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Abstract
Affective computing is crucial in various Human–Computer Interaction (HCI) and multi-
media systems for comprehensive emotional assessment and response. The existing Speech 
Emotion Recognition (SER) provides limited performance due to inadequate frequency and 
time domain representation, poor correlation in global and local features, and contextual 
dependencies of components. The traditional SER techniques often result in poor accuracy 
due to spectral leakage, low-frequency resolution problems, and poor depiction of emo-
tional speech’s pitch, intonation, and voice timbre. This paper presents a novel two-way 
feature extraction (TWFR) based SER system using 2D-CNN and 1D-CNN to improve 
the distinctiveness of emotional speech. The first set of features, a 2-D representation of 
the wavelet packet decomposition (WPD) coefficients, is given to a 2-D Deep Convolu-
tion Neural Network (DCNN). The second set of features comprises various time-domain, 
spectral, and voice-quality features given to 1D-DCNN. The features from the last layer 
of 2D-DCNN and 1D-DCNN are concatenated and provided to a fully connected layer, 
followed by a softmax classifier for SER. The results of the TWFR-based SER scheme 
are assessed on EMODB and RAVDESS datasets based on recall, precision, accuracy, 
and F1-score. The proposed TWFR-based SER shows an overall accuracy of 98.48% for 
EMODB and 98.71% for RAVDESS datasets. The proposed TWFR-based SER helps 
improve the speech’s pitch, intonation, and voice timbre in the spectral and time domain for 
SER and outpaces the current state of the arts.
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1  Introduction

Automatic SER is crucial in HCI, as it recognizes the emotion from the speech signal 
regardless of its semantic content. Speech emotion is an element of natural voice com-
munication that humans can realize instinctively [1, 2]. Widespread research is being 
done on the capacity of programmable devices to identify this feeling using distinct 
behavioral and physiological modalities, including facial expression, muscle signals, 
Electroencephalography (EEG), body resistance, Electrocardiography (ECG), speech, 
etc. [3]. Speech is crucial for identifying emotions since it can be rapidly and cheaply 
collected. The SER is the process of the mapping of low-level speech information to 
high-level output class labels or emotion magnitudes in terms of arousal and valence 
or class labels or scalar values of emotion magnitudes, such as arousal and valence, is 
known as speech emotion recognition [4, 5]. SER is widely used in call centers, mul-
timedia data analysis on social media, mobile phones, affective robots, HCI systems, 
clinical investigations, interactive games, banking, customer care centers, audio surveil-
lance, audio conferencing, web-based e-learning, entertainment, etc. [6, 7].

All SER systems must be generalized because it is challenging to discern human 
speech emotions. Language and paralinguistic information are included in the human 
voice signal. The linguistics material illustrates the meaning and context of speech. Par-
alinguistic data, often independent of the speaker, age, language, dialect, gender, accent, 
and linguistic content, refers to implicit information such as mood, stress, etc. Age and 
accents are two important parameters affecting emotional voice. Increased age shows 
altered resonance, decreasing pitch, and lower vocal control. The change in accent leads 
to variation in intonation, rhythm and voice distinctiveness [8, 9]. Various emotions, 
including boredom, contempt, fear, melancholy, pleasure, excitement, surprise, and 
neutrality, are expressed via speech [10, 11]. Frequently, paralinguistic information is 
unconnected to the language, speaker, or linguistic content. Different emotions have a 
substantial influence on the numerous voice properties. The prosodic features comprises 
of intensity, voice quality, pitch, speaking rate, and voice variation [12]. The standard 
deviation and mean depicts the impact of emotions on the long term characteristics of 
speech [13]. With traditional machine learning (ML) techniques, a classifier is trained 
to provide the desired results by learning features from the raw speech signals. Different 
continuous features, prosodic features, spectral features, qualitative features, transform-
based features, and hybrid features are all included in the feature extraction. Principal 
Component Analysis (PCA), Mel-Frequency Cepstrum Coefficients (MFCC), Gamma-
tone Frequency Cepstral Coefficients (GFCC), Linear Predictor Cepstral Coefficients 
(LPCC), Perceptual Linear Prediction coefficients (PLP), and other hand-crafted feature 
extraction techniques have all been presented in the past for the SER. In the classifica-
tion step, the characteristics gleaned from the unprocessed voice signals are learned, and 
the particular emotion is predicted. The K-Nearest Neighbour classifier (KNN), Ensem-
ble Classifier, Gaussian Mixture Model (GMM), Hidden Markov Model (HMM), Clas-
sification Tree (CT), Dynamic Time Warping (DTW), Support Vector Machine (SVM), 
Random Forest (RF), Artificial Neural Network (ANN), etc., are commonly used clas-
sification algorithms that have been utilized in recent years for SER. Selecting features 
is a common issue with this approach, and the classifier’s success heavily depends on 
these manually created features. It is challenging to foresee which characteristics would 
lead to higher performance. Traditional handmade elements cannot differentiate and 
correlate [14, 15].
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The generalized SER includes the training and testing phase. The ML or deep learn-
ing (DL) algorithms are used during training to train the classifier based on specially cre-
ated speech features. The trained model converts the unknown real-time samples to specific 
emotion labels in the testing phase. Data preprocessing, feature extraction, feature normali-
zation, feature selection, and classification are essential steps in each stage of SER. Data 
preprocessing includes standardization, noise removal, and artifact removal to improve 
unprocessed voice signals. Using a variety of feature extraction approaches, the feature 
extraction is crucial for acquiring the key characteristics of the particular emotion. Feature 
selection is essential to acquire crucial characteristics and lessen SER system complexity. 
Finally, several classifiers based on DL or ML were used for SER. A DL is a potential field 
for SER that converts low-quality speech features into high-quality hierarchical abstract-
level features. Numerous benefits are offered, including the capacity to handle unlabeled 
data, deal with complicated speech features and structure, needless parameter adjustment, 
and process more extensive datasets [16, 17].

