ℝ
nxn denotes the diagonal matrix with ith entry ∑

jBij = 1 . And parameters  �1 and �2, �3, �4 are used balance the different terms. To relax 
Eq. (4), and make it more solvable, we introduce an auxiliary term S = A . Additionally, to 
address the non-linearity of the rank constraint, the method follows a similar strategy as in 
a previous study [7] to express the smallest eigenvalue of  LB as �i(LB ). Hence, with suffi-
cient �5 , Eq. (4) can be rewritten as:

Theorem 1[7]: if B is non-negative, the multiplicity c of the zero eigenvalue of the graph 
Laplacian LB corresponds to the number of connected components in the graph associated 
with B.

Refer to preposition 2 of reference [26] for a detailed proof of the Theorem 1.

(2)min Tr
�
QTPQ

�
+ ‖B − QQT‖2

F
, s.t.,QTQ = I,B1 = 1,B ≥ 0,

(3)min‖A‖∗ + ‖B − QQT‖2
F
+ Tr

�
QTPQ

�
+ ‖B − A‖2

F
+ ‖E‖2,1,

s.t., X = XA + E,QTQ = I,B1 = 1,B ≥ 0,

(4)
min‖A‖∗ + ‖B − QQT‖2

F
+ Tr

�
QTPQ

�
+ ‖B − A‖2

F
+ �4‖E‖2,1,

s.t., X = XA + E,QTQ = I,

B1 = 1,B ≥ 0, rank
�
LB

�
= n − c,

(5)

min‖S‖∗ + �1‖B − QQT‖2
F
+ �2Tr

�
QTPQ

�
+ �3‖B − A‖2

F
+ �4‖E‖2,1 + �5

∑c

i=1
�i(LB),

s.t.,X = XA + E,QTQ = I,

B1 = 1,B ≥ 0, S = A
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3.2  Optimization

Based on its efficiency, we adopt the Augmented Lagrange Multiplier (ALM) [22, 23] 
method to solve the objective function of Eq. (5). Firstly, by following Ky Fan’s theorem [28], ∑c

i=1
�i(LB) is the same as minimizing Tr(FTLBF) subject to FTF = I . Thus, we have:

Consequently, we obtain the LaGrange function of Eq. (6) as follows:

where Y1 and Y2 are Lagrange multipliers, which are necessary for solving constrained 
problems. Therefore, separating the unconnected terms in Eq. (7), the minimization prob-
lem and the ideal solution of each variable are given below in no particular order.

S subproblem:

(6)

min‖S‖∗
+�1‖B − QQT‖2

F
+ �2Tr

�
QTPQ

�
+ �3‖B − A‖2

F
+ �4‖E‖2,1 + �5Tr(F

TLBF),

s.t.,X = XA + E,QTQ = I,

B1 = 1,B ≥ 0, S = A,FTF = I,

(7)

min‖S‖∗ + �1‖B − QQ
T‖2

F
+ �2Tr

�
Q

T
PQ

�
+ �3‖B − A‖2

F
+ �4‖E‖2,1 + �5Tr

�
F
T
L
B
F
�
,

+Tr
�
Y
T

1
(X − XA − E)

�
+ Tr

�
Y
T

2,
(S − A)

�
+

�

2

�
‖X − XA − E‖2

F
+ ‖S − A‖2

F

�
,

(8)argmin
S

1

�
‖S‖∗ +

1

2
‖S −

�
A +

Y2

�

�
‖
2

F

Fig. 1  The framework of the proposed method. Firstly, by adopting the LRR A (denoted as Z in the Figure) 
of Eq. (1) as our first structure, we further learn a second structure B , a similarity matrix (denoted as S in 
the Figure). For this, we use the k-nearest neighbour graph approach to first generate a matrix P , through 
which we learn the low embedding matrix Q used to obtain B directly
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The optimal solution to Eq. (8) can be found by first representing the singular value thresh-
olding [27] of Z�[Y] as U��[

∑
]VT to obtain the following

where ��[Σ] = min(0,Σ + �) + max(0,Σ − �).
E subproblem:

Q subproblem

Considering the fact that Eq. (11) is different for each i , we can rewrite it as follows:

The optimal value of Q can be found by deriving it from the c eigenvectors of the cor-
responding topmost c greatest eigenvalues of ( P + 2�1B).

A subproblem:

Setting the derivative �
�A

= 0 , we can obtain A using the following formula.

