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Abstract

Cancer is a lethal illness that requires an initial stage prognosis to enhance patient survival
rate. Accurate brain tumor and their sub-structure segmentation through Magnetic Resonance
Images (MRI5s) is a tough endeavor. Owing to the heterogeneous tumor areas, automatically
segmenting brain tumors has proved to be a critical task even for neural network-based algo-
rithms, some tumor regions remain unidentified due to their small size and the variation
in area occupancy among tumor sub-classes. Current progress in the area of neural net-
works has been employed to enhance the segmentation performance. This study designed an
intelligent 3D U-Net encoder-decoder-based system for automatic detection and brain tumor
sub-structure segmentation. Our proposed 3D model constitutes neural units (the basic build-
ing blocks) followed by transition layer blocks and skip connections. BraTS 2018 and private
local datasets are used to evaluate the proposed model which segments the Whole Tumor
(WT), Tumor Core (TC), and the Enhancing Tumor (ET). The training accuracy, validation
accuracy, dice score, sensitivities, and specificities of WT, CT, and ET zones are computed.
The experimental results demonstrate that dice scores are 0.913, 0.874, and 0.801 for the
BraTS 2018 dataset. The developed models performance was further evaluated by utilizing
the dataset from a local hospital containing 71 subjects. The dice scores of 0.891, 0.834, and
0.776 are achieved by the proposed model on the private dataset. The practicability of the
proposed model was assessed by the comparative studies of our model with existing literature.

Keywords Brain tumor diagnosis - Tumor segmentation - Multi-modal MRI -
Deep learning - Computer-aid diagnosis
1 Introduction

Brain tumors are a prevalent type of nervous system disorder that proved to be extremely
harmful to human health. Gliomas are considered the most threatening forms of brain tumors
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[1]. These are often categorized as high-grade glioma (HGG) or low-grade glioma (LGG),
with an average survival time of about two years for individuals who have progressed into
HGG. LGG is less aggressive and infiltrative. Grade I gliomas are generally treatable with
surgical resection; grade IV, Glioblastoma Multiforme (GBM), is the most dangerous due to
the poorest survival rate.

Numerous imaging methods, including MRI, computed tomography (CT), positron emis-
sion tomography (PET), etc. have been used to examine brain malignancies. Among them,
MRI has been considered the key imaging method for brain tumor diagnosis, owing to its
benefits of strong tissue contrast, diverse directions, and being non-invasive in nature. Vari-
ous MRI sequences emphasize different areas of brain picture detail and depict the features
of tumors from several perspectives. Its very important to distinguish brain tumor tissues
like enhancing core, non-enhancing core, necrosis, and edema from healthy tissues. How-
ever, correct segmentation of these tissues is a difficult task, owing to the following factors.
Tumors can vary widely in location, appearance, and size from subject to subject [2]. Second,
tumors normally infect nearby tissues, blurring cancer and non-cancerous tissues [3]. The
third is the problem of image distortion and noise induced by imaging devices or acquisition
procedures.

In medical imaging and brain tumor image segmentation, many conventional machine-
learning approaches have been utilized [4-9]. For example, Yang et al. [4], tto identify
Glioblastoma multiforme (GBMs) from isolated METs, a 3D morphometric analytic
approach was presented. The shape index and curvedness morphometric characteristics were
calculated for each tumor surface described by the diffusion tensor imaging (DTI) seg-
mentation technique [5]. To categorize diverse mixtures of first and second-order statistical
properties of an area of interest (ROIs), M. Soltaninejad et al. [6] employ support vector
machines (SVM). Soltaninejad [7] offers a fully automatic technique for segmenting brain
tumors, which uses superpixels to generate Gabor texton features as well as fractal exami-
nation, and statistical intensity characteristics. The superpixels are then classified into tumor
or non-tumor brain tissue using extremely randomized trees (ERT). Information fusion from
multimodal MRI scans is used to calculate super voxels. A variety of characteristics are
retrieved from each super voxel and put into a well-known classifier named random forests
[8]. Wu et al. [9] segmented brain tumors using superpixel features inside a conditional
random field (CRF) system, although the result was low in LGG scans. Geometry-based
techniques [10], including level sets and active contour techniques, are also useful since they
are computationally efficient, but they necessitate user participation, expert knowledge, and
feature engineering to be effective. At the moment, these methods are frequently employed
as pre-or post-processing steps in deep learning-based systems.