Most SER systems suffer difficulties due to non-uniform and heavily skewed databases. 
Neutral speech samples are more often used while recording and interpreting SER data 
than other emotional speech samples, creating significantly unbalanced data. The data 
augmentation strategy, which uses artificial intelligence-based methods to create synthetic 
samples, is the most popular method for addressing the issue of data imbalance. The hand-
crafted features’ decreased dimensionality compared to spectrograms or raw waveforms 
makes them more suitable for data augmentation modeling. However, producing enhanced 
samples of a hand-crafted feature set limits its future application to compatible SER mod-
els. Future investigation may train models directly on the raw speech signal waveforms 
[18], on derived features [19], or on multi-channel audio [20] thanks to raw signals or spec-
trograms. The Generative Adversarial Network (GAN), invented by Goodfellow et al. in 
2014 [21], is one of the most well-known methods to amplify and reinforce speech sam-
ples. Due to its capacity to provide a variety of solutions for a given sample, improved 
learning of the likelihood distribution of challenging real-time issues, and capacity to learn 
from noisy and unlabeled data, GAN is growing in popularity [22]. Different GAN-based 
methods have been proposed for enhancing speech data utilizing raw speech signal char-
acteristics or spectrograms [23–25]. However, the produced samples often fail to maintain 
the real-time samples’ marginal distribution.

Wavelet transform-based techniques have revealed a better spectral and time-domain 
depiction of the speech emotion and help to provide better resolution at lower frequencies. 
Wang et al. [26] presented WPC for the speaker-independent emotion recognition feature 
representation. It is observed that the Sequential Floating Forward Search (SFFS) based 
feature selection of WPC decomposed up to five levels (db2 filter) provides efficient feature 
selection and results in 79.2% and 79.5% accuracy for radial basis SVM (RSVM) and lin-
ear SVM (LSVM) respectively for EMODB dataset. Meng et al. [27] suggested that adding 
WPC features helps boost the spectral and time-domain properties of the speech signal, 
and recurrent neural network (RNN) assists in enhancing the contextual emotional depend-
encies of speech. It resulted in 82.26% and 66.90% accuracy for SER for the EMODB. 
Badshah et  al. [28] presented an SER system based on 2-D DCNN that used a spectro-
gram. They used three layers of CNN and three fully connected layers, resulting in 84.3% 
accuracy of the EMODB. The sequential DCNN architecture provides less generalization 
capability and shows less results unseen data. Zhao et al. [29] proposed a combination of 
1-D CNN and 2-D CNN with LSTM to enhance emotional speech’s long-term depend-
encies and time-domain representation capability. The 2-D DCNN shows better spatial 
and spectral characteristics and substantially improved overall accuracy compared with 
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the 1-D DCNN. It resulted in an overall accuracy of 95.33% for speaker-specific SER 
and 95.89% for speaker-independent SER for EMODB. Aftab et al. [30] investigated Full 
CNN (FCNN) to acquire the high-order features of the emotional voice. It encompasses 
two parts for speech representation. The first part uses MFC spectrograms to character-
ize the time–frequency feature depiction of speech. The second part describes the high-
level emotion-related features by learning local features. It has given an overall accuracy 
of 94.21% and 79.89% for EMODB and IEMOCAP, respectively. Agrawal et al. [31] pro-
posed a TWFR using PCA and MFCC for SER. It encompasses two DL frameworks, DNN 
and VGG16. The first stage consists of spectral feature selection using PCA and feature 
distinctiveness improvement using DNN. The second phase learns the emotion-specific 
attributes using MFCC and VGG16. It resulted in an overall SER accuracy of 81.94% for 
the RAVDESS dataset. It needs higher training parameters (138 M for VGG16 and 782 K 
for DNN) that limit its implementation flexibility on real-time devices with limited compu-
tational capacity. The MFCC is subjected to spectral leakage problems and low-frequency 
resolution, providing low results for lower arousal emotions.

Mustaqeem and Kwon [32] investigated 1-D dilated CNN, which can extract emotion-
related features from raw speech. It has given SER accuracy of 90% for EMODB. The 1-D 
dilated CNN uses the bidirectional gated recurrent unit (BiGRU) to boost the time–fre-
quency domain characteristics of voice. Farooq et al. [33] utilized a Mel log spectrogram 
(MLS) and 2-D DCNN for SER. The MLS-2-D DCNN shows a superior spatial and 
spectral depiction of emotional voice. It offers an overall accuracy of 90.5% and 73.5% 
for EMODB and RAVDESS, respectively. Further, Mustaqeem et  al. [34] explored the 
combination of CNN and radial basis function network (RBFN) for SER. The CNN uses 
a short-time Fourier transform spectrogram (STFT) of speech to describe spectral-time 
domain properties. The Bidirectional LSTM is utilized to enhance SER precision. It deliv-
ers an overall SER accuracy of 85.57% for EMODB and 77.02% for RAVDESS. However, 
it results in higher trainable parameters (> 3  M). Chen et  al. [35] suggested SER based 
on attention-based convolution RNN (ACRNN) and 3-D Mel spectrograms to enhance the 
feature representation of emotion-related content in speech. This resulted in SER accuracy 
of 82.82% for EMODB, but it needs a higher training time of 6811 s. Further, Meng et al. 
[36] explored dilated CNN-BLSTM with an attention layer (ADRNN) to increase the long-
term dependency of speech. The 3-D Mel spectrogram and ADRNN offer an SER rate of 
88.98% for EMODB.

Zhao et al. [37] combine 2-D CNN and 1-D CNN to boost the distinctiveness of emo-
tion-specific features. The merged DCNN utilizes Bayesian optimization to optimize the 
learning process, which provided an accuracy of 91.78% for EMODB. It has shown that 
proposed DL frameworks need huge trainable parameters (> 10 M), increasing their com-
putational volume. Bilal [38] utilized different speech features such as root mean square 
(RMS), chroma, spectral, MFCC features, and spectrogram representation for SER. These 
features are provided to ResNet, which offers an accuracy of 90.21% for EMODB and 
79.41% for RAVDESS.