B subproblem

For simplicity, we rewrite Eq. (15) as:

By denoting 2(�1QQT + �3A) by W , we have:

(9)S = Z 1

�

[
A +

Y2

�

]
,

(10)E = argmin
E

�4

�
‖E‖2,1 +

1

2
‖E −

�
X − XA +

Y1

�

�
‖
2

F

(11)
argmin

H
�1‖B − QQT‖2

F
+ �2Tr

�
QTPQ

�
,

s.t.,QTQ = I.

(12)
argmax

Q
Tr
(
QT

(
P + 2�1B

)
Q
)
,

s.t.,QTQ = I.

(13)
argmin

A
�3‖B − A‖2

F
+ Tr

�
YT
1
(X − XA − E)

�
+ Tr

�
YT
2
(A − S)

�
+

�

2

�
‖X − XZ − E‖2

F
+ ‖S − A‖2

F

�
.

(14)A =

[(
2

�
+ 1

)
I + XTX

]−1((
XTX − X� ∗ E + S

)
+

2�3B + XTY1 − Y2

�

)
.

(15)
argmin�1

B

‖B − QQT‖2
F
+ �3‖B − A‖2

F
+ �5Tr

�
FTLBF

�
,

s.t.,B1 = 1,B ≥ 0,FTF = I.

(16)
min
B
‖B‖2

F
− 2⟨�1QQT + �3A,B⟩ + �5Tr

�
FTLBF

�
,

s.t.,B1 = 1,B ≥ 0,FTF = I.

(17)
argmin

B
‖B‖2

F
− Tr

�
WBT

�
+ �5Tr

�
FTLBF

�
,

s.t.,B1 = 1,B ≥ 0,FTF = I.
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Like Eq. (12), the optimal value of F can be found by deriving it from the c eigenvectors 
of the corresponding topmost c greatest eigenvalues of LB . Thus, Eq. (18) can be recasted 
as:

Then, denoting �5‖fi − fj‖22 − wij as qij , Eq. (19) is simplified as:

Same as Eq. (30) of [28], bj can be obtained in the following way:

Algorithm 1 outlines the entire solution for the proposed algorithm.

Input: Data , clusters size c, parameter , , ,

Initialize , 1 = , 2 = ; ϵ = 10−5; = 1.01; =10 ; = 0.01

While not converged do
1 Update by Eq. (9);

2 Update by Eq. (10);

3 Update by Eq. (12);

4 Update by Eq. (14);

5 Update by Eq. (21);

6 Update the multipliers.

= + ( − − )

= + ( − )

7 Update by = ( , ( ))

8 Check the convergence conditions:

| − − | < ϵ and | − | < ϵ

Output: 

 Algorithm 1 Our Proposed Algorithm

4  Experiments

In this section, the effectiveness of the proposed method is evaluated through several exper-
iments. The experimental settings, including the datasets used, and the compared methods 
are described in Section 4.1. The results of the experiments and their analysis are presented 
in Section 4.2.

(18)
min
bj

�
�5‖fi − fj‖22 − wij

�
bij + bT

j
bj,

s.t., bj ≥ 0, 1Tbj = 1.

(19)
min
bj

1

2
‖bj +

qj

2
‖2
2
,

s.t., bj ≥ 0, 1Tbj = 1.

(20)bj =

(
−
wj

2
+ �1

)

+

.
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4.1  Experimental settings

To demonstrate the effectiveness of our proposed method, we utilized several datasets: 
COIL201, USPS2, ORL3, and WebKB4 datasets (See Table 1 for a summary of each data-
set and Fig. 2 for images of some datasets) to perform various experiments. We compare 
the performance of our methods with seven state-of-the-art methods: LRR [5], LRR + SSC 
[29], SinNLRR [19], Implicit Block Diagonal Low-Rank Representation (IBDLR) [30], 
Nonlinear Orthogonal Non-Negative Matrix Factorization (NONMF) [31], Adaptive Low-
Rank (ALR) [32], and Coupled Low-Rank Representation (CLRR) [33] using six stand-
ard evaluation metrics: accuracy (ACC), normalized mutual information (NMI), F-score, 
Recall, Precision and adjusted rand index (AR). For the parameter settings of each method, 
we adopt the optimal settings in the corresponding literature. We describe the datasets and 
compared methods below.

