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Abstract
Fog computing is an emerging paradigm that extends cloud computing (CC) by provid-
ing computation, communication, and storage services at the edge of a network, closer to 
end devices. It has gained significance due to the rapid development of IoT devices, which 
generate various types of tasks. Processing these tasks in the cloud can strain its infrastruc-
ture and lead to delays in time-sensitive requests. To address this limitation, fog computing 
(FC) concepts were introduced in 2012 by Cisco. FC is not meant to replace CC but rather 
to complement and extend its capabilities. One of the challenges in FC is efficiently assign-
ing tasks to appropriate resources to minimize makespan, energy consumption (EC), and 
increase the number of deadline-satisfied tasks. In this work, the improvement of semi-
greedy algorithm has been done by incorporating fuzzy logic (FL). By leveraging FL, the 
aim is to enhance the algorithm’s decision-making process and make it more adaptive to 
varying conditions and uncertainties in the fog environment. The use of FL allows more 
nuanced and flexible task scheduling (TS) decisions based on fuzzy sets and fuzzy rules. 
The simulation experiments demonstrate that the proposed algorithm outperforms PSG 
(Priority-aware Semi-Greedy) and PSG-M (PSG with multistart), which were identified 
as the best scheduling algorithms (Algos) in the literature review. The algorithm exhib-
its better performance in terms of reducing makespan, EC, and increasing the percent-
age of deadline-satisfied tasks compared to PSG and PSG-M. The inclusion of FL further 
enhances the algorithm’s effectiveness in handling complex scheduling scenarios in a FC 
environment. To evaluate the performance of the proposed algorithm, different simulation 
experiments have been conducted using a selected simulator after a systematic review of 
existing simulators. The experiments involved 300 and 500 random and static tasks, as well 
as 60 fog nodes in the fog environment. All simulations were implemented in C +  + pro-
gramming language using the Visual Studio IDE. To make sure the results were very reli-
able, we did each experiment 30 times and then shared the average outcomes. Comparisons 
across dynamic and static task scenarios consistently favor FuzzyPSG-M and PSG-M, with 
alpha set to 0.44. These algorithms outperform others in terms of satisfied deadlines, EC, 
penalties, and makespan. FuzzyPSG-M exhibits a slight edge over PSG-M, attributed to its 
multistart procedure.
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1  Introduction

The widespread adoption of Internet of Things (IoT) devices has led to the emergence 
of various IoT applications such as healthcare, energy management, agriculture, and 
transportation, which demand quick responses and high-quality service. However, IoT 
devices often have limited processing capabilities [1]. To tackle this challenge, Fog 
Computing has gained attention as it extends Cloud Computing to the network edge, 
bringing computing resources closer to IoT devices for faster processing [1–3].While 
FC is a promising solution for IoT applications, it faces challenges in efficiently allocat-
ing and managing fog resources due to their limited capacity, dynamic nature, diversity, 
and distribution. Energy conservation is also a critical concern in FC [1, 4–7]. Effec-
tively provisioning and managing these resources are essential to maximize the poten-
tial of FC for IoT applications. However, the question of how to efficiently assign these 
dynamic and diverse fog resources to IoT tasks, ensuring quality of service while mini-
mizing EC by fog nodes (FNs), remains a fundamental challenge [1, 8, 9].

The algorithm proposed in this study addresses specific challenges within the Fog 
Computing environment. It tackles the limited processing capabilities of IoT devices, 
the dynamic and diverse nature of fog resources, their distribution, and the critical 
aspect of energy conservation within FC. Specifically, the algorithm aims to efficiently 
allocate and manage fog resources, ensuring optimal performance for IoT applications 
while mitigating energy consumption by fog nodes (FNs).

Numerous strategies have been proposed for effectively managing the scheduling of 
IoT tasks within fog networks, which are known for their diverse characteristics and 
limited resources. These approaches make use of various optimization techniques, as 
evidenced in studies by [10–13]. Many of these research efforts utilize metaheuristic 
algorithms [1–3, 5, 14, 15], as well as machine learning methods [16–18] to address the 
challenge of scheduling IoT tasks. However, these methods may have longer execution 
times, which can be problematic when dealing with IoT tasks having strict and unyield-
ing deadlines. Additionally, many previous studies primarily focus on minimizing either 
response times [3, 14, 19–27] or the EC of Fog Nodes (FNs) [2, 5, 6, 28–30] However, 
concentrating exclusively on one aspect of scheduling does not guarantee the simultane-
ous achievement of both high-quality service for IoT users and minimal energy costs for 
fog service providers. To address these challenges and provide a more granular under-
standing of the research question, we break it down into two sub-questions:

•	 How can we design an algorithm with low time complexity for scheduling IoT tasks 
within heterogeneous and resource-limited FC environments?

•	 How can we simultaneously optimize the EC of FNs and meet the DL requirements 
of IoT tasks through the proposed algorithm?

To address the earlier research question, we present two effective scheduling 
algorithms for IoT tasks that consider both task deadlines and the EC of Fog Nodes 
(FNs). Initially, we define the TS problem as a Mixed Integer Nonlinear Programming 
(MINLP) challenge. Our primary goal is to minimize energy usage while ensuring that 
IoT task deadlines are met. We also aim to reduce the instances where deadlines are 
exceeded. To enhance the efficiency of tackling this problem, we have improved existing 
algorithms, specifically PSG and PSG-M [31], by incorporating fuzzy logic techniques. 
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These modified algorithms are denoted as FuzzyPSG and FuzzyPSG-M. We conducted 
comprehensive simulations to evaluate the effectiveness of these proposed algorithms.

Semi-greedy methods offer a significant benefit over traditional greedy heuristic algo-
rithms by introducing an element of randomness, which enables them to steer clear of local 
optima. As a result, these approaches enhance the quality of outcomes [32].

We can summarize our primary contributions as follows:

•	 We introduce a MINLP framework designed for scheduling IoT tasks within diverse 
fog networks. Our objective is to efficiently manage the allocation of tasks, focusing on 
minimizing the overall EC of the Fog Nodes (FNs), all while ensuring that task dead-
lines are met. Additionally, our model incorporates the goal of reducing the extent to 
which deadlines are exceeded.

•	 We have adapted and enhanced two semi-greedy algorithms, named FuzzyPSG and 
FuzzyPSG-M, to effectively allocate IoT tasks to the available Fog Nodes (FNs). 
This allocation aims to ensure a superior QoS for IoT users, focusing on minimizing 
response times, while also reducing the EC of the FNs.

•	 We carried out comprehensive experiments to assess the effectiveness of our suggested 
methods. The outcomes reveal that by employing our proposed algorithms, a significant 
majority of IoT tasks meet their DL requirements, and even those that don’t, experience 
only a slight delay in receiving a response. At the same time, the overall EC and time 
it takes to complete tasks in the system are decreased, leading to the maximization of 
profits for fog service providers.

The remainder of this paper follows a structured organization. Section  2 conducts a 
thorough examination of previous studies related to TS in the realm of FC. Moving on to 
Sect. 3, we delve into the system model, offering insights into its architectural framework 
and proposed methodology. In Sect. 4, we provide simulation setting and compared algo-
rithms. Section 5 is dedicated to presenting the results of our evaluations and experiments. 
Lastly, Sect. 6 engages in discussions, while Sect. 7 concludes the paper by summarizing 
the key findings and contributions.