The wavelet transform has shown a superior spectral representation of the signals. It 
acquires the local information over a short period and spectral band to characterize the 
impact of emotion on speech [39–42]. The EMODB [43] and RAVDESS [44] datasets are 
widely used for the SER because of their distinctiveness, public availability, easy access, 
and availability for male/ female voice samples. The neural networks have shown the capa-
bility for high efficiency and high precision and can be effectively utilized for signal pro-
cessing applications. The problem of low convergence rate and poor robustness in parallel 
neural networks has been solved using varying parameter DL frameworks [45–47]. The 
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DL-based Stacked Autoencoder (SAE) has shown a better global and local representation 
of emotional speech. The SAEs show the capability to distinguish the different emotions 
in the speech. However, the SAEs are computationally extensive, leading to over-fitting for 
higher dimensional data [48]. The real-time implementation of the SER systems is chal-
lenging because of the high dimensional feature vector that increases the computational 
intricacy of the SER systems. Therefore, selecting minimal and optimal speech features for 
emotion depiction is essential to lessen the computational volume and enhance the SER 
accuracy [49, 50].

The extensive survey of current SER systems shows that SER systems based on MFCC 
spectrogram suffer from reduced variance, frequency resolution issues, and spectrum leak-
age issues that lead to a poor SER identification rate. The intricate DL architecture raises 
the SER system’s computational complexity. Due to the unequal distribution of emotion 
class samples in the training dataset, the performance of SER systems is constrained.

Thus, the proposed article presents a TWFR-based SER scheme based on a deep learn-
ing framework that improves feature representation, frequency resolution problems, poor 
feature variance, and spectral leakage problems. The proposed DL framework consists of 
the parallel combination of 2-D DCNN that improves the spatial representation of the spec-
tral features and 1-D DCNN that acquires the emotion-specific patterns in Multiple Acous-
tic Features (MAFs). The chief offerings of the suggested article can be emphasized as 
follows:

•	 To improve the spectral and time-domain representation and enhance the low-frequency 
resolution of emotional speech signals using wavelet packet decomposition features and 
2D-deep convolutional neural network

•	 To improve pitch, intonation, and voice timbre in the spectral and time-domain domain 
using Multiple Acoustic Features encompassing spectral, time-domain, and voice qual-
ity features along with 1D-DCNN.

•	 To improve the hierarchical feature representation and feature distinctiveness using a 
parallel combination of 2-D DCNN and 1-D DCNN.

The results of the proposed WPD-DCNN are evaluated for the different wavelet packet 
families such as Daubechies (dbN), Symlets (symN), Coiflets (coifN), and Fejer-Korovkin 
(fkN). It used three packets per family with different vanishing moments. The WPD uses 
12 wavelet packets such as db1, db2, db3, coif1, coif2, coif3, sym4, sym5, sym6, fk4, fk6, 
and fk8. The overall system’s effectiveness is evaluated using accuracy, F1-score, recall, 
precision, and selectivity on the public Emo-DB and RAVDESS database.

The remaining article is structured as follows: Section  2 details the proposed WPD-
DCNN-based SER system. Section  3 discusses the database and experimental results. 
Lastly, Section 4 presents the conclusion and provides the scope for future improvement in 
the method.

2 � Proposed methodology

The flow diagram of the proposed WPD-DCNN-based SER is illustrated in Fig. 1. It consists 
of a two-way feature extraction of the emotion signal. The first approach consists of 2-D WPD 
coefficients given to 2-D DCNN to capture the spectral and time-domain characteristics of the 
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signal. The second approach consists of acoustic features such as spectral, time domain, voice-
quality features, and a maximum of WPD packets.

These features are given to 1-D DCNN to improve the feature distinctiveness, learn 
emotion-specific patterns, minimize intra-class variance, and improve inter-class variance 
of the emotion features. Later, the flattened output of the 2D-DCNN and1D-DCNN is con-
catenated and given to the fully connected layer to connect each neuron with every other 
neuron and improve the features’ local and global representation. The Softmax classifier is 
further used to classify emotion for two publics: EMODB and RAVDESS.

2.1 � WPD + 2‑D DCNN

The WPD gives a more precise frequency resolution than DWT for the speech signal. 
Unlike DWT, the WPD decomposes the low but also high-frequency sub-bands of the sig-
nal. The WPD maintains the smoothness, orthogonality, and localization properties of the 
signal and its parent wavelets [39–41]. The WPD decomposes the wavelet packet function 
Ψi

j
(n) up to L levels using db3 wavelet filters at various scales using Eq. 1 and 2.
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∑
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Fig. 1   Process of proposed WPT-DCNN-based SER



Multimedia Tools and Applications	

1 3

Here, g(k) denotes high pass quadrature mirror filter (QMF), whereas h(k) stands for 
low-pass QMF, as described by Eq. 3 and 4, respectively. The QMF provides efficient 
orthogonal wavelet decomposition and better local features of the speech signal using a 
two-channel filter bank structure [42].

The emotional speech signal x(n) is decomposed to level j using Eq. 5. The Xi
j
(k) rep-

resents kth wavelet packet coefficient for ith packet at level j.

where, Xi
j
(k) is kth wavelet packet coefficient at ith packet at j level that signifies the strength 

of the localized wavelet Ψi
j

(
n − 2jk

)
 as given in Eq. 6.

The group of wavelet packets for the L level can be given in Eq. 7. The filter decima-
tion recursion provides reduced time resolution and increased frequency resolution.

In the WPD, approximation g(n) and detailed information h(n) signals are further 
decomposed at the next level to get a better local frequency resolution. The WPD con-
siders the Shannon entropy function for the binary decomposition of the signal. Figure 2 
illustrates the three-level WPD decomposition of the speech signal. The WPD generates 
2L sets of coefficients for the L levels.