Manual segmentation of tumors is considered the gold standard. But, it is a laborious
process, and if an inexperienced radiologist delineates the ROI, the results are poor [11, 12].
Hence, automatic tumor segmentation is ideal, particularly when dealing with huge volumes
of data and when regular tumor monitoring and adaptive patient management are necessary.
Thus, researchers are interested in learning more about fully automatic or semi-automated
segmentation methods [13]. However, due to the wide range of tumor sizes, shapes, and
patterns, effective automatic tumor segmentation is generally a tough task.

Recently, deep learning-based segmentation algorithms have shown substantial benefits in
medical image analysis [14] including breast cancer diagnosis, Skin lesion classification [15],
Covid-19 [16], and brain tumor segmentation [17, 18]. One of the main research objectives
is to improve the model using a fully convolutional network (FCN) [19] and the U-Net
standard network [20, 21]. Zhao et al. [22] suggested a strategy for segmenting brain tumors
by integrating FCN and CRF into a combined framework. Pereira et al. [23] ccollected image
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context information by segmentation of Squeeze Excitation (SE) blocks while retaining
spatial information for the creation of highly complicated semantic features. Vijay et al. [24,
25] and Sajid et al. [26] designed various SegNet-based architectures, while FCN-based U-Net
[20] networks were also proposed. Both modified SegNet and FCN showed improvement
in segmentation performance. Dong et al. [27] eemployed a variety of data augmentation
strategies to enhance brain tumor MRI segmentation performance and address the problem
of class imbalance using the soft dice loss function. Zhou et al. [28] created a sequence of
stacked, dense skip paths to connect the encoder and decoder models, therefore bridging the
semantic divide between the encoder and decoder models feature maps. The original U-Net
architecture is applied as the standard architecture in this work, and a novel modified, and
intelligent 3D U-Net-based system is designed. The following is a summary of the significant
contributions:

1. This study developed an intelligent deep learning-based 3D U-Net system for a brain
tumor and sub-regions segmentation (i.e. WT, TC, and ET).

2. The suggested method can effectively segment and detect brain tumors from MRI images
under the existence of blurring, noise, and bias field-effect fluctuations in input images.

3. This research also design several skip connections to support the transmission of high-
resolution features from shallow layers to deeper layers. These skip connections also
reinforce the synthesis of various scales by associates at several network layers.

4. By efficiently generalizing distinct local patterns, the suggested model uses the transi-
tion layer block which helps us in reducing feature maps. Furthermore, the dice loss
function aids in the appropriate segmentation of minor abnormalities that are likely to be
misclassified.

5. The locally collated new dataset first time was employed to check the efficiency and
effectiveness of the 3D U-Net system.

6. Lastly, the experimental implementation illustrates that our 3D U-Net model achieves
robust performance regarding accuracy, dice score, sensitivity, and specificity which
outperform existing systems.

The remaining paper is structured as follows: Section 2 represents the literature studies on
brain tumor segmentation. Section 3 introduces the material and method. Section 4 illustrates
the results and discussion. Finally, a conclusion is made in Section 5.

2 Related work

Brain tumor segmentation techniques can be divided into conventional segmentation tech-
niques and deep learning-based segmentation techniques. Based on features including
gradients and in-context which were extracted through handcrafted methods [29], machine
learning-based approaches such as random forests, fuzzy C-means, and SVM [30-32] hhave
been implemented to segment brain tumors from MRIs. Traditionally, threshold-based seg-
mentation algorithms separated voxels into distinct tumor or normal tissues. These approaches
begin by calculating a threshold based on the intensity of MRIs and then classifying each
voxel based on the comparative study of the grey value with the threshold. Clustering-based
segmentation approaches include the Markov random field (MRF), k-means clustering, and
fuzzy c-means clustering, these approaches use unsupervised methods for training to differ-
entiate the tissues of unseen data. However, these approaches continue to confront difficulties,
such as low segmentation accuracy for brain tumor segmentation and classification.
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In contrast, deep learning-based applications have express a high level of competitiveness
in medical image detection [18], semantic segmentation [33] and also other classification
and segmentation systems. For instance, it has been extensively employed in medical image
analysis [34], and tissue segmentation [35]. When it comes to brain tumor segmentation,
convolutional neural networks (CNNs) are by far the most popular deep learning technique
to use. It can learn from real images by identifying promising hierarchies of features.