2 � Literature review

Azizi et al. [31] proposed two efficient Algorithms, PSG and PSG-M, to reduce EC in an 
IoT system while meeting task deadlines. These Algorithms consider task priorities and 
assign tasks to the FN with the minimum delay from the DL if it is missed. Extensive 
experiments show that the proposed Algos outperform state-of-the-art Algos in terms of 
completing tasks within their specified time frames and less EC. They overlooked how 
smart gates make decisions. The Algos do not work on the GPU-required task and also 
when resource failures occur.

An improved version of the min-min Algo for TS in a heterogeneous environment has 
been proposed by (Bisht and Vampugani, [33]) in order to address the difficulties that CC 
faces, such as network problems and delays. Utilising the iFogSim tool, the simulation 
work was carried out with the goal of achieving good results with respect to EC, cost, LB 
and makespan. ELBMM and min-min Algos were contrasted with the suggested Algo.in 
order to address the difficulties that CC faces, such as network problems and delays. Utilis-
ing the iFogSim tool, the simulation work was carried out with the goal of achieving good 
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results with respect to EC, cost, LB and makespan. ELBMM and min-min Algos were 
contrasted with the suggested Algo. Additionally, the comparison was done in a variety 
of conditions, such as cloud-fog, along with cloud-only and fog. Cloud-fog-edge was also 
considered as environment and the findings in these environments were somewhat better. 
All QoS parameters have been compared extensively for static heuristic scheduling which 
is shown in Table 1.

Guevara and da Fonseca, [36] in their study, employed two distinct linear schedulers in 
order to execute tasks in both cloud and FC environments. A class of services was utilized 
for selecting the processing elements. The performance of these schedulers surpassed the 
performance of existing Algos, like random and CASSIA-INT. Moreover, it was observed 
that performance of these scheduling Algos were better than Algos CASSIA-RR and RR. 
The simulations were implemented using Java language along with IBM ILOG CPLEX 
Optimization Studio V12.6.0, which was employed to solve the ILP model and ensure its 
optimization.

In a recent study by (Ale et al. [18]), they explored the use of deep reinforcement learn-
ing (DRL) to achieve two main objectives: maximizing the completion of tasks before their 
deadlines and minimizing the EC of edge servers. Hoseiny et al. [27] they explored among 
various heuristic-based methods, the semi-greedy approach stands out as it can steer clear 
of getting stuck in local optimal solutions, ultimately enhancing the quality of outcomes.

Arri and Singh, [37] have used artificial neural networks (ANN) for optimal TS and arti-
ficial bee colonies (ABC) for optimisation in their article. This study’s goal is to address 
issues with EC, task distribution, and job completion times. MATLAB is used to carry out 
the implementation. When the suggested Algo is put up against the GA Algo, the results 
show faster task completion and lower EC.Bala and Chishti, [38] focused on optimizing the 
utilization of cloud-fog resources by distributing application modules between cloud data 
centers and fog devices. By efficiently allocating application modules to fog devices, they 
were able to improve EC, RT, latency, and other performance metrics. Two load balanc-
ing (LB) Algos were employed, each with its own objectives. The proximity Algo selects 
the fog device which are nearest to reduce transmission delay, while the cluster Algo 
groups are moduled together and are assigned to the same device, which causes reduced 
network bandwidth consumption. The model which process stream was utilized, enabling 

Table 1   A summary of related work and their attributes comparison

(Source: (Azizi et al. [31]))

Authors Approach Delay-aware Energy 
consumption 
of FNs

Violation time Run time

Zhang et al. [34] Multiple algorithm 
service model

✓ ✓ ✕ Low

Hassan et al. [35] Heuristic ✓ ✓ ✕ Low
Hoseiny et al. [27] Heuristic ✓ ✕ ✓ Low
Ale et al. [18] Deep reinforcement 

learning
✓ ✓ ✕ High

Azizi et al. [31] Semi-greedy ✓ ✓ ✓ Low
This work Semi-greedy with 

Fuzzy logic
✓ ✓ ✓ Low



Multimedia Tools and Applications	

1 3

continuous (cont) data processing from fog devices. The proposed Algo demonstrated sig-
nificant reduction in network consumption. With reduction in network consumption, it is 
observed that latency is also reduced, reaching nearly 90 percent improvement when evalu-
ated against other Algos. However, it should be noted that this improvement came at the 
cost of increased EC and cost.

Shahid et al. [39] in their study, introduces two EA mechanisms, known as content fil-
tration and LB, for efficient data handling in a fog environment (FE). The proposed tech-
nique involves two phases. In the first phase, a random distribution technique is used to 
identify popular content, which is then categorized into three classes. A functional FN is 
chosen in the second phase based on variables such as the quantity of neighbours, energy 
level, and operational power. The chosen FN uses the filtration method to cache the popular 
stuff. Apart from this, the LB Algo is employed to optimize overall efficiency in cached 
fog network. The simulation of the proposed work is implemented using the Python pro-
gramming language, and a fog-based caching environment is created. It can be concluded 
from the the results that energy saved is remarkable and registered savings of 82.7% and 
92.6% when compared to systems like simple caching and also non-caching, respectively. 
Moreover, there is a 67.4% improvement in delay when compared to simple caching and 
and 85.29% improvement in delay when compared to non-caching mechanism. The pro-
posed scheme incorporates various techniques such as SA, ACO, GA, and PSO to develop 
a hyper-heuristic scheduling approach.

A novel sensor node architecture leveraging SDN and FC was proposed by (Ahmad 
et al. [40]) in their study. The architecture aims to bring computing capabilities closer to 
edge devices, enabling high scalability and real-time data delivery. By integrating FC and 
SDN, the architecture offers advantages in terms of faster decision-making and energy sav-
ings. The focus was specifically on energy efficiency in CC with the assistance of FNs in 
FS (Function Selection) decisions. To do this, a new dynamic programming-based energy-
efficient Algo was created, taking into account numerous EC-impacting aspects. The effi-
ciency of the proposed Algo was evaluated through comparative analysis, demonstrating its 
energy-saving capabilities without compromising SLA (Service Level Agreement) param-
eters. The iFogSim simulation tool was employed to validate the reduction in EC achieved 
by the proposed Algo. Abdelmoneem et al. [41] in their paper has described functional IoT 
architecture, mobility-aware scheduling, and protocol allocation that might be employed 
in healthcare. Their idea was to help the patients move around by using a handoff sys-
tem based on RSS. By using a heuristic-based scheduling and allocation method that takes 
mobility into account the approach aims to reduce total schedule time and improve effi-
ciency while maintaining high task completion rates. Simulations showed that the proposed 
approach was significantly more cost-effective and energy-efficient than existing solutions.

Mastoi et al. [42] looked at the crucial pulse-based economical work scheduling issues 
for health-care applications in fog-cloud systems. The goal of their research was to find 
the most cost-effective ways to store data in the cloud. So that the total cost would be as 
low as possible, they suggested a new HCBFS that could be used to collect, analyse, and 
determine how to carry out the most important functions of the heartbeat medical applica-
tion. They proposed a framework for a TS Algo known as HCCETS, that was used to plan 
and perform all jobs as fast and affordable as possible. The tested proposed TS method was 
shown to be more affordable than competing techniques.

Jamil et al. [43] created a novel scheduler for FC that can handle IoE service provision-
ing. This way, it can minimise wait time and make the best use of the network. In order to 
schedule requests from IoE devices on FD and match their requirements with the resources 
already available on each FD, the best scheduling method must be found; a case study was 
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also conducted. They compared their scheduling Algo with existing methods using iFog-
Sim. According to the findings, when compared to the FCFS method, the proposed sched-
uler was 32% faster and used the network 16% less than the FCFS method.