Further, the coefficient sets are arranged in a two-dimensional matrix to form the 
WPD features. Each row represents the wavelet coefficients set, and each column 
denotes the coefficient value. The WPD feature set for fifth-level decomposition is 
described by Eq. 8. The fifth-level WPD decomposition creates the 2-D feature vector of 
32 × k where k represents the number of coefficients in every packet. The original signal 
has 64000 sample points in each speech signal. Therefore, the fifth level decomposi-
tion of the emotion speech signal consists of 2000 coefficients in every packet. Thus, 
the two-dimensional WPD matrix consists of dimensions of 32 × 2000, further provided 
to the 2D-DCNN to improve the connectivity and correlation between different packet 
coefficients. In Eq. 8, Xk

L
 Represents the kth packet of Lth level WPD of speech such that 

j = 1,2, 3, ...2L and i = 1,2, 3,… .2000.
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The proposed lightweight 2-D DCNN consists of three layers of CNN that encompass 
the convolution layer ( Conv ), rectified linear unit layer ( ReLU ), and maximum pooling 
layer ( MaxPool ). The Conv layer provides the localized features and connectivity in the 
different wavelet packets to capture the effect of emotion in the spectral domain. The 
Conv operation for WPD feature representation (X) and convolution filter (F) with w × w 
size is given by Eq. 9. The Conv layer provides the correlation between different spec-
tral components decomposed using WPD at local level.

The ReLU layer improves the non-linearity by replacing the negative values with 
zero as shown in Eq. 10. The ReLU layer fastens the training and assits to avoid gradient 
vanishing problem.

Here, x and y represents the position of the neuron in WPD 2-D representation. Fur-
ther, the MaxPool layer selects the prominent features and helps to minimize the feature 
dimensions.. Equation 11 provides the extraction of the maximum value from the ReLU 
layer.
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(9)Conv(x, y) =

w∑
i=1

w∑
j=1

X(x − i, y − j).F(i, j)

(10)ReLU(x, y) = ���(Conv(x, y), 0)

Fig. 2   Wavelet packet decomposition tree
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where wm is the pooling window, and MaxPool is the output of the MaxPool layer. The 
proposed 2-D DCNN includes 64, 128, and 256 convolution filters with a stride of one 
pixel in the first, second, and third CNN layers, respectively.

2.2 � Multiple acoustic features + 1‑D DCNN

Different spectral, voice quality and time-domain features form the MAF set. The MAFs 
enhance the feature distinctiveness, minimize intra-class variance, and improve inter-class 
variance of the emotion features. The fundamental frequency depicts the rise and fall in 
emotional expression. The time-domain features include fundamental frequency and Zero 
Crossing Rate (ZCR). The fundamental frequency is a higher pitch for joy, excitement, 
and boredom, whereas there is a lower pitch for calm, sadness, and anger. The ZCR pro-
vides abrupt changes and noise measures for the voice. The ZCR has a higher value for 
high-arousal emotions and a low value for low-arousal emotions such as calm or serious. 
The voice quality feature encompasses emotional speech’s jitter, shimmer, and root mean 
square value (RMS).

The jitter and shimmer depict the emotional voice’s disparity and stability in time and 
amplitude. The RMS provides the overall intensity or energy of the speech. Anger, excite-
ment, and stress have higher RMS values because of high voice intensity. The low arousal 
emotions, such as calmness and sadness, have lower RMS values. The spectral features 
include Mel Frequency Cepstral Coefficients (MFCC), Linear Predictive Cepstral Coeffi-
cients (LPCC), Spectral Kurtosis (SK), Spectral Rolloff (SR), and WPD features. MFCC 
provides the spectral attributes of timbre, pitch, and formants of emotional voice. MFCC 
Δ gives MFCC variations to depict prosodic and phoneme variation transitions over time. 
The MFCCΔΔ provides the MFCC acceleration to describe the minor time-domain varia-
tion in speech due to emotion [51, 52].

LPCC provides an emotion-specific compact representation of speech to characterize 
intonation and prosody. The SK offers detailed information regarding energy distribution 
over the distinct frequency bands. High SK indicates that energy is accumulated at signifi-
cantly fewer frequency components, whereas lower SK describes uniform energy distribu-
tion. The SR denotes the frequency value below which 85% of the power of the speech 
spectrum is accumulated.

Further, a maximum of fifth-level WPD packets are added to MAFs to enhance the 
special and time-domain resolution at a lower frequency [39, 53, 54]. The emotions with 
higher arousal values have high SR. The components extracted are summarized in Table 1.

The one-dimensional features that characterize the speech signal’s time domain, 
spectral domain, and voice quality features are further provided by 1-D DCNN. The 
1-D DCNN consists of three CNN layers encompassing Conv and ReLU layers. After 
three convolution layers, the flattening layer output is concatenated with the flattening 
layer output of the first approach. The combined two-way features are later given to the 
FC and softmax layers for emotion recognition. The softmax is simple and provides 
probabilistic interpretations of the output classes. It is applicable for multiclass classi-
fication and compatible with different learning optimization algorithms. The represen-
tations of the probability function, which computes the probabilities associated with 
each class in the network, may be found in Eq. 12 and 13, respectively. The Softmax 

(11)
MaxPool(x, y) = max

x = 1 ∶ row − wm,

y = 1 ∶ col − wm

{ReLU(x + wm − 1, y + wm − 1)}
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classifier uses this set of probabilities to depict output emotion as given in Eq. 14. The 
class label with the highest probability provides output emotion label.

Here, ŷ represents the output class, zi represents dense layer output, hj denotes the 
hidden layer inputs, wji  represents the final dense layer’s weights and pi denotes the 
likelihood of the output class.