Havaei, et al. [36] proposed a two-path CNN, which was able to incorporate both local
and global context information. A cascaded model was utilized to obtain more data, and
then a two-phase training scheme was applied to reduce the issue of class imbalance. To
accomplish coarse segmentation, Hu, Gan, et al. [37] developed a multi-cascaded model that
considers both the voxel-level and multi-scale properties simultaneously. CNN segmentation
was improved using a fully linked conditional random field (CRF). Pereira et al. [38] pro-
posed two CNNs for two-grade brain tumor segmentation using 2D patches. Additionally,
the eliminated discrete sections were post-processed using a morphological filter. This seg-
mentation algorithm learns the characteristics of two grades to obtain pure features of various
brain tumors. Nevertheless, their architectures need huge storage capability, as well as con-
tinual spatial loss was observed which results in poor segmentation performance. To avoid
overfitting, a multiple-scale of the input image using CNN was utilized [39, 40]. Around the
center pixel, this can fully hold the input patchs texture. However, a general drawback of
this technique is that lacks the semantic knowledge of the lesion region in contrast with the
image-based approach.

Kamnitsas etal. [41] suggested a three-dimensional network with dual pathways capable of
collecting context information about the local position and connecting pixels inside a specified
scope of the lesion region. However, it did not generate global features. The researchers in
[42] proposed multiclass segmentation using a cascaded 3D-FCN technique by splitting it
into three segmentation assignments. While the binary classification approach can simply
be utilized to solve the four-class problem, however, three additional models significantly
increase the computational cost.

Albishri et al. [43] demonstrate the effectiveness of the AM-UNet approach through com-
prehensive experiments and validation on brain MRI datasets, highlighting its potential for
enhancing neuroimaging analysis and clinical applications in neuroscience research. Punn
et al. [44] proposed a method that integrates 3D Inception U-Net and decoder models to
effectively combine information from different imaging modalities, such as MRI and CT
scans. By using advantages of multi-modality encoding and fusion techniques, the model
achieves accurate segmentation of brain tumors with enhanced spatial and contextual infor-
mation. Raza et al. [45] introduce a novel approach for segmenting brain tumors using a 3D
deep residual U-Net architecture. The proposed method leverages multimodal MRI data to
enhance the segmentation accuracy and robustness. Li et al. [46] present a robust approach for
brain tumor segmentation using cascaded 3D U-Net and 3D U-Net++ architectures. Through
the integration of multiparametric MRI data, the proposed method achieves accurate and
comprehensive segmentation of brain tumors. The cascaded architecture allows for a more
refined segmentation process, effectively capturing intricate tumor features and boundaries.

Isensee et al. [47] designed a network for dealing with the issue of generalization that
performed well across a variety of datasets. The outcomes of the BraTS 2018 competition
showed that architectures like the U-shape with skip connection have a great ability to learn
representations of features. Isensee et al. [48] applied a typical U-Net algorithm with small
adjustments in the encoder and decoder. McKinley, Meier, and Wiest [49] designed a new
framework with dense blocks through dilated convolutions inserted in U-Net architecture.
Authors have also proposed a loss function shared focal loss by standard binary cross-entropy
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(BCE) loss to decrease uncertainty. To improve information flow, Li et al. [S0] and Kayalibay
et al. [51] proposed novel U-Net models. These techniques, however, unavoidably produced
results in a huge number of false positives. Furthermore, to attain great segmentation accuracy,
the most advanced models require huge computer resources.

In comparison to the conventional CNN models, U-Net possesses the following advan-
tages: (1) U-Net utilizes both local and global features; (2) owing to the great value of the
segmentation labels, this approach requires fewer training images to achieve optimal results,
and (3) end-to-end input and output generate comprehensive segmentation performance.
Inspired by previous studies and to overcome the problems in the literature, this study devel-
oped a modified and improved 3D U-Net architecture for brain tumor sub-regions whole,
core, and enhanced tumor segmentation using MRI brain images. The suggested system used
a deeper encoder path and decoder path followed by transition and batch normalization layers
that achieved high performance using different evaluation matrices.