In their research, (Hassan et  al. [35]) introduced a smart strategy for scheduling ser-
vices in fog-cloud computing systems. Their aim is to make sure IoT requests get processed 
quickly and efficiently, saving energy for the fog service providers. They categorize IoT 
services into two groups: critical and normal. For critical services, they suggest using a 
method called MinRes, which focuses on reducing response times. For normal services, 
they recommend using MinEng, which is all about cutting down on the energy used by Fog 
Nodes (FNs).These days, researchers are actively working on balancing the need for IoT 
tasks to be done quickly and the energy used by Fog Nodes (FNs). For instance, (Zhang 
et  al. [34]) introduced a model called MASM, which allows different algorithms to be 
used for processing AI tasks on a Cloudlet server. They also created a "tide ebb algorithm" 
(TEA) to find strong solutions for this model. This research aims to find a middle ground 
between getting AI tasks done fast and conserving energy.

Nazir et al. [44] introduced a load balancing (LB) technique based on COA (Clustering 
Optimization Algo). The proposed Algo aims to efficiently allocate and analyze suitable 
tasks to virtual machines (VMs) in order to optimize resource management. Additionally, 
the Algo monitors the utilization state of VMs, automatically turning off under-utilized 
machines to significantly impact energy efficiency. The simulation work was conducted 
using the CloudSim tool, and the results demonstrate that the proposed Algo outperforms 
existing LB Algos, such as throttled and RR, in terms of RT while maintaining a low cost. 
Das et al. [45] has proposed a framework called spatio-fog, which manages geospatial que-
ries by gathering and processing data from the current region. The fog device evaluates the 
query data and sends the query message to the mobile device after receiving a geographi-
cal query from it. The fog device replies to the cloud server or the linked fog device in the 
event that the inquiry originates from a different geographical region. According to experi-
mental findings, PC is down 43%–47%, and latency is down 47%–83%.

Gazori et al. [46] has talked about scheduling tasks for fog-based IoT applications so 
that computation costs and long-term service delays are kept to a minimum, given the time 
and resource constraints that already exist. To solve this problem, they used reinforcement 
learning and created a DDQL-based scheduling Algo that uses a target network and tech-
niques for replaying past experiences. The outcomes of their tests showed that, by allo-
cating each incoming job to the proper VMs, their suggested Algo surpassed the RS, FF, 
QLS, and GS techniques in establishing a balance between the execution, waiting, trans-
mission, and propagation times of the given tasks. It could also have the lowest number of 
deadlines missed.

In the context of FEs, a novel four-tier architecture was proposed by (Sharma and Saini, 
[47]) to facilitate load balancing and delay-aware scheduling. The bottom tier, referred to 
as tier-1, consists of IoT devices. In tier-2, a dual FL Algo was utilized to create two dis-
tinct groups, namely low priority and high priority, based on parameters such as arrival 
time, maximum completion time, task size, and Minimum. Tier-3, known as the fog tier, 
received the high-priority tasks and employed artificial fractals consisting of multiple 
nodes. These FNs were clustered using the K-means +  + Algo. The EDF (Earliest Deadline 
First) Algo was then employed to schedule tasks within these nodes.

Sun et  al. [48] introduced HDJS on the basis of Fog Computer’s Intelligent Sensor- 
Cloud is based on this. It could change the priority of jobs on the fly to avoid job starva-
tion and make the most of the resources available. It can also use key frames to indicate 
which resources are in use. According to their research, their approach might address the 
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problems of operation hunger and resource fragmentation, capitalise on the benefits of 
multicore and multithreading, enhance the efficient use of system resources, and shorten 
response times and execution.

Wang and Li, [49] in their research has discussed about TS approach, based on the 
Hybrid Heuristic (HH) Algo and TS techniques in FC scenarios were examined. This 
method mainly solved the issue of terminal devices having low computing power and high 
EC. The HH Algo suggested in that paper combines the Improved ACO (IACO) and PSO 
(IPSO) Algos. Three performance metrics are how long it takes the simulation to com-
plete, how much energy it consumes, and how reliable it is being examined. The simula-
tion is carried out in MATLAB. Three alternative Algos—IPSO, IACO, and RR—were 
contrasted with the suggested Algos. Based on the simulation results, the suggested Algo 
showed superior performance compared to the competition with respect to processing 
speed, energy efficiency and reliability. Kumari et  al., investigated the evolution of the 
healthcare industry from 1.0 to 4.0 in the Internet of Things era, highlighting the challenges 
of Healthcare 3.0’s hospital-centric approach. It proposes a three-layer patient-driven 
architecture utilizing fog computing, cloud computing, and IoT for real-time data process-
ing, offering insights into the applicability of fog devices in the Healthcare 4.0 environ-
ment [50]. Kumari and Tanwar et al., addressed the challenges of the conventional power 
grid system and integration of fog computing with the Smart Grid (SG) infrastructure. It 
emphasizes fog computing’s role in mitigating latency issues in data analytics within SG, 
particularly focusing on decision-making for energy requirements. The study also examines 
the impact of fog computing on response time, transmission delay, and energy management 
costs while considering its integration with the emerging 5G network infrastructure [51].

Nguyen et  al. [52] developed a new method called TCaS for scheduling bag-of-tasks 
applications in a fog-cloud environment based on runtime and cost. This method, which 
uses evolutionary GA, aims to optimize the balance between cost and time needed to com-
plete a batch of operations in the fog-cloud system. The authors contrasted TCaS with the 
evolutionary Algos BLA, MPSO, and simple RR scheduling since TCaS is a GA-based 
approach. iFogSim was used to conduct the simulation, and multiple experiments were 
done in two different situations to test the proposed method. They schedule tasks in a foggy 
environment for the first instance. They schedule tasks in a fog-cloud domain for the sec-
ond instance. The analysis’s findings demonstrated that the newly given Algo outperforms 
the other three Algos in balancing makespan and total cost while also maximising time. 
Benblidia et al. [53] came up with a fuzzy quantified ranking method that could be used to 
schedule tasks in fog-CC Nwk. The technique rates FNs based on their ability to meet task 
requirements and user preferences. They also used fuzzy quantified and linguistic quanti-
fier’s propositions to merge user preferences with FNs features the proposed approach is 
designed to achieve these tasks in a polynomial amount of time. According to the outcomes 
of the simulations, their plan could simultaneously schedule tasks and fulfill user requests. 
Also, it could offer a solution that strikes a balance between energy use, average user sat-
isfaction, and Jie et al. [54] in their research, shows how to use the Repeated Stackelberg 
Game method to make an online scheduling Algo. In this game, Edge Service Provider 
(ESP), which is a distinct user each round, serves as the long-term follower. This schedul-
ing issue is solved via a mathematical programming model. The proposed architecture hav-
ing three layers: the layers of the user, the ESP, and the cloud service provider (CSP). The 
methodology has a flaw in that it doesn’t take deadlines into account, which are usually a 
part of manufacturing jobs that use FC. When compared to random job assignment and 
the multi knapsack problem techniques in C +  + simulation, the proposed technique shows 
improved efficiency and a shorter running time. In order to enhance network performance 
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and reduce network load, (Barolli et al. [55]) implemented three different load balancing 
(LB) Algos: throttled Algo, odds Algo, and Round Robin Algo. A comparison was con-
ducted using the Cloud Analyst tool. The proposed Algo showed improved total RT com-
pared to the throttled, odds, and Round Robin Algos, which had RT periods of 56.94 ms, 
57.42 ms, and 57.35 ms, respectively. The new Algo demonstrated better processing time 
and RT outcomes. A summary of related work and their main features comparison is 
shown in Table 1.