3 � Experimental results and discussions

The proposed SER scheme is implemented on the NVidia GPU system with 64  GB 
RAM and a 512 tensor core. The effectiveness of the suggested approach is estimated 
based on accuracy, recall, precision, and F1-score. The proposed algorithm is trained 
using ADAM optimizer for 200 epoch, initial learning rate of 0.001, batch size of 64 
and crossentropy loss function. The configuration of the two parallel arms of the pro-
posed TWFR-based SER model are described in Table 2.

(12)zi =
∑
j

hjwji

(13)pi =
exp(zi)∑n

j=1
exp(zj)

(14)ŷ = arg
max

i
pi

Table 1   Details of MAFs Type of the Features Features Number 
of Fea-
tures

Time-domain Features Fundamental Frequency 1
ZCR 1

Voice Quality Features Jitter 1
Shimmer 1
RMS value 1

Spectral Features MFCC 13
MFCC Δ 13
MFCCΔΔ 13
LPCC 13
Spectral Kurtosis 1
Spectral Rolloff 1
WPD features 32

Total Features 91
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3.1 � Dataset

The outcomes of TWFR-based SER are evaluated on the two open-source SER datasets, 
EMODB and RAVDES. EMODB is a dataset recorded for ten professional actors in the 
German language. It consists of 535 samples of 10 male and 10 female actors recorded at 
48 kHz, further sampled to 16 kHz. It encompasses seven emotions: anger, boredom, fear, 
anxiety, sadness, happiness, and disgust [43].

Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset 
consists of 1440 samples recorded in English. It includes audio recordings of eight emo-
tions from 12 male and 12 female actors at the 48  kHz sampling rate. It contains eight 
emotions: calm, sad, angry, happy, fear, neutral, disgust, and surprise [44].

The dataset is split in the ratio of 70:15:15 for training, testing, and validation purposes. 
The experiments are carried out for the tenfold cross-validation. The suggested system 
provides a training accuracy of 99.50% and 100% for the EMODB and RAVDESS. The 
proposed model resulted in 99.50% and 99.80% validation accuracy for the EMODB and 
RAVDESS datasets. The sampling frequency is kept at 16 kHz, and the signal duration is 
maintained at 4 s by cropping the longer speech or appending the shorter speech samples to 
maintain uniformity in the dataset. A detailed description of the dataset is given in Table 3.

3.2 � Experimental results and discussions for the EMODB dataset

Figure 3 and 4 provide the original speech signal and its first-level decomposition using 
WPD (db2). At every level, 2L Packets are generated. The length of packet coefficients is 
down-sampled to half of its original size at every level.

The first level WPD packets (1,0) and packet (1,0) have 32,000 coefficients in each 
packet, as shown in Fig. 4. Figure 5 shows that the second level WPD packets (2,0), (2,1), 
(2,2), and (2,3) consist of 16,000 coefficients in every packet. In contrast, third-level WPD 
packets (3,0), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), and (3,7) include 8000 coefficients in 
each packet as illustrated in Fig. 6.

The efficiency of the suggested WPD-DCNN is evaluated for the different wavelet 
packet families such as coif1, coif2, coif3, sym4, sym5, sym6, db1, db2, db3, fk4, fk6 
and fk8. The proposed WPD-DCNN provides highest overall accuracy of 98.45% for db2, 
whereas it results in an accuracy of 95.15% for db1, 97.14% for db3, 92.78% for sym4, 
93.11% for sym5, 93.60% for sym6, 92.20% for coif1, 92.95% for coif2, 92.55% for coif3, 

Table 3   Description of EMODB and RAVDESS dataset

Description EMODB RAVDESS

Number of Samples 535 1440
Type of Dataset Acted Acted
Number of Subjects 20 (10 Male and 10 Female) 24 (12 Male and 12 Female)
Sampling Rate 48 kHz 48 kHz
Duration 4 s 4 s
Total Emotion 7 8
Emotions Anger, boredom, happiness, anxiety, fear, 

sadness, and disgust
Calm, sad, anger, happy, 

fear, disgust, and surprise
Availability Public Public
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Fig. 3   Original Speech Signal (EMODB: Happy-09a01Fa.wav)

Fig. 4   WPD packet coefficients for 1.st level decomposition a) Wavelet packet (1,0) b) Wavelet packet (1,1)

Fig. 5   WPD packet coefficients for 2.nd level decomposition a) Wavelet packet (2,0) b) Wavelet packet (2,1) 
c) Wavelet packet (2,2) d) Wavelet packet (2,3)
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Fig. 6   WPD packet coefficients for 3.rd level decomposition a) Wavelet packet (3,0) b) Wavelet packet (3,1) 
c) Wavelet packet (3,2) d) Wavelet packet (3,3) e) Wavelet packet (3,4) f) Wavelet packet (3,5) g) Wavelet 
packet (3,6) h)Wavelet packet (3,7)
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91.59% for fk4, 90.34% for fk6 and 90.76% for fk8. Combining WPD-based features and 
MAFs improves the feature distinctiveness of the emotional features and provides better 
results for the proposed method than the traditional state of arts. The db2 filter provides 
superior speech representation capability compared with other wavelet filters and results in 
the highest accuracy of 98.45% for the EMODB dataset. The WPD (db2) and 2-D DCNN 
provide 100% accuracy for the anger, fear, happiness, neutral, and sadness emotions of 
EMODB (Fig. 7).

Recall rate provides the quantitative analysis of the SER as given in Fig. 8. The pro-
posed WPD-DCNN provides overall recall of 0.95 for db1, 0.98 for db2, 0.97 for db3, 0.93 
sym4, 0.93 for sym5, 0.94 for sym6, 0.92 for coif1, 0.93 for coif3,0.92 for fk4, 0.90 for fk6 
and 0.91 for fk8.