3 Material and methods

To evaluate the 3D U-Net model this study utilized two MRI datasets. The BraT- S 2018
dataset [52] and locally collected dataset are termed DATASET1 and DATASET?2, respec-
tively. DATASET1 contains 210 HGG and 75 LGG training subjects’ MRIs. Each subject
in the dataset has four MRI scanning volumes including T1-weighted imaging (T1), T1-
weighted imaging with enhancing contrast (T1c), T2-weighted imaging (T2), and FLAIR
with an image size of 240 x 40 x 55. DATASET?2 consists of 71 subjects. The whole data
was in DICOM format which was converted into .nifti format before being given to the pro-
posed model. Figure 1 illustrates a few classical MRI images of a patient case in the BraTS
dataset [53].

3.1 Data pre-processing

For computer vision, a pre-processing step is important. In this research, we employed data
cropping, data normalization, and data augmentation as pre-processing approaches. The
following are the details of the data processing method.

Firstly, crop MRI images to fit the system memory, all of the brain MRI scans are taken
randomly with a size of 128 x 128 x 128. This method preserves the majority of the image

T1 T1CE T2 FLAIR Ground Truth

Fig.1 The included pictures in the BraTS dataset depict classical MRI brain scans, arranged from left to right
as follows: T1, Tlce, T2, Flair, and Ground Truth. Each color corresponds to a specific tumor class, namely,
yellow indicates necrotic and non-enhancing regions, red indicates enhancing tumors, and green indicates
areas of edema
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content within the crop region without affecting the images, however, it does reduce image
size and computing complexity. Secondly, normalization is the process of transforming data
into more usable MRI scans which are typically acquired using a variety of scanners and
acquisition procedures. Thus, image intensity value normalization is critical for compensating
for image heterogeneity. Entire input MRI data are normalized to set a mean of zero and a
variance of one. Thirdly, data augmentation techniques are often used in deep learning to
increase the number of samples without providing new data. This procedure aids in the
generalization of neural networks. For example, they can generate additional data from a
smaller dataset. This is beneficial for those datasets where categorizing new data is difficult
and laborious, such as in medical imaging. Another benefit is that they assist in avoiding
overfitting. One issue with the deep learning model is that they are capable of remembering
vast volumes of data, which can lead to overfitting. Rather than learning the core concepts
of the input volume, deep learning-based networks learn all of the inputs, reducing system
competence. To enhance the number of images, we applied data augmentation approaches
for example rotation, flipping, etc. to the local dataset.

3.2 Proposed 3D U-Net architecture

This study utilizes U-Net as a basic network. The proposed scheme comprises three main
steps performing pre-processing, feature extraction and selection, and segmentation of brain
tumor sub-regions represented in Fig. 2.

| Training
Images
{ S R S
MRI
Pre-processing Pre-processing
Feature Feature
Extraction Extraction
= Feature Feature
§ £ Selection Selection
S g
i— & 4
I Weights
Deep U-Net e G- Deep U-Net
1
1

Fig.2 Summary of the proposed framework
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The proposed system expanded the U-Net framework by substituting all 2D processes
with their 3D counterparts. We have applied a modified U-Net algorithm based on the several
number of convolutional blocks. In our modified U-Net architecture a combination of three
convolutional blocks followed by one transitional layer for each block is employed. This
makes the model deeper. The depth of the network is quite important for the model accuracy;
the deeper the model, the superior the performance. On the other hand, a deeper model
means the use of more parameters, which leads to an overfitting problem, particularly in the
medical imaging domain. Moreover, deeper architectures need extra computational time and
resources. For this reason, a size of 128 x 128 x 128 for each scan is used to reduce the
computational time and resources. Since the transition layers are missing among the encoding
and decoding stages of classical U-Net, this study builds them after every Conv-Net block to
emphasize the role of map representations in the decoding stages.