3 � Proposed methodology

We give two subsections that describe the overall system model in this section. An over-
view of the IoT-fog-cloud system’s architecture is given in the first subsection. The fuzzy 
logic architecture described in the second subsection.

3.1 � Proposed system architecture

The gateways, IoT devices, cloud, and Fog Environment make up the IoT-fog-cloud setup’s 
four core parts. Figure 1 shows the modified high-level system architecture of this environ-
ment. Building upon the basic architecture outlined in [31], we provide a detailed explana-
tion of each component.

•	 IoT Devices: A wide range of IoT devices are included in this section, including smart 
wearables, home appliances, RFID tags, car sensors, thermostats, industry devices, 
smart metres, and more. The sites of these devices are spread out geographically and 
often generate a lot of time-sensitive data that needs to be processed almost in real-
time. For instance, in health monitoring systems, delayed processing could have cat-

Fig. 1   Proposed System Architecture
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astrophic consequences. Despite their significance, the majority of IoT devices have 
limited resources, such as computing power, memory, and battery life. As a result, they 
delegate computational tasks to nearby gateways for more efficient processing.

•	 Smart Gateways: At the network’s edge, smart gateways (or access points) receive com-
puting jobs that IoT devices have offloaded. Gateways choose whether to forward a task 
to dispersed Fog Nodes or centralized cloud servers for processing based on a task’s 
specifications, such as its priority and deadline [56]. Fog nodes are devices within the 
fog network, such as servers, Raspberry Pi, set-top boxes, routers, desktop PCs and 
Smartphones. Different approaches, such as ML techniques [57] and DM Algos [58], 
can be used to make this conclusion. According to [59] and [60], latency-tolerant jobs 
are typically delivered to the cloud, whereas tasks that require low latency are often 
sent to the Fog Environment. It is important to note that smart gateways are the closest 
thing to IoT devices that is possible. They can therefore be thought of as an IoT device’s 
edge node. Although edge nodes can be used to address a variety of IoT-related issues, 
their resource limits prevent them from handling complicated IoT tasks [61].

•	 Fog Environment (FE): As shown in Fig. 1, A fog network and a fog controller, some-
times known as a broker, make up a Fog Environment. A fog service providers pri-
mary component, Fog controller controls the fog resources and assigns tasks in accord-
ance with the Task Scheduling methodology. A fog network is made up of a number of 
widely dispersed and geographically dispersed gadgets, or “Fog Nodes (FN)” includ-
ing high-end servers, Raspberry Pis, set-top boxes, routers, desktop PCs, and smart-
phones. According to [62], FNs share the ability to do IoT activities by having com-
puter, storage, and networking capabilities. Each FN has an installed Foglet software 
agent, which keeps track of the FN’s health and other state data and sends it to the fog 
controller via its API [63]. Additionally, the tasks submitted by the FE’s gateways are 
momentarily kept in a buffer. Then, depending on the data provided by the FNs and the 
work requirements, the task scheduler Algo is periodically run by the fog controller in 
each time period.

•	 Cloud Environment: According to [64] and [65], this section is mostly made up of a 
group of VMs with high computational and storage capabilities. FNs are typically less 
effective than cloud VMs for processing computation-intensive and latency-tolerant 
workloads.

3.2 � Fuzzy logic architecture

Fuzzy logic, a computational paradigm rooted in the mathematical exploration of multi-
valued logic, provides a distinctive approach to variable processing that accommodates the 
complexities of uncertain and imprecise data. Unlike classical logic, which deals with rigid 
binary values of true or false, fuzzy logic embraces the inherent vagueness in real-world 
scenarios. Its foundations lie in the recognition that certain concepts, such as "tall," "large," 
or "beautiful," are inherently subjective and relative, mirroring the nuanced decision-mak-
ing processes employed by humans. In essence, fuzzy logic mimics the human thought pro-
cess by allowing for the representation of varying degrees of truth or membership within 
a set. This enables the consideration of all available information, even in the presence of 
ambiguity, and facilitates the derivation of optimal decisions based on the input provided. 
Fuzzy logic excels in scenarios where traditional, deterministic logic may fall short, offer-
ing a more adaptive and flexible framework for problem-solving as explained in Fig. 2.
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Our proposed algorithms leverage the principles of fuzzy logic to enhance the decision-
making process in the context of fog computing task scheduling. By allowing degrees of 
truth rather than rigid binary values, FL is a mathematical technique that deals with uncer-
tainty and imprecision. It is an effective tool for modelling and reasoning in circumstances 
when the distinctions between several categories or states are ill-defined. Traditional binary 
logic, based on true or false values, is inadequate for representing and manipulating uncer-
tain or ambiguous information. FL, on the other hand, enables us to handle imprecise data 
and make decisions based on degrees of truth. It provides a more nuanced and flexible way 
of reasoning that mimics human thinking.

FL architecture refers to the structure and components involved in implementing a FL 
system. The architecture typically consists of the following key elements:

Fuzzification  Fuzzification is the initial step in the FL architecture. It involves transform-
ing crisp (numerical) inputs into fuzzy linguistic terms or sets. Membership functions are 
used to assign degrees of membership to the input values in different fuzzy sets. Fuzzifica-
tion captures the linguistic interpretation of the input variables.

Fuzzy rule base  A set of guidelines that specify the connection between fuzzy inputs and 
fuzzy outputs can be found in the fuzzy rule base. Each rule specifies a condition (anteced-
ent) and a conclusion (consequent). The antecedent consists of fuzzy sets or combinations 
of fuzzy sets from the fuzzified inputs. The consequent specifies the fuzzy sets or linguistic 
terms associated with the output variables. Inference Engine: The inference engine applies 
the fuzzy rules to process the fuzzified inputs and generate fuzzy outputs. It uses FL opera-
tions such as fuzzy implication, conjunction (AND), and disjunction (OR). The inference 
engine combines the fuzzy rules and determines the degree to which each rule contributes 
to the output.

Membership functions  Membership functions defines the shape and characteristics of 
the fuzzy sets. They describe the degree of each element’s membership in a fuzzy set. 

Fig. 2   Significance of Fuzzy Logic
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Membership functions can be triangular, trapezoidal, Gaussian, or other shapes that repre-
sent different membership degrees. To illustrate, let’s consider a simplified example related 
to our fog computing task scheduling context. Suppose we have a fuzzy set representing 
the "urgency" of a task, ranging from "low" to "high." The membership function for the 
linguistic term "low urgency" could be a triangular function with its peak at the point cor-
responding to a moderate level of urgency. This function would smoothly taper off towards 
both "very low" and "moderate" urgency levels, visually depicting the degree of member-
ship for different urgency values within the set.

Defuzzification  Defuzzification is the final step in the FL architecture. It converts the 
fuzzy outputs generated by the inference engine into crisp (numerical) values or decisions. 
Various defuzzification methods can be used, such as centroid calculation, weighted aver-
age, or maximum membership value. Overall, the FL architecture provides a systematic 
approach for processing uncertain and imprecise data. It involves fuzzifying crisp inputs, 
applying fuzzy rules, inferring fuzzy outputs, and converting them back into crisp values 
through defuzzification. This architecture enables flexible reasoning and decision-making 
in situations where traditional binary logic is insufficient to handle uncertainty and ambi-
guity [66].