The precision indicates the qualitative measures of the proposed WPD-DCNN-based 
SER, as shown in Fig. 9. It provides a higher accuracy of 0.99 for the db2 wavelet packet. 
In contrast, it gives a lower precision of 0.90 for fk6 and fk8 packets. It is observed that 

db1 db2 db3 sym4 sym5 sym6 coif1 coif2 coif3 fk4 fk6 fk8

Anger 100.00 100.00 100.00 97.44 97.44 100.00 100.00 100.00 100.00 94.87 94.87 92.31

Boredom 91.67 95.83 95.83 91.67 91.67 87.50 87.50 87.50 83.33 91.67 87.50 87.50

Disgust 93.33 93.33 93.33 93.33 86.67 86.67 86.67 86.67 93.33 85.71 85.71 86.67

Fear 95.00 100.00 95.00 95.00 90.00 95.00 95.00 95.00 95.00 95.00 95.00 95.00

Happiness 95.45 100.00 100.00 90.91 95.45 95.45 90.91 90.91 90.91 86.36 81.82 86.36

Neutral 95.83 100.00 95.83 91.67 95.83 95.83 95.83 95.83 95.83 87.50 87.50 87.50

Sadness 94.74 100.00 100.00 89.47 94.74 94.74 89.47 94.74 89.47 100.00 100.00 100.00

Overall 95.15 98.45 97.14 92.78 93.11 93.60 92.20 92.95 92.55 91.59 90.34 90.76
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Fig. 7   Accuracy for WPD-DCNN based SER for different filters for EMODB dataset (L = 3)

db1 db2 db3 sym4 sym5 sym6 coif1 coif2 coif3 fk4 fk6 fk8
Anger 1.00 1.00 1.00 0.97 0.97 1.00 1.00 1.00 1.00 0.95 0.95 0.92
Boredom 0.92 0.96 0.96 0.92 0.92 0.88 0.88 0.88 0.83 0.92 0.88 0.88
Disgust 0.93 0.93 0.93 0.93 0.87 0.87 0.87 0.87 0.93 0.86 0.86 0.87
Fear 0.95 1.00 0.95 0.95 0.90 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Happiness 0.95 1.00 1.00 0.91 0.95 0.95 0.91 0.91 0.91 0.86 0.82 0.86
Neutral 0.96 1.00 0.96 0.92 0.96 0.96 0.96 0.96 0.96 0.88 0.88 0.88
Sadness 0.95 1.00 1.00 0.89 0.95 0.95 0.89 0.95 0.89 1.00 1.00 1.00
Overall 0.95 0.98 0.97 0.93 0.93 0.94 0.92 0.93 0.93 0.92 0.90 0.91
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0.40
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Fig. 8   Recall for WPD-DCNN based SER for different filters for EMODB dataset (L = 3)
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sadness, anger, and disgust have higher precision, whereas boredom and neutral emotion 
have lower overall precision.

Figure  10 illustrates that TWFR-based SER with db2 (0.97) and db3 (0.97) wavelet 
packets provides a good balance between qualitative and quantitative results for the SER 
on the EMODB dataset compared with db1 (0.96), sym4 (0.93), sym5(0.94), sym6 (0.94), 
coif1 (0.93), coif2 (0.93), coif3 (0.93), fk4 (0.91), fk6 (0.90) and fk8 (0.90).

The results of the TWFR-based SER are validated for the different levels of decomposi-
tion for other wavelet packets for the EMODB dataset, as given in Fig. 11. It is observed 
that increasing the decomposing level increases the lower frequency resolution and helps 
to acquire the local characteristics of the emotion signal. It provides superior accuracy 
for the db2 (96.9%) packet over db1 (93.6%), db3 (95.6%), sym4 (91.2%), sym5 (91.6%), 
sym6 (92.1%), coif1 (90.7%), coif2 (91.4%), coif3 (91%), fk4 (90%), fk6 (88.8%), and fk8 
(89.2%). The WPD decomposition level 1 to 5 provides 2, 4, 8, 16, and 32 decomposed 
packets for the original signal.

db1 db2 db3 sym4 sym5 sym6 coif1 coif2 coif3 fk4 fk6 fk8
Anger 0.98 1.00 0.98 0.97 0.97 0.98 0.98 0.98 0.98 0.97 0.97 0.97
Boredom 0.88 0.96 0.92 0.81 0.88 0.88 0.88 0.88 0.91 0.88 0.88 0.88
Disgust 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.93 0.88 0.80 0.80 0.87
Fear 0.95 1.00 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.90 0.90 0.86
Happiness 1.00 1.00 1.00 0.95 1.00 0.91 0.87 0.91 0.87 0.95 0.90 0.95
Neutral 0.92 0.96 0.96 0.92 0.85 0.92 0.92 0.92 0.92 0.95 0.95 0.91
Sadness 1.00 1.00 1.00 0.94 0.95 1.00 1.00 1.00 1.00 0.90 0.86 0.86
Overall 0.96 0.99 0.98 0.94 0.94 0.95 0.93 0.94 0.93 0.91 0.90 0.90
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0.80
1.00
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Fig. 9   Precision for WPD-DCNN based SER for different filters for EMODB dataset (L = 3)

db1 db2 db3 sym4 sym5 sym6 coif1 coif2 coif3 fk4 fk6 fk8
Anger 0.99 0.99 0.99 0.97 0.97 0.99 0.99 0.99 0.99 0.96 0.96 0.95
Boredom 0.90 0.92 0.94 0.86 0.90 0.88 0.88 0.88 0.87 0.90 0.88 0.88
Disgust 0.97 0.97 0.97 0.97 0.93 0.93 0.90 0.90 0.90 0.83 0.83 0.87
Fear 0.95 0.96 0.97 0.95 0.92 0.95 0.95 0.95 0.95 0.93 0.93 0.90
Happiness 0.98 0.99 1.00 0.93 0.98 0.93 0.89 0.91 0.89 0.90 0.86 0.90
Neutral 0.94 0.95 0.96 0.92 0.90 0.94 0.94 0.94 0.94 0.91 0.91 0.89
Sadness 0.97 0.99 1.00 0.92 0.95 0.97 0.94 0.97 0.94 0.95 0.93 0.93
Overall 0.96 0.97 0.97 0.93 0.94 0.94 0.93 0.93 0.93 0.91 0.90 0.90
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0.40
0.60
0.80
1.00
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Fig. 10   Precision for WPD-DCNN based SER for different filters for EMODB dataset (L = 3)
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3.3 � Experimental results and discussions for RAVDESS dataset