Table 1  Summary of the datasets Dataset No. of Sample Dimension Cluster size

COIL20 1440 1024 20
UCI Digits 2000 240 10
ORL 400 1024 40
WebKB 203 1703 4

(a)ORL                            (b) COIL20

(c) UCI digits
Fig. 2  Illustration images of (a) ORL, (b) COIL20 and (c) USPS datasets

1 https:// www. cs. colum bia. edu/ CAVE/ softw are/ softl ib/ coil- 20. php
2 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Optic al+ Recog nition+ of+ Handw ritten+ Digits
3 http:// cam- orl. co. uk/ faced ataba se. html
4 https:// linqs. soe. ucsc. edu/ datal

https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
http://cam-orl.co.uk/facedatabase.html
https://linqs.soe.ucsc.edu/datal
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• COIL20: It consists of a collection of 20 different objects, each captured from various 
angles under controlled conditions. The dataset contains a total of 1440 samples, where 
each sample represents an image of one of the objects. We extracted 1024 features for 
each image.

• UCI Digits: It holds a collection of handwritten digit images, where each image rep-
resents one of the ten digits (0–9). The dataset contains a total of 2000 samples, with 
each sample represented by a feature vector of 240 dimensions.

• ORL: It is a collection of grayscale facial images captured from 40 distinct subjects, 
with each subject having 10 different images taken under varying conditions, resulting 
in 400 samples. Each image in the ORL dataset has a dimension of 1024, representing a 
32 × 32 pixel image.

• WebKB: It is a widely used benchmark in the field of text classification and information 
retrieval. It consists of a collection of web pages from various university websites, with 
each web page representing a document. The dataset contains a total of 203 samples. 
Each document in the WebKB dataset is represented by a feature vector with a dimen-
sion of 1703.

The following is a description of each comparison method.

• LRR: It aims to find the representation of data samples as linear combinations of bases 
in a given dictionary with the lowest possible rank.

• LRR + SSC: It considers data correlation and performs automatic data selection while 
grouping together correlated data.

• SinNLRR: It imposes a nonnegative and low rank structure on the similarity matrix to 
accurately identify and classify cell types.

• IBDLR: It incorporates implicit feature representation and a block diagonal prior to 
improve the accuracy of the LRR model.

• NONMF: It extends the nonlinear orthogonal Nonnegative Matrix Factorization (NMF) 
framework by incorporating a graph regularization.

• ALR: It uses an adaptive solution of a low-rank kernel matrix such that the mapped 
data in the feature space possesses both low-rank characteristics and self-expression 
properties.

• CLRR: It uses a k block diagonal regularization term to ensure a block diagonal clus-
tering structure.

4.2  Experimental results

Table  2 shows the result concerning ACC, NMI, F-score, Recall, Precision, and AR 
obtained by different methods on the COIL20 dataset. As can be seen in the table, the 
proposed method outperforms the other methods. Specifically, the performance of 88.78% 
(ACC), 95.19%(NMI), 86.72%(F-score), 76.80%(Precision), and 85.87%(AR) acquired by 
the proposed method is better than that of the closest method, CLRR, by over 1%, and 
much better than the other methods. The much closer performance of CLRR is due to its 
utilization of the k block diagonal regularization, which is shown to be very effective in 
several works such as [34]. Nonetheless, when the computational runtime is compared, one 
can easily see that by avoiding the k block diagonal regularization and inducing the dual 
regularization strategy through the k nearest neighbour graph and avoiding the complexity 
of manifold recovery structure, the proposed approach is more efficient than CLRR.
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Table 3 displays the result concerning ACC, NMI, F-score, Recall, Precision, and AR 
obtained by different methods on the UCI dataset. It can be observed that the proposed 
method maintained its superiority in handwritten recognition. Although both CLRR and 
the proposed method obtained competitive performance, with the proposed method out-
performing CLRR in only three of the six metrics: F-score, Precision, and AR, the com-
putational runtime of the proposed method is almost half of that of CLRR. Following the 
performance of CLRR and our method is NONMF and ALR methods. ALR introduces 
a novel kernel subspace clustering method capable of handling non-linear models, mak-
ing it a more effective approach for non-linear subspace clustering. NONMF, on the other 
hand, allows for a factorization that preserves the local geometric structure of the data after 
nonlinear mapping. In other words, NONMF considers the nonlinearity of the underlying 
manifold in subspace clustering tasks to enhance its performance.

Similar results are obtained on ORL dataset where CLRR and our method also obtained 
competitive performance, as shown in Table 4. However, as can be seen in Table 5, the 
proposed method demonstrates strong performance when compared to its closest competi-
tors, CLRR and IBDLR on the WebKB dataset. In terms of accuracy, the proposed method 
achieves an impressive 81.77%, surpassing CLRR’s 79.80% and outperforming IBDLR’s 
71.67%. Specifically, the difference between the proposed method and CLRR, which is the 
closest method is about 2% in ACC, NMI, Precision and AR, respectively, confirming that 
our dual manifold learning strategy is very effective. In addition, Fig. 3 further demonstrate 
the effectiveness of the proposed method by showing the scatter plot of the optimized clus-
tering results of different methods on the COIL20 dataset.