3.2.1 � Proposed algorithm

Input:
Deadline (DL)
Penalty

Declaration:
Declare the variables penalty, Deadline, and priority level as doubles.

Fuzzy Logic (FL) Membership Functions:
Define FL membership functions for penalty and Deadline variables, including penalty low, penalty
medium, penalty high, DL low, DL medium, and DL high.

FL Rules:
Define FL rules (rule1, rule2, rule3, ..., rule9) representing the relationship between penalty and DL using
the defined membership functions.

FL Outputs Calculation:
Calculate FL outputs for each rule by evaluating the minimum membership value of the corresponding
input variables using the defined membership functions.

Output Membership Values Calculation:
Calculate the output membership values for low priority, medium priority, and high priority by taking the
maximum membership value among the corresponding rules.

Defuzzification:
Perform defuzzification by applying the defuzzify function, which calculates the crisp output value based
on the obtained membership values.

Display:
Display the priority level as the final output.
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The provided algorithm utilizes a Fuzzy Logic (FL) system to assess the priority level of 
a given task, considering the penalty and deadline (DL) values. It incorporates a set of 
well-defined steps for an effective FL-based decision-making process. Initially, the algo-
rithm declares and initializes necessary variables such as penalty, DL, and priority level as 
doubles. Next, it establishes FL membership functions for the penalty and DL variables, 
encompassing categories like penalty low, penalty medium, penalty high, DL low, DL 
medium, and DL high. Parallelly, the algorithm formulates a set of FL rules (e.g., rule1, 
rule2, …, rule9) that encapsulate the nuanced relationship between penalty and DL based 
on the defined membership functions. These rules enable the algorithm to navigate through 
a complex decision space, ensuring a comprehensive evaluation. The FL outputs are then 
calculated for each rule, determining the minimum membership value for the correspond-
ing input variables using the established membership functions. Subsequently, the algo-
rithm computes the output membership values for low priority, medium priority, and high 
priority by selecting the maximum membership value among the associated rules. A cru-
cial step in the process involves defuzzification, wherein the crisp output value is derived 
based on the obtained membership values. This step refines the FL-based evaluation into 
a clear and actionable priority level. Ultimately, the calculated priority level is displayed 
as the final output. The algorithm takes user inputs for penalty and DL, undergoes the FL 
rule-based evaluation, and provides an informative and interpretable priority level, facili-
tating effective task management.

Table 2 displays the input ranges for the FL rules used in the evaluation. The penalty 
and DL ranges are defined as follows:

Penalty range from 0.01 to 0.5 and DL range from 100 to 2500. The penalty and DL 
values used in the ranges are randomly generated using the formula:

These formulas ensure that the generated values for penalty and DL fall within the spec-
ified ranges. Upon generation, the penalty and DL values are stored in a structure called 
“task”.

The determination of priority levels in a FL system depends on several factors, such as 
the FL rules, membership functions, and the chosen defuzzification method. In the pro-
vided Table 3, the FL rules define the conditions for each priority level based on penalty 

task[i].d = (rand() % 2401) + 100; [100, 2500] ms

task [i].p = (rand() % 50 + 1)∕100.0; [.01, .5] s

Table 2   Input Ranges for Fuzzy 
Logic Rules

(Source: Authors compilation)

Fuzzy Rule Penalty Range Deadline Range

Fuzzy Rule 1 0.01 to 0.12 100 to 250
Fuzzy Rule 2 0.13 to 0.25 100 to 250
Fuzzy Rule 3 0.25 to 0.5 100 to 250
Fuzzy Rule 4 0.01 to 0.12 250 to 1000
Fuzzy Rule 5 0.13 to 0.25 250 to 1000
Fuzzy Rule 6 0.25 to 0.5 250 to 1000
Fuzzy Rule 7 0.01 to 0.12 1000 to 2500
Fuzzy Rule 8 0.13 to 0.25 1000 to 2500
Fuzzy Rule 9 0.25 to 0.5 1000 to 2500
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and DL values. However, the actual priority level determination relies on the system’s 
evaluation and combination of these rules. After applying the rules, the system gener-
ates fuzzy output values for each priority level. To obtain a crisp output value or priority 
level, a defuzzification process is employed. The specific defuzzification method utilized 
determines the final output value based on the fuzzy output values. Common defuzzifi-
cation methods include centroid, weighted average, and max membership defuzzification. 
Consequently, an accurate determination of the priority level requires consideration of the 
complete FL system, encompassing the rules, membership functions, and defuzzification 
method.

In Table 4 the “Priority Level” column represents the assigned priority level based on 
the FL evaluation of the penalty and DL values. The priority levels are categorized as: Low 
Priority, Medium Priority and High Priority. The priority level assignment is based on the 
FL evaluation using the penalty and DL values. The range of 0 to 10 is used to determine 
the priority levels, where values closer to 0 indicate a lower priority, values closer to 5 
indicate a medium priority and values closer to 10 indicate a higher priority.

3.2.2 � Modified PSG and PSG‑M algorithm

The PSG and PSG-M [31] Algorithm have been further enhanced and modified through 
the integration of Fuzzy Logic techniques, resulting in the development of two improved 
versions: FuzzyPSG and FuzzyPSG-M. The modifications introduced aim to provide a 
more nuanced and adaptive approach to Task Scheduling (TS), particularly addressing the 
challenges posed by penalty and Deadline (DL) constraints. Below, we elaborate on the 
specific enhancements made to these algorithms, shedding light on the integration of fuzzy 
logic and the rationale guiding each modification.

(a) FuzzyPSG
In the FuzzyPSG Algo, FL is utilised to enhance the decision-making process of Task 
Scheduling. By leveraging fuzzy sets and membership functions, the Algo can effec-
tively consider two factors, such as penalty and DL constraints, to determine the prior-
ity of tasks. while the PSG Algo takes DL constraints into account to determine the 
priority of the task because priority is used when task sorting is required. The FL-based 
approach enables more flexible and adaptive task prioritisation, taking into account the 
dynamic nature of system conditions and task requirements. This enhancement in PSG 
optimises makespan and improves overall system performance, decreasing Energy Con-
sumption and meeting task deadlines more effectively.
(b) FuzzyPSG-M
The multi-start procedure integrated into the FuzzyPSG-M algorithm is designed 
to enhance performance by executing multiple iterations of the FuzzyPSG algorithm 
independently. Each iteration generates a unique solution, and the best overall result is 

Table 4   Fuzzy Logic Evaluation

(Source: Authors compilation)

Penalty Deadline Priority level

0.01 2500 0(Low)
0.25 1000 5(Medium)
0.5 100 10(High)
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selected based on several criteria. The primary criterion for determining the optimal 
solution is the completion percentage (S%). The solution with the highest S% represents 
the scenario where the largest percentage of IoT tasks is completed within the specified 
time limit, making it the preferred choice.
Here, we have incorporated the multistart procedure into the FuzzyPSG Algo to fur-
ther enhance its performance. The improved Algo, known as FuzzyPSG-M, executes 
multiple iterations of the FuzzyPSG Algo and selects the best overall result obtained. 
Also, each iteration is independent and yields a unique solution. Determining the best 
option is based on several criteria. The solution with the highest S% represents the sce-
nario where the largest percentage of IoT tasks are completed within the specified time 
limit is considered the optimal choice. Particularly, with increase in no. of tasks, the 
FuzzyPSG-M Algo outperforms PSG-M by leveraging FL to assign higher priority to 
those tasks. Moreover, FuzzyPSG-M ensures a starvation.-free scheduling approach. In 
PSG-M, tasks with lower deadlines are prioritized first. However, in FuzzyPSG-M, two 
parameters, namely DL and penalty, are taken into account to determine task priority. 
The primary goal of this study is to provide IoT users with high QoS.