The performance of the proposed WPD-DCNN is evaluated on the RAVDESS dataset 
for four types of wavelet packets. Figures 12, 13, 14 and 15 show the accuracy, recall, 
precision, and F1-score of the proposed WPD-DCNN for SER for the RAVDESS data-
set, respectively. The proposed scheme provides an overall accuracy of 98.71%, recall 
of 0.99, precision of 0.99, and F1-Score of 0.99 for the RAVDESS dataset for db2 
filter. It gives 100% accuracy in describing anger, sadness, and happiness. However, it 
substantially increases the accuracy of low-arousal emotions such as disgust (98.28%) 

Fig. 11   Overall accuracy for WPD-DCNN-based SER for different levels of decomposition for the 
EMODB dataset

db1 db2 db3 sym4 sym5 sym6 coif1 coif2 coif3 fk4 fk6 fk8
Anger 98.28 100.00 100.00 94.83 96.55 96.55 94.83 93.10 94.83 96.55 94.83 94.83
Calm 96.55 98.28 98.28 94.83 94.83 96.55 94.83 94.83 93.10 94.83 93.10 93.10
Disgust 94.83 98.28 94.83 96.55 96.55 96.55 96.55 94.83 93.10 89.66 91.38 91.38
Fear 96.55 98.28 96.55 93.10 93.10 93.10 93.10 93.10 94.83 93.10 93.10 93.10
Happy 94.83 100.00 96.55 93.10 94.83 94.83 94.83 94.83 96.55 91.38 91.38 91.38
Neutral 96.55 96.55 96.55 93.10 93.10 93.10 93.10 93.10 96.55 89.66 86.21 89.66
Sadness 94.83 100.00 98.28 94.83 94.83 94.83 93.10 93.10 91.38 89.66 89.66 89.66
Surprised 96.55 98.28 98.28 93.10 94.83 94.83 94.83 94.83 94.83 87.93 87.93 87.93
Overall 96.12 98.71 97.41 94.18 94.83 95.04 94.40 93.97 94.40 91.59 90.95 91.38
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95.00

100.00
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Accuracy

Fig. 12   Accuracy for WPD-DCNN based SER for different filters for RAVDESS dataset (L = 3)
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and calm (98.28%). It results in superior accuracy and better balance in recall and pre-
cision because of the even dataset size of RAVDESS compared with EMODB.

The outcomes of the proposed WPD-DCNN are validated for the different levels of 
decomposition for other wavelet packets for the RAVDESS dataset, as given in Fig. 16. 
It provides superior accuracy for the db2 (98.71%) over db1 (96.1%), db3 (97.4%), 
sym4 (94.1%), sym5 (94.8%), sym6 (95%), coif1 (94.4%), coif2 (93.9%), coif3 
(94.4%), fk4 (91.5%), fk6 (90.9%), and fk8 (91.3%). The WPD decomposition level 1 
to 5 provides 2, 4, 8, 16, and 32 decomposed packets for the original signal.

db1 db2 db3 sym4 sym5 sym6 coif1 coif2 coif3 fk4 fk6 fk8
Anger 0.98 1.00 1.00 0.95 0.97 0.97 0.95 0.93 0.95 0.97 0.95 0.95
Calm 0.97 0.98 0.98 0.95 0.95 0.97 0.95 0.95 0.93 0.95 0.93 0.93
Disgust 0.95 0.98 0.95 0.97 0.97 0.97 0.97 0.95 0.93 0.90 0.91 0.91
Fear 0.97 0.98 0.97 0.93 0.93 0.93 0.93 0.93 0.95 0.93 0.93 0.93
Happy 0.95 1.00 0.97 0.93 0.95 0.95 0.95 0.95 0.97 0.91 0.91 0.91
Neutral 0.97 0.97 0.97 0.93 0.93 0.93 0.93 0.93 0.97 0.90 0.86 0.90
Sadness 0.95 1.00 0.98 0.95 0.95 0.95 0.93 0.93 0.91 0.90 0.90 0.90
Surprised 0.97 0.98 0.98 0.93 0.95 0.95 0.95 0.95 0.95 0.88 0.88 0.88
Overall 0.96 0.99 0.97 0.94 0.95 0.95 0.94 0.94 0.94 0.92 0.91 0.91
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Fig. 13   Recall for WPD-DCNN based SER for different filters for RAVDESS dataset (L = 3)

db1 db2 db3 sym4 sym5 sym6 coif1 coif2 coif3 fk4 fk6 fk8

Anger 0.95 1.00 0.98 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Calm 0.98 1.00 0.98 0.93 0.96 0.97 0.95 0.95 0.96 0.90 0.89 0.90

Disgust 0.96 1.00 0.98 0.95 0.93 0.95 0.93 0.93 0.93 0.93 0.91 0.93

Fear 0.93 0.97 0.95 0.92 0.95 0.95 0.95 0.95 0.93 0.93 0.92 0.92

Happy 1.00 1.00 1.00 0.95 0.95 0.95 0.95 0.93 0.92 0.93 0.95 0.95

Neutral 0.93 1.00 0.97 0.93 0.93 0.93 0.90 0.87 0.90 0.81 0.81 0.81

Sadness 0.95 0.98 0.97 0.95 0.95 0.95 0.95 0.95 0.95 0.93 0.93 0.91

Surprised 0.97 0.97 0.97 0.95 0.96 0.96 0.96 0.96 0.98 0.91 0.91 0.91

Overall 0.96 0.99 0.97 0.94 0.95 0.95 0.94 0.94 0.94 0.91 0.91 0.91
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0.40
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Fig. 14   Precision for WPD-DCNN based SER for different filters for RAVDESS dataset (L = 3)
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3.4 � Performance comparison with the previous state of arts