The 3D U-Net model contains several blocks in the expanding and contracting path. Every
block uses a stack of convolutional layers followed by transitional layers. Each block contains
3 convolutional layers with a 3 x 3 kernel size, subsequently a ReLU activation function,
and a batch normalization layer. Each input is the concatenated output of all preceding layers
in the block, which supports preserving certain information misplaced during convolutional
operations. Since each block may have a different amount of feature maps as a result of
channel-wise concatenation, a transitional layer is added after the convolutional block to
guarantee that the resultant feature maps are similar to those in the desired output of each
step. Additionally, this layer serves as a compressing layer, reducing the size and parameters
required for each level. The convolutional blocks are applied in the both encoder and decoder
paths in a similar fashion. In comparison to the encoder path of the U-Net, the max-pooling
operation is employed with a stride value of 2 for downsampling, while the decoder path
employs an up-convolutional operation with a stride value of 2 for upsampling. We have
employed transition layers in the encoding-decoding path for the enhancement of feature
maps. Moreover, each convolutional block contains batch normalization to overcome the
over-fitting issue. Finally, we use dice loss to balance loss from several anomalies like WT,
TC, and ET. The softmax function is implemented for the output labels. The architecture of
the 3D U-Net implemented in this study is illustrated in Fig. 3.

This study utilized transition layers blocks between Conv-Net blocks. The blocks in ques-
tion are responsible for carrying out convolution and pooling operations in both the encoding
and decoding components of the introduced 3D U-Net framework. The blocks consist of a
batch normalization layer, a 1 x 1 convolutional layer, and a 2 x 2 average pooling layer.
The inclusion of a transition layer is necessary to reduce the dimensionality of the feature
maps by half before progressing to the subsequent Conv-Net block. Additionally, this feature
provides advantages in terms of network cohesiveness. Figure 4 represents the overview of
transition layer block uses in this work.

3.3 Class imbalance issue

The segmentation is an inherent issue owing to variations in the physiological properties of
glioma. The background is tremendously dominated by the foreground. As a result, selecting
the appropriate loss functions is critical in resolving the imbalance issue. The following
are three different loss functions. Focal Tversky loss may be useful for solving intra-class
imbalance in binary classification issues. However, it is less effective in addressing inter-
class disparities. Categorical cross-entropy necessitates extra caution when working with a
dataset that has a strong class imbalance. Dice loss can effectively cope with the datasets
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Fig.3 Illustration of suggested design for brain tumor segmentation, utilizing a 3D U-Net model
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class disparity issue and can be expressed by the following (1).

C N
D j=1 2k=1Pjc8jc + €
C N
D=1 2k=1 Pje + 8jc €
Where N belongs to the set of the whole dataset, C belongs to the set of all classes, Pjc
represents the probability of the tumor class, g;c is showing the true tumor class and ¢ is a

constant to avert dividing with 0. In this study, we apply dice loss to reduce the problem of
class imbalance.

Diceloss =1—2

ey

3.4 Optimization

We utilize the Adam optimizer to start with a learning rate and gradually reduce it according
to (2):

B=Po*(— Ti>°‘9 2)

Where the variable e indicates the epoch counter, whereas Te is the aggregate amount of
epochs.

3.5 Network implementation and training details

During the training phase, we employed the Pycharm software development environment
and the TensorFlow library to carry out the suggested 3D U-Net framework. Additionally,
we employed the NVIDIA Geforce GTX1660Ti 6GB GPU, along with a system equipped
with 16 GB of RAM.

The algorithm is trained throughout 20 epochs, with each epoch representing a complete
iteration of the dataset. The choice of 20 epochs for training was determined through iterative
experimentation to balance training time and performance. This duration allows the model
to sufficiently learn from the data while avoiding overfitting.

The input MRI data is of dimensions 128 x 128 x 128, indicating a three-dimensional
structure with a height, width, and depth of 128, 128, and 128 units respectively. Additionally,
the Adam optimizer is employed with an initial learning rate of 10~* and a learning rate decay
of 10% after 5 epochs to aid in convergence.

Moreover, a comprehensive assessment was conducted to evaluate the influence of these
features on the overall efficacy of the proposed framework. This evaluation involved rigorous
experimentation and a comparison with U-Net baselines. A thorough examination was under-
taken to evaluate the algorithm’s responsiveness to changes in parameters and to determine
the most effective configurations that achieve the highest level of accuracy and robustness in
segmentation. The hyperparameters employed for the training and testing are represented in
Table 1.

3.6 Performance metrics

Based on BraTS databases protocol procedures [13], the various sub-regions in the brain
tumor structures for each subject are given below:
i. The whole tumor area (It contains all 4 intra-tumoral regions labeled as 1, 2, 3, and 4).
ii. The core tumor area (It contains the whole tumor area except the edema region and is
labeled as 1, 3, and 4).
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Table 1 Hyperparameter setting

for proposed network Hyperparameter Values
Learning Rate 0.001
Batch Size 32
Weight decay 10~4
Epochs 20
Momentum 0.9
Optimization function Adam

iii. The enhanced tumor area (only comprising the enhancing region, i.e., label 4).