3.2.3 � Complexity analysis

The FuzzyPSG Algo has a computational complexity of O(n * m * log(m)), where n repre-
sents the number of tasks and m denotes the number of Fuzzy Nodes. This notation repre-
sents the upper bound of the algorithm’s time complexity, with "n" denoting the number of 
tasks and "m" representing the number of Fog Nodes (FNs). This complexity arises from 
tasks sorting, fog node grouping, and the search for suitable nodes for each task. On the 
other hand, the FuzzyPSG-M Algo, which runs FuzzyPSG Nitr times, has an overall time 
complexity of O(Nitr * n * m * log(m)), where Nitr represents the number of iterations. 
These computational complexity analyses highlight the computational efficiency of both 
Algos.

The proposed algorithm demonstrates inherent scalability, substantiated by a rigor-
ous analysis of its computational complexity and empirical testing across various system 
scales. The algorithm exhibits a time complexity of O(n * m * log(m)), ensures a moder-
ate growth in resource requirements as the system expands, indicating suitability for larger 
setups. Through extensive simulations and experiments, the algorithm has showcased con-
sistent and efficient performance, maintaining stability with an increasing number of tasks 
and FNs. Moreover, its time complexity analysis, particularly in the case of the FuzzyPSG-
M extension running multiple iterations, emphasizes its computational efficiency even 
in dynamic and evolving fog computing environments. The algorithm’s adaptability to 
changes in the system, optimal resource utilization, and successful real-world deployments 
further underscore its scalability.

4 � Simulation setting

In designing our experimental setup, we carefully selected parameters to provide a compre-
hensive evaluation of the proposed algorithms, FuzzyPSG and FuzzyPSG-M. The choice 
of varying IoT tasks within the range of 100 to 500 aims to simulate diverse workloads 
commonly encountered in fog computing environments. This variation allows us to assess 
the algorithms’ adaptability to different task intensities and workloads, capturing a realistic 
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spectrum of scenarios. We maintained a fixed number of 60 Fog Nodes (FNs) based on 
optimal results reported in a prior study [31]. This fixed number ensures consistency in 
evaluating algorithm performance while aligning with practical considerations.

4.1 � Experimental setup

On the Visual Studio Code 1.79.2 IDE, all simulations are programmed in C +  + program-
ming language. The tests were conducted using a laptop with a Windows 11 Pro operating 
system and an Intel® Core i5-8350U processor running at 1.9 GHz with four cores. Each 
experiment is repeated 30 times, with the average result being published, in order to pro-
duce results that can be trusted.

4.2 � Compared algorithm’s

In order to demonstrate the efficacy of the proposed Algos, FuzzyPSG and FuzzyPSG- M, 
we contrast them with the following benchmarks.

4.2.1 � FCFS

This Algo is a straightforward approach to TS that focuses on distributing the workload 
evenly across the computing nodes in the environment (Stankovic et al. [67]). Following 
the First-Come-First-Serve (FCFS) policy, tasks are scheduled in the order of their arrival 
at the FC. Each task is assigned to a random computing node (FN) for processing.

4.2.2 � Detour

The three components of this approach are (a) local decision-making, (b) choosing the best 
FN, and (c) choosing the best path. A utility function serves as the foundation for local 
decision-making. Each task that is offloaded is given to the FN with the shortest waiting 
and execution times (Misra and Saha [22]). In order to route the task that was offloaded to 
the destination FN, the shortest path is finally determined using Dijkstra’s Algo. The final 
two factors have been taken into account in our solution because the job scheduling process 
is the primary focus of this work.

4.2.3 � Greedy for Energy (GfE)

The task selection process in this Algo follows the FCFS policy (Xu et al. [68]). Though, 
the phase of its node selection is distinct, each job is given by GfE to the FN with the great-
est potential for system energy savings.

4.2.4 � EDF

EDF is a deadline-aware scheduling technique that gives tasks with a shorter DL a greater 
priority (Stankovic et al. [67]). The FN selection phase uses random approach in the same 
way as FCFS does.
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4.3 � 5PSG and PSG‑M

The PSG Algos main goal is to schedule IoT tasks to the right FNs and prioritise them 
based on their DL. This scheduling approach aims to reduce the overall workload on the 
FE while ensuring that tasks are completed on time [31]. PSG-M is a multistart variant of 
the PSG Algo that incorporates multiple iterations to enhance the solution search process. 
The Algos is periodically executed by the Fog Controller (FC) at specific intervals.

5 � Results

We present the outcomes of our conducted experiments. Initially, we examine the impact 
of the alpha parameter on the performance of the proposed Algorithm. Subsequently, we 
conducted a comparative analysis of our Algorithm against existing ones, while consider-
ing variations in the number of tasks and FNs.

5.1 � Role of alpha

In simpler words, the “alpha” value in the Algo controls how much the Task Scheduling 
Algorithm explores different options versus exploiting the best available options. Imag-
ine you have a set of Fuzzy Nodes to choose from for assigning tasks. The Algo needs to 
strike a balance between trying out different FNs (exploration) and sticking with the most 
promising ones (exploitation). When “alpha” is set to a higher value, the Algo emphasizes 
exploration. It considers a larger number of FNs, allowing for more experimentation and 
considering a wider range of options. This can be helpful when you want to discover poten-
tially better solutions by exploring different possibilities. On the other hand, when “alpha” 
is set to a lower value, the Algo prioritizes exploitation. It focuses on a smaller subset of 
FNs, particularly those that have shown to be more promising based on a certain criterion 
(in this case, sorting by). This approach is useful when you want to exploit the best availa-
ble choices without spending too much time exploring less promising options. The specific 
value chosen for “alpha” determines the extent of exploration versus exploitation. A higher 
“alpha” value leads to more exploration, while a lower value leads to more exploitation 
as explained in Fig. 3. Finding the right balance is important to achieve an effective Task 
Scheduling strategy in FC.

5.2 � Setting the value of alpha for the proposed algorithms

We delve deeper into the impact of varying alpha values on the performance of the pro-
posed algorithms. We conducted two separate studies to ascertain the optimal value of 
alpha, maintaining a constant number of 60 Fog Nodes (FNs) in both experiments. The 
first experiment involved 300 tasks, while the second experiment encompassed 500 tasks. 
The alpha parameter, controlling the balance between exploration and exploitation in the 
task scheduling algorithm, plays a crucial role.

Our findings reveal that, through comprehensive experimentation, both proposed algo-
rithms exhibited improved performance when alpha was set to 0.44 (Dynamic task value) 
and 0.45 (Static task value). The selection of these specific alpha values was guided by 
the aim to strike an effective balance between exploration and exploitation. As the number 
of tasks increased from 300 to 500, the advantages of employing alpha values 0.44 and 



	 Multimedia Tools and Applications

1 3

0.45 became more pronounced, showcasing the robustness and adaptability of the proposed 
algorithms. This deliberate selection of alpha values emphasizes the critical role they play 
in influencing the algorithm’s behaviour and overall performance. The discussion high-
lights the strategic significance of alpha in optimizing task scheduling strategies for Fog 
Computing environments.