The results of the TWFR-based SER is compared with previous deep learning-based 
schemes utilized for SER for EMODB and RAVDESS datasets, as given in Table 4. The 
TWFR-based SER shows an improvement of 2.66%, 4.5%, 16.78%, 8.78%, and 7.26% 
over the 2D-CNN-LSTM [29], FCNN [30], DCNN-3 Layer [28], DCNN [33] and Merged 
DCNN [37] which has used Mel spectrogram based representation for the emotional 
speech representation for the EMODB dataset. It improves by 18.87% and 10.64% in SER 
accuracy over ACRNN [35] and ADRNN [36] using a 3-D Mel spectrogram representa-
tion of speech. The TWFR-based SER shows 9.38% superiority over the 1-D Dilated CNN 

db1 db2 db3 sym4 sym5 sym6 coif1 coif2 coif3 fk4 fk6 fk8
Anger 0.97 1.00 0.99 0.96 0.96 0.96 0.95 0.94 0.95 0.96 0.95 0.95
Calm 0.97 0.99 0.98 0.94 0.96 0.97 0.95 0.95 0.95 0.92 0.91 0.92
Disgust 0.96 0.99 0.96 0.96 0.95 0.96 0.95 0.94 0.93 0.91 0.91 0.92
Fear 0.95 0.97 0.96 0.92 0.94 0.94 0.94 0.94 0.94 0.93 0.92 0.92
Happy 0.97 1.00 0.98 0.94 0.95 0.95 0.95 0.94 0.94 0.92 0.93 0.93
Neutral 0.95 0.98 0.97 0.93 0.93 0.93 0.92 0.90 0.93 0.85 0.83 0.85
Sadness 0.95 0.99 0.97 0.95 0.95 0.95 0.94 0.94 0.93 0.91 0.91 0.90
Surprised 0.97 0.97 0.97 0.94 0.96 0.96 0.96 0.96 0.96 0.89 0.89 0.89
Overall 0.96 0.99 0.97 0.94 0.95 0.95 0.94 0.94 0.94 0.91 0.91 0.91
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Fig. 15   F1-score for WPD-DCNN based SER for different filters for RAVDESS dataset (L = 3)

Fig. 16   Overall accuracy for WPD-DCNN-based SER for different levels of decomposition for the 
RAVDESS dataset
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[32], which used raw speech signals. In recent years, many multiple feature extraction tech-
niques have been utilized for the SER. The TWFR-based SER improved by 9.13% and 
5.5% over the ResNet101 [38] and DCNN [39], which used MAFs for the EMODB data-
set. EMODB dataset consists of limited samples for each class where the TWFR-based 
SER provides better performance by providing superior frequency resolution over a wide 
range of frequencies. When the consequences of the TWFR-based SER is evaluated on 
the RAVDESS dataset, it shows an improvement of 33.94%, 27.82%, 23.97%, 20.14%, and 
4.53% over the DCNN [33], RBFN-BLSTM [34], ResNet101 [38], DNN-VGG16 [31] and 
DCNN [39] respectively.

The TWFR-based model needs total trainable parameters of 3  M for EMODB and 
3.33 M for the RAVDESS, respectively. The trainable parameters are lower compared with 
traditional techniques such as ResNet101 (44.5  M), Merged DCNN (> 10  M), VGGNet 
(138 M), and RBFN-BiLSTM (> 3 M), which increase the deployment flexibility of the 
suggested SER scheme for real-time systems with restricted computational resources. The 
algorithm’s effectiveness is also evaluated based on the total training time of the model, 
with the proposed model needing a total training time of 2845 s and 2930 s for EMODB 
and RAVDESS, respectively, considering WPD and MAFs. It requires a total training time 
of 2132 s and 2290 s for EMODB and RAVDESS when MAFs are considered for SER 
using 1-D DCNN. For WPD-based speech representation, the 2-D DCNN needs 2520  s 
and 2634 s for EMODB and RAVDESS, respectively. The combination of lightweight 2-D 
DCNN and 1-D DCNN provides significant improvement in total training of the model 
compared with 1-D Dilated CNN (3150 s), ACRNN (6811 s), and ADRNN (7187 s) for the 
EMODB dataset.

4 � Conclusions and future scopes

This paper presents a two-way feature representation of the speech signal using wavelet 
packet coefficients and MAFs. WPD features help effectively capture emotions’ vocal 
characteristics and reflect nonlinear vortex-flow interactions. The WPD provides superior 
time–frequency characteristics and better contextual dependencies using the 2-D DCNN 
algorithm. The 2-D DCNN helps to acquire the spatial information of spectral domain 
properties of emotional speech, whereas the 1-D DCNN learns the pattern of MAFs for 
different emotions. It provides robustness against spectral leakage problems, low-frequency 
resolution problems, and poor intonation, timbre, and emotional speech prosody repre-
sentation. It substantially increases the accuracy of low-arousal emotions such as disgust, 
calm, and boredom. The proposed TWFR-based SER provides 98.45% and 98.71% accu-
racy for SER for EMODB and RAVDESS datasets. It provides recall of 0.98 and 0.99, 
precision of 0.99 and 0.99, and F1-Score of 0.97 and 0.99 for EMODB and RAVDESS, 
respectively. It shows superior SER accuracy performance compared with state-of-the-art 
techniques. In the future, the results of the proposed scheme can be improved by utilizing 
an efficient scheme for feature selection and hyper-parameter tuning of the DCNN archi-
tecture. The effectiveness of the SER scheme can be validated for the real-time and cross-
corpus dataset in the future.
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