In this study, we use dice score, sensitivity, specificity, and area under the curve (AUC) for
the evaluation of each tumor sub-region. DSC offers a dimension criterion for overlapping
regions among manually labeled and predicted segmentation outcomes. It can be calculated
using the (3).

2T P

DSC =
FP+2TP+ FN

3

The variables TP, FP, FN, and TN represent the quantities of true positive, false positive,
false negative, and true negative voxels, correspondingly. Sensitivity is a valuable matrix
of the number of TP and FN and could be computed using (4). Specificity shows the ratio
of the identified background voxels to the entire background voxels and can be calculated
through (5). Moreover, the AUC can be calculated using the ratio between true-positive and
false-positive examples. AUC is computed using (6).

TP

Sensitivity = ——— 4
ensitivity TP+ FN 4)
TN
Specificity = ———— 5
pecificity TN+ FP (®)]
AUC ! TP + N (6)
= — %
2 TP+FN TN-+FP

4 Experimental results and analysis
4.1 Results of segmentation on MICCAI BraTS 2018 (DATASET1)

The segmentation outcomes on DATASET1 accomplish average dice scores of 0.913, 0.874,
and 0.76 for WT, TC, and ET, respectively as illustrated in Table 2. The segmentation per-
formance for DATASET1 on the proposed architecture is considerably superior to that in
DATASET?2. It could be due to an intrinsic lower signal-to-noise ratio (SNR) among 1.5T
and 3T MRI images. The scanning process yields sliced scans with poor resolution, charac-
terized by diffused features and low intensity in their projection output. The identification of
tissue margins presents a challenge, leading to a disruption in the efficacy of deep learning
algorithms. Another possibility could be that both 1.5T and 3T images were used in the
training set, enabling neural networks to develop a representation specific to both magnetic
fields. The WT still has top performance and ET is the supreme challenging region.
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fesits or DATASET! o Labl  Dice(%)  Sen(%) _ Spec(%)
DATASET2 DATASET!1 WT 0.913 0.945 0.989
TC 0.874 0.886 0.991
ET 0.801 0.870 0.992
DATASET? WT 0.891 0.891 0.993
TC 0.834 0.826 0.996
ET 0.776 0.782 0.998

Comparison of our work with other is highlighted with bold entries

Table 2 summarizes the results of sensitivity, dice, and specificity of ET, WT, and TC
obtained on DATASET1. Training and validation accuracy and loss plots for both DATASET1
and DATASET? are illustrated in Fig. 5(a) and (b). The training and validation loss decreases
sharply between 0-5 epochs. However, the change in training and validation loss curve is
very moderate, after the 10th epoch. This signifies that the model is well-trained. Some
segmentation results of DATASET] are also presented in Fig. 6.

Figure 7(a) shows the training and validation dice score plot of three regions (WT, TC, ET)
differing with epoch. The validation dice score increases rapidly when the epoch is small.
However, the change in training and validation dice score curve is moderate, when the epoch
is greater than 10. Figure 7(a) also demonstrates that training and validation dice scores are
in the order of WT>TC>ET. This might be attributed to the size of the region area. The
region area of WT is greater than TC, similarly, the region area of TC is larger than ET.
Therefore, it is easier to predict the region with a larger area. Thus, the Dice score is higher
for the modality with a large tumor area. Figure 7(b) and (c) also represent the sensitivity
and specificity in terms of line graphs.

4.2 Results of segmentation on the local dataset (DATASET2)

This research utilized a local dataset obtained from a local hospital containing 71 patients
MRI data to analyze the outcomes of the developed system. The local dataset comprises 41
HGG and 30 LGG patients. We computed the average dice scores, sensitivity, and specificity
to analyze the results of the suggested 3D U-Net model on DATASET? for WT, TC, and ET,