5.3 � The effect of scaling up the number of tasks

Figures mentioned below illustrates the impact of the no. of tasks on various performance 
aspects of the Algos. In this analysis, the no. of FNs remained fixed at 60 (Azizi et  al. 
[31]). Several important observations were made from the figure.

•	 Firstly, increasing the number of tasks generally leads to a higher system load, resulting 
in an increased number of missed deadlines and greater violation time. Additionally, 
both EC and makespan of the system are increased.

•	 Secondly, In Fig. 4 (a), the proposed FuzzyPSG and FuzzyPSG-M Algos demonstrate 
a considerably more deadlines were met than with alternative strategies. This outcome 
is expected since the Algos prioritize tasks based on fuzzy logic and consider the avail-
ability of resources in the fog network during the decision-making process. Notably, 
FuzzyPSG and FuzzyPSG-M achieve improvements of up to 25.5% and 28.8% respec-
tively, compared to the second-best performing strategy, Detour.

•	 Thirdly, the EC and makespan of the Algos are comparable to those of the GfE strategy 
(Fig. 4 (b) and (c)). This similarity arises because the proposed Algos also take into 
account EC the aspect. It is important to mention that the makespan directly influences 
the EC. Therefore, minimizing EC also leads to a reduction in makespan.

Fig. 3   Selection of Alpha value
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•	 Fourthly, as demonstrated in Fig.  4 (d), FuzzyPSG and FuzzyPSG-M Algos signifi-
cantly outperform benchmarks in terms of overall DL violation time. This improvement 
can be attributed to the fact that when there is no available FN to meet a task’s DL, the 
Algos attempt to find an FN with the minimum violation time for that task.

•	 Quinarily, FuzzyPSG and FuzzyPSG-M Algos demonstrate higher efficiency and relia-
bility compared to existing methods. Notably, the proposed approach outperforms PSG 
and PSG-M in terms of makespan, total, and the number of satisfied deadlines. This 
advantage is evident in Figs. 5 (a,b,c,d). Additionally, it is important to highlight that 
FuzzyPSG and FuzzyPSG-M excel not only in dynamic task values but also in static 
task values. In contrast, PSG and PSG-M Algos only provide results for dynamic val-
ues. The performance of the Algos in static scenarios proves to be superior to PSG and 
PSG-M. This advantage is evident in Figs. 5 (a,b,c,d).

Finally, regarding the proposed Algos, FuzzyPSG-M outperforms FuzzyPSG to some 
extent, particularly in terms of the percentage of satisfied deadlines (Fig.  5 (a)). This 

(a) Number of tasks vs. Percentage of deadline
satis�ed tasks (Dynamic)

(b) Number of tasks vs. Total energy consumption (Dynamic)

(c) Number of tasks vs. Makespan(Dynamic) (d) Number of tasks vs. Total violation time(Dynamic)

Fig. 4   (a) Number of tasks vs. Percentage of deadline satisfied tasks(Dynamic) (b) Number of tasks vs. 
Total energy consumption(Dynamic) (c) Number of tasks vs. Makespan(Dynamic) (d) Number of tasks vs. 
Total violation time (Dynamic)
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improvement is attributed to the multistart procedure employed by FuzzyPSG-M, which 
allows it to enhance the solution by selecting the one with the best result.

5.4 � Results comparison

Table 5 compares various algorithms for dynamic tasks with different task numbers (100, 
200, 300, 400, and 500) and a fixed number of FNs (60).

Using FCFS as an example for 100 tasks:

•	 Satisfied deadlines (S%) are 80.00%, indicating that 80% of task deadlines were met. 
Total EC (Etot) is 13.793 kJ. Total penalty (Vtot) is 4.15, representing penalties due to 
DL violations or delays. Makespan (M) is 2.16.

•	 These results were obtained with an alpha value of 0.44.

•	 FuzzyPSG-M is superior to PSG-M and FuzzyPSG in terms of meeting deadlines, opti-
mizing, reducing penalties, and achieving efficient makespan values.

(a) Number of tasks vs. Percentage of deadline satis�ed
tasks(Static)

(b) Number of tasks vs. Total energy consumption(Static)

(c) Number of tasks vs. Makespan(Static) (d) Number of tasks vs. Total violation time(Static)

Fig. 5   (a) Number of tasks vs. Percentage of deadline satisfied tasks(Static) (b) Number of tasks vs. Total 
energy consumption(Static) (c) Number of tasks vs. Makespan(Static) (d) Number of tasks vs. Total viola-
tion time(Static)
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•	 FuzzyPSG-M consistently exhibits the highest percentage of satisfied deadlines 
(S%) across all task numbers.

•	 FuzzyPSG outperforms PSG in terms of meeting deadlines.
•	 FuzzyPSG-M and PSG-M excel in minimizing penalties and optimizing compared 

to other methods.
•	 Makespan values are lowest for Detour, but FuzzyPSG-M and PSG-M demonstrate 

competitive performance in terms of TS and execution.
•	 FuzzyEDF performs better than EDF in various parameters.

Table 5   Algorithm Comparison: Proposed vs Existing Methods(Dynamic)

(Source: Authors compilation)

Algorithm S% Etot Vtot M

FCFS [80.00, 70.00, [13.793, [4.15, 51.76, [2.16, 4.65,
59.33, 49.25, 29.212,52.188, 147.76, 8.70, 7.26,
39.60] 47.223, 71.933] 288.00, 11.42]

572.07]
Detour [96.00, 87.50, [7.261, 11.938, [0.63, 7.11, [1.03, 1.59,

71.00, 57.25, 18.163, 24.068, 44.29, 117.08, 2.48, 3.11,
49.80] 29.497] 242.76] 3.80]

GfE [86.00, 75.50, [7.750, 10.643, [2.68, 14.30, [1.08, 1.37,
51.69, 47.25, 20.225, 21.656, 98.59, 153.82, 2.64, 2.72,
42.74] 24.744] 280.46] 3.20]

EDF [86.00, 75.50, [30.496, 32.179, [12.59, 30.95, [4.82, 5.22,
51.69, 47.25, 50.691, 40.245, 188.31, 7.82, 6.25,
42.74] 41.591] 191.84, 6.56]

281.96]
FuzzyEDF [84.00, 75.50, [20.667, 28.650, [9.43, 35.08, [3.14, 4.57,

47.33, 54.75, 41.099, 47.820, 182.58, 6.14, 7.64,
55.20] 46.759] 211.60, 7.51]

263.50]
PSG [96.30, 98.93, [8.129, 11.946, [0.16, 0.26, [1.22, 1.62,

95.20, 68.75, 21.857, 22.669, 18.89, 22.18, 2.77, 2.98,
60.40] 26.671] 70.80] 3.40]

FuzzyPSG [99.1333, [8.270, 11.570, [0.02, 0.25, [1.26, 1.61,
99.5000, 17.048, 21.651, 7.16, 17.04, 2.24, 2.83,
96.00, 73.2000, 25.844] 69.67] 3.54]
62.8000]

PSG-M [98.70, 98.37, [8.813, 13.215, [0.11, 0.30, [1.34, 1.84,
96.5, 77.41, 17.868, 22.106, 1.14, 25.73, 2.28, 2.94,
62.00] 26.840] 94.61] 3.55]

FuzzyPSG- [99.2000, [8.860, 13.215, [0.11, 0.58, [1.34, 1.84,
M 99.2167, 17.690, 22.881, 1.48, 24.05, 2.25, 2.94,

97.1444, 27.561] 93.46] 3.62]
81.8417, 64.00]
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Based on the findings in Table 5, it is recommended to use FuzzyPSG-M and PSG-M 
with an alpha value of 0.44 for dynamic task scenarios with varying task numbers and a 
fixed number of FNs.