Table 2  Clustering results of different algorithms on COIL20 Dataset

ACC NMI F-score Recall Precision AR Runtime(s)

LRR 65.21 74.41 52.06 68.80 41.87 48.93 638.21
LRR + SSC 60.17 70.66 53.05 57.37 49.34 50.42 1.27e + 04
SinNLRR 68.75 79.81 63.55 70.67 57.73 61.45 62.69
IBDLR 84.58 91.84 80.86 88.96 73.10 76.56 401.64
NONMF 66.41 75.71 60.57 65.30 56.53 58.37 236.79
ALR 85.15 89.54 82.42 92.15 72.61 78.92 88.14
CLRR 87.22 94.07 84.97 96.86 75.68 84.09 26.45
Ours 88.78 95.19 86.72 96.78 76.80 85.87 18.13

Table 3  Clustering results of different algorithms on UCI Digits

ACC NMI F-score Recall Precision AR Runtime(s)

LRR 55.10 51.48 52.80 68.67 41.55 40.80 50.90
LRR + SSC 72.14 66.70 63.20 66.22 60.46 58.92 2.24e + 03
SinNLRR 87.00 79.40 77.80 78.22 77.38 75.33 2.24e + 04
IBDLR 77.85 76.59 73.63 76.67 70.82 70.58 511.80
NONMF 88.30 86.23 80.72 80.34 81.10 76.99 624.34
ALR 90.23 89.80 92.49 91.62 89.40 88.60 211.46
CLRR 97.25 93.86 94.52 94.64 94.40 93.91 61.65
Ours 97.20 93.78 94.57 94.60 94.55 93.93 31.35
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Table 4  Clustering results of different algorithms on ORL Dataset

ACC NMI F-score Recall Precision AR Runtime(s)

LRR 48.00 58.68 33.99 38.28 30.89 31.14 19.68
LRR + SSC 61.25 77.39 48.70 52.06 45.75 47.43 282.71
SinNLRR 53.65 72.94 40.01 42.37 37.90 38.54 3.89
IBDLR 65.83 79.82 52.40 55.37 49.74 51.24 27.26
NONMF 66.41 75.71 60.57 65.30 56.53 58.37 0.32
ALR 63.50 80.45 53.25 59.33 48.30 52.06 3.37
CLRR 69.25 84.25 59.16 62.17 56.43 58.17 1.75
Ours 70.02 84.63 58.90 65.39 54.81 57.95 1.46

Table 5  Clustering results of different algorithms on WebKB Dataset

ACC NMI F-score Recall Precision AR Runtime(s)

LRR 71.42 79.80 66.98 68.13 65.86 44.97 14.00
LRR + SSC 65.52 79.31 66.71 72.19 62.01 42.30 134.18
SinNLRR 63.05 79.80 64.40 65.19 63.62 40.86 9.64
IBDLR 71.67 78.32 67.70 79.55 58.93 41.09 6.10
NONMF 52.71 55.17 44.59 45.26 43.94 20.80 0.07
ALR 52.71 75.86 51.50 42.06 66.40 30.22 0.80
CLRR 79.80 81.28 78.19 89.73 66.65 58.77 1.19
Ours 81.77 83.25 78.41 91.16 68.78 60.87 0.09

                         (a) Original Data                                                         (b) NOMF

    (c) IBDLR                                                                (d) ALR

                        (e) CLRR                                                                  (f) Ours
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Fig. 3  A scatter plot of the optimized clustering results of different methods on the COIL20 dataset
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Furthermore, considering that the degree of corruption in real-world data is not usually 
known in advance [35], the robustness of various algorithms to corruption is further inves-
tigated by adding different degrees (5% and 10%) of occlusion into the arbitrarily selected 
ORL dataset. Precisely, we randomly introduced some black blocks into the images of 
ORL. According the results shown Fig. 4, all methods have performance degradation as the 
corruption level increases. The reason is straightforward, because, as the sizes of occlusion 
grows, it tends to obscure the discriminative details present in the data, making it chal-
lenging for various clustering methods to accurately identify the underlying structure. The 
presence of occlusion can lead to misinterpretation and incorrect clustering assignments. 
However, the proposed method exhibits a relatively higher level of robustness compared 
to the other methods that were compared. This is because the proposed method is able to 