DATASET]1 acc and loss (a) DATASET? acc and loss (b)
1.0 1.0
0.8 . 0.8 ..
® —— Training accuracy o —— Training accuracy
B =—— Training loss @ — Training loss
= 0.6 — Validation accuracy ., g6 — Validation accuracy
o S %) e
© Validation loss ® Validation loss
3 041 3
o O 0.4
® ©
0.2
T T T T T T T T T T 0'2 T T T T T T T T T T
05 25 45 65 85 105 12.5 145 16.5 18.5 05 25 45 65 85 105 12.5 145 16.5 18.5
no of epochs no of epochs

Fig. 5 Illustrates the accuracy (training and validation) and loss (training and validation) of DATASET1 and
DATASET?2
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U-Net result

Fig.6 Shows segmentation results of the proposed model
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Fig. 7 ((a) Training and validation dice scores of WT, TC, and ET (b) Sensitivity results of DATASETI (c)
Specificity results of DATASET1 Figure caption
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respectively. The average results of dice, sensitivity, and specificity obtained by our model
for WT, TC, and ET are presented in Table 2. The whole tumor attains the highest results
of segmentation by an average dice score of 0.891. Figure 5(b) shows a little low accuracy
and higher loss for DATASET2. One main reason for these low results of DATASET? is
a scarcity of data. Even applying data augmentation on DATASET2, we dont have enough
data which is normally required for deep learning systems. DL architectures need a huge
number of data to produce high performance. Moreover, Fig. 8(a),(b) and (c) demonstrate
that training and validation dice scores, sensitivity, and specificity are in the form of a line
graph. Some segmentation results are presented using the proposed network on DATASET?2
in Fig. 9.

4.3 Ablation study

The ablation studies are undertaken to evaluate the impact of each component in the proposed
technique. To demonstrate the productivity of our system, we compared the performance of
our system to that of a standard U-Net architecture on the BraTS 2018 and local private
datasets. In our system, first, we changed the U-Net block with a conventional CNN convo-
lutional layers network (namely Traditional CNN). Second, in the Standard U-Net, we have
added transition layers and batch normalization after each ConvNet block. Tables 3 and 4
display the outcomes of the experiments of DATASET1 and DATASET?2, respectively. After

DATASET2 DSC DATASET?2 sensitivity

g —s— WT Train
s —+— TC Train _12
.g —— ET Train S
—— WT Val 0.4 —— WT results
=+ TC Val =+ TC results
—— ET Val —o— ET results
T T T T T T T T 1 0.2 T T T T T T T T T 1
4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
no of epochs no of epochs
DATASET?2 specificity

== WT results
=+ TC results
——

ET results

0.94

02— T T T T
2 4 6 8 10 12 14 16 18 20

no of epochs

Fig. 8 (a) Training and validation dice scores of WT, TC, and ET (b) Sensitivity results of DATASET?2 (c)
Specificity results of DATASET2
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Fig.9 Segmentation results on DATASET? using the proposed method

embedding transition and batch normalization layers, accordingly improves the performance
of these sub-regions results, which determines the effects of transition and batch normaliza-
tion layers on the brain tumor segmentation task. When compared to the Standard U-Net
architecture, this work for brain tumor segmentation outperforms both datasets. It is assumed
that it may be due to the upsampling layers in the U-Net module, which can filter out some of
the noise data and collect various context features. Taking a look at how the standard U-Net
performs in comparison to the conventional simple CNN architecture, we can see that the
standard U-Net offers marginally superior results. However, ablation test results verify the
usefulness of the proposed network for the brain tumor segmentation task. To evaluate our
proposed approach the AUC was computed for both datasets, as shown in Fig. 10(a),(b). It
is evident that the AUC curve of the designed model is higher than the Traditional CNN and
Standard U-Net. A comprehensive evaluation of both datasets indicated that the proposed
approach was vastly superior to Traditional CNN, and Standard U- Net. The experimental
outcomes showed that the 3D U-Net model could effectively segment brain tumors from
MRI scans, which might aid doctors and radiologists in early brain tumor detection.