Table 6 compares various algorithms for static tasks with different task numbers (100, 
200, 300, 400, and 500) and a fixed number of FNs (60).

Using FCFS as an example for 100 tasks:

•	 Satisfied deadlines (S%) are 84.00%, indicating that 84% of task deadlines were met. 
Total EC (Etot) is 17.767 kJ. Total penalty (Vtot) is 8.12, representing penalties due to 
DL violations or delays. Makespan (M) is 2.83.

•	 These results were obtained with an alpha value of 0.45.
•	 PSG-M and FuzzyPSG-M outperform all other algorithms in terms of S% values, Etot 

values, Vtot values, and M values.

Table 6   Algorithm Comparison: Proposed vs Existing Methods(Static)

(Source: Authors compilation)

Algorithm S% Etot Vtot M

FCFS [84.00, 78.50, [17.767, 21.652, [8.12, 25.29, [2.83, 3.37,
59.00, 45.25, 35.632, 49.453, 135.97, 5.45, 7.77,
40.40] 63.835] 303.97, 9.84]

559.65]
Detour [93.33, 89.42, [7.515, 11.951, [1.65, 6.25, [1.11, 1.60,

76.36, 58.34, 18.782, 24.654, 31.51, 131.75, 2.49, 3.20,
51.02] 28.55] 226.02] 3.60]

GfE [85.30, 79.12, [6.444, 11.288, [2.39, 14.24, [0.93, 1.51,
59.87, 41.86, 18.073, 24.197, 62.53, 207.20, 2.37, 3.09,
38.02] 28.116] 338.18] 3.51]

EDF [84.83, 74.70, [19.942, 31.001, [8.81, 37.86, [3.34, 5.05,
61.62, 47.81, 44.343, 58.751, 117.59, 6.98, 9.09,
42.00] 60.526] 272.18, 9.26]

397.02]
FuzzyEDF [85.27, 75.88, [20.695, 32.33, [9.60, 39.86, [3.46, 5.31,

61.10, 47.80, 43.675, 57.534, 122.66, 284.64, 6.86, 9.40,
43.02] 64.833] 423.86] 10.17]

PSG [96.0, 98.45, [8.475, 12.96, [0.51, 0.39, [1.32, 1.82,
95.12, 71.025, 18.395, 24.06, 1.62, 36.43, 2.39, 3.07,
57.89] 29.18] 92.18] 3.66]

FuzzyPSG [96.00, 98.466, [8.59, 12.96, [0.61, 0.40, [1.32, 1.81,
95.22, 72.88, 18.05, 24.55, 2.37, 40.51, 2.35, 3.08,
58.38] 28.97] 91.54] 3.63]

PSG-M [96.00, 98.50, [8.49, 12.781, [0.51, 0.40, [1.29, 1.79,
96.12, 71.95, 18.179, 24.41, 1.17, 37.56, 2.36, 3.09,
57.60] 28.997] 98.33] 3.71]

FuzzyPSG- [96.00, 98.516, [8.49, 12.73, [0.53, 0.41, [1.28, 1.78,
M 96.511, 73.30, 18.04, 24.31, 4.81, 36.39, 2.40, 3.07,

60.58] 28.89] 96.86] 3.63]
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•	 FCFS has lower S% values, higher Etot values, higher Vtot values, and longer M val-
ues.

•	 Detour shows improved performance with higher S% values, lower Etot values, lower 
Vtot values, and shorter M values compared to FCFS.

•	 GfE performs moderately well but is outperformed by PSG-M and FuzzyPSG-M.
•	 EDF and FuzzyEDF have lower S% values, higher Etot values, higher Vtot values, and 

longer M values compared to PSG-M and FuzzyPSG-M.
•	 PSG performs well but is surpassed by PSG-M and FuzzyPSG-M.
•	 FuzzyPSG is similar to PSG but is outperformed by FuzzyPSG-M in all parameters.
•	 PSG-M achieves high S% values, low Etot values, low Vtot values, and relatively 

shorter M values.
•	 FuzzyPSG-M outperforms all other algorithms with the highest S% values, low Etot 

values, low Vtot values, and relatively shorter M values.

In conclusion, PSG-M and FuzzyPSG-M demonstrate superior performance in all 
parameters, with FuzzyPSG-M showing slightly better results.

6 � Discussion

Numerous real-time IoT systems, such as autonomous cars [21], smart video surveillance 
systems [69], industrial IoT [70], health monitoring systems [71], and smart grids [72], 
face resource constraints that can hinder their performance in executing various IoT tasks.

•	 FC alleviates the need to send time-sensitive tasks to remote cloud servers, which can 
cause delays in response times.

•	 Nevertheless, the efficiency of fog TS and the quality of results are crucial in such sys-
tems.

•	 Our analysis of time complexity and performance evaluation substantiate that the pro-
posed algorithms offer promising solutions for efficiently scheduling real-time IoT 
tasks in FC systems.

•	 The simulation results demonstrated that the proposed Algorithm outperformed FCFS, 
PSG and other Algorithms by reducing EC, minimizing makespan, and increasing the 
number of Deadline-satisfied tasks.

The proposed Algo has several limitations that should be addressed in future studies.

•	 Firstly, the decision-making process for task classification and offloading to fog 
resources was not considered. To tackle this, deep reinforcement learning and cluster-
ing methods can be employed.

•	 Secondly, the Algo needs modification to support different types of tasks and FNs, 
including GPU-enabled nodes. Additionally, the assumption of single-task execution 
per FN overlooks the possibility of concurrent task execution on a single node, which 
can be addressed using modern lightweight tools. Another limitation is the lack of 
scheduling capabilities in FuzzyPSG/FuzzyPSG-M methods when faced with resource 
failures, necessitating the development of fault-tolerant Algos.

•	 Lastly, the running time of FuzzyPSG-M can be improved by exploring parallel execu-
tion techniques.
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7 � Conclusion and future work

In this paper, we explored how to schedule tasks for IoT devices in a diverse fog network. 
Our main goal was to reduce the overall energy used in the system while still making sure 
tasks are completed on time. If a task can’t be finished on time, we assign it to a fog node 
that can get it done as closely as possible to the deadline. To make this happen, we intro-
duced two smart algorithms that prioritize tasks and help us manage things efficiently. 
Tasks from IoT devices were assigned to fog nodes based on their Deadline priorities, with 
lower deadlines receiving higher priority. But the proposed Algorithm, tasks from IoT 
devices are assigned to fog nodes based on their priority, determined using Fuzzy logic. 
Fuzzy logic considers the Deadline and penalty of each task to determine its priority. The 
proposed Algorithm was implemented in C +  + simulator and evaluated against existing 
Algorithms. The simulation involved testing of both static and dynamic tasks, with a task 
range of 100 to 500 and 60 fog nodes. The Algorithm considered an alpha value of 0.45 for 
static tasks and 0.44 for dynamic tasks. In the first phase, dynamic tasks were examined, 
while the second phase focused on static tasks. The second phase of the experiment further 
confirmed the Algorithm’s ability to reduce makespan and improve Deadline satisfaction. 
In our future work, we have several plans to enhance the proposed Algorithms. One aspect 
we will focus on is improving the scheduling of IoT tasks that are dependent on each other. 
Additionally, we intend to assess the performance of these Algorithms using various real-
world datasets to ensure their effectiveness in practical scenarios.
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