Performance Comparison

LRR LRR+SSC SinNLRR IBDLR NONMF ALR CLRR Ours
0

10

20

30

40

50

60

70

80

0%
5%
10%

Performance Comparison

LRR LRR+SSC SinNLRR IBDLR NONMF ALR CLRR Ours
0

10

20

30

40

50

60

70

80

90

0%
5%
10%

(a) ACC

(b) NMI

Fig. 4  Clustering performances of different algorithms on corrupted ORL dataset
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mitigate the detrimental effects of data corruption to a greater extent via the dual regulari-
zation term, allowing it to generate more accurate and reliable clustering results.

4.3  Parameter sensitivity

This section presents experimental results to examine the sensitivity of parameters related 
to ACC of the proposed clustering method using COIL20, UCI Digits and ORL datasets. 
The objective function of the method includes five regularization parameters: �1 , �2 , �3 , 
�4 and �5 which needs to be set beforehand. These parameters determine the impact of the 
various terms in our objective function. In order to investigate their effects on data cluster-
ing, the study defines a range of candidate values: {0.001, 0.01, 0.1, 1, 10, 100, 1000}, for 
each parameter by applying the proposed method with various combinations. Firstly, we 
fix other parameters to 1 while varying �1 and �2 to observe its influence on the clustering 
accuracy (ACC). Then, by fixing �1 and �2 to their optimal value from the previous stage, 
we vary �3 and �4 to understand how the different combinations affect the accuracy of the 
clustering results. Finally, we vary �5 by fixing all the other parameters to obtain the final 
optimal sets. Although this process seems expensive, it is reasonable in practice. Moreover, 
to the best of our knowledge, how to select optimal parameters for different dataset is still 
an open problem in the literature.

(a) COIL20 (b)  UCI Digits (c) ORL
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From Fig. 5, 6, it is obvious to see that the clustering ACC is relatively insensitive to 
parameter �3 and �4 , especially on COIL20 and UCI Digits datasets. Figure 7 indicates that 
the clustering accuracy (ACC) is not significantly affected by the parameter �5 . This insen-
sitivity is primarily attributed to the behaviour of the rank constraint term associated with 
�5 in the graph learning process. Because when the value of �5 is too large, the rank con-
straint term becomes dominant in the graph learning, overshadowing the preservation of 
the local and global structure. As a result, even though the generated graph may still have 
connected components, it fails to reveal the actual underlying intrinsic structure of the data.

4.4  Convergence study

The convergence proof of the ALM algorithm typically involves establishing mathematical 
guarantees that the algorithm will converge to an optimal solution under certain condi-
tions. Notably, the convergence of the ALM algorithm with two sub-blocks has been gen-
erally proven [4]. However, it is still difficult to prove that with more sub-blocks. Ours 
has five sub-blocks, making it even more challenging to prove. As a result, we study the 
convergence behaviour of the proposed method by calculating the relative error of the 
dual regularization term. As shown in Fig. 8, the proposed method has strong convergence 
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properties in simultaneously learning two manifold structures to achieve a more optimal 
solution. Thus, the relative error practically lowers after every iteration, causing it to con-
verge quickly between 10 iterations.

5  Conclusion

This study proposes a novel method, which uses a two-way learning technique to induce 
the data manifold via two representative structures. The first structure is a low-rank matrix 
obtained directly from the original data. The second structure called the similarity matrix 
is learned via a k-symmetric nearest neighbor graph. In order to guarantee better clustering 
results, a dual regularization term is further introduced to allow both structures to guide 
themselves adaptively to find a more optimal solution without spectral post-processing pro-
cedure. Several experiments were performed to evaluate the effectiveness of the proposed 
method using four popular benchmark datasets. The results obtained concerning ACC, 
NMI, F-score, Recall, Precision, and AR show that the proposed method has some advan-
tages over compared methods. Despite its effectiveness, our proposed method has several 
limitations. Notably, its computation efficiency may be limited in very large-scale prob-
lems [36] since it has many sub-blocks to update in each iteration. Secondly, finding the 
parameters’ good combination is tricky for several datasets [37]. Thus, this paper can be 
improved with further studies exploring large-scale techniques to enhance computational 
efficiency, and self-parameter tuning strategy to improve performance. Additionally, we 
will exploit multiview learning [38, 39] and the deep learning paradigm to further enhance 
the performance of our method.
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