Table 3 Ablation study experimental performance on the DATASET1

Method Dice Sen Spec
WT TC ET WT TC ET WT TC ET

Traditional CNN  0.825 0.736 0.658 0.890  0.753 0.718 0.989  0.991 0.992
Standard U-Net 0.881 0.840  0.778 0910 0.839 0.816 0990  0.993 0.995
Proposed 0913 0.874  0.801 0.945 0.886  0.870  0.997 0.996  0.998
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Table 4 Ablation study experimental results on the DATASET2

Method Dice Sen Spec
WT TC ET WT TC ET WT TC ET

Traditional CNN  0.755 0.690  0.628 0.832  0.774  0.710  0.995 0.995 0.994
Standard U-Net 0.843 0.769 0.710  0.851 0.795 0.736 0997  0.996 0.995
Proposed 0.891 0.834  0.776  0.891 0.826  0.782  0.999 0.998 0.998

4.4 Performance comparison with the state-of-the-art techniques

In this section, we have analyzed previously published state-of-the-art work on brain tumor
segmentation and compared it with the proposed network.

Myronenko [54] won the BraTS 2018 challenge. They trained a model by applying big
patches of 160 x 192 x 128. The variational auto-encoder branch of the model was used
to reconstruct brain images. Big patches offer additional contextual evidence, allowing for
a better understanding of the whole image, therefore is critical for optimizing 3D methods
performance. As shown in Table 5, the suggested system outperforms other methods in the
ET dice evaluation measure. Nevertheless, the disadvantage of big patches is that neural
networks require extra time to learn local information. In comparison to this method, our
method exceeds 0.62% and 1.38% in terms of WT and TC regions, respectively.

Isensee et al. [48] came in the second position in the challenge because they used a three-
dimensional U-Net with supplementary information. They were able to demonstrate that a
well-trained basic U-Net was sufficient for achieving the best possible results. To establish
a reliable contrast, this study reports the results of their technique without including any
additional information. As seen in Table 5, our system outperforms this method. It is worth
mentioning that our strategy improves dice scores by 0.38% and 2.18% in the WT and TC
regions, respectively. However, in the ET region, the Isensee et al.’s (2018) method shows
slightly better results.

Zhou et al. [55] won 3rd position in the competition. We illustrate the consequence of
their post-challenge modification (Zhou et al., 2019). By segmenting the tumor into three sub-
regions, namely the WT, the TC, and the ET, they modified the metrics. Since they employed
very small MRI patches of 32 x 32 x 32 for segmentation, their approach excluded global
information from input images. As illustrated in Table 5, our strategy surpasses theirs by a
significant margin on several measures. For instance, the proposed technique improves dice

Area Under the Curve on DATASET1 Area Under the Curve on DATASET2

R p——

True Positive Rate
True Positive Rate

°
S

=== Proposed
------ Standard U-Net
00 Traditional CNN 00

...... Proposed
—-~ Standard U-Net
Traditional CNN

00 02 08 10 00 02 08 10

04 06 04 06
False Positive Rate False Positive Rate

Fig. 10 (a) The AUC curves of a designed system for DATASET1, (b) The AUC curves of a designed system
for DATASET2

@ Springer



Multimedia Tools and Applications

Table 5 Performance comparison o
of dice score on the DATASET1

with the state-of-the-art methods Myronenko [54] Autoencoder 0.9068 0.8602 0.8173

ef Method WT TC ET

Isensee et al. [48] U-Net 0.9092 0.8522 0.8066
Zhou et al. [55] OM-Net 0.9052 0.8536 0.8027
Hu et al. [56] MU-Net 0.88 0.74 0.69

Carver et al. [57] U-Net 0.88 0.77 0.71

Islam et al. [58] CNN-ANN 0.8978 0.8253 0.7654
Our-Dataset1 3D U-Net 0.9130 0.8740 0.8010
Our-Dataset2 3D U-Net 0.8910 0.8340 0.7760

Comparison of our work with other is highlighted with bold entries

scores by 0.78% and 2.05% in the WT and TC regions, respectively. However, in the ET
region to some extent, their method performs better than our model.

4.5 Discussion

This paper describes a brain tumor segmentation network using BraTS 2018 and local datasets
namely DATASET1 and DATASET?2, respectively. This research employs a modified 3D
U-Net as a framework for model development to improve segmentation results. 3D U-Net
showed its generalizability by obtaining top segmentation performance. Overall, the proposed
3D U-Net architecture offers accurate, efficient, and scalable solutions for brain MRI image
segmentation tasks.

Figure 5(a) and (b) also demonstrate that the proposed model is well-trained and gen-
eralized. It attained validation dice scores are 0.913, 0.874, and 0.801 for the DATASET1
dataset and 0.891, 0.834, and 0.776 for WT, TC, and ET, respectively. Figure 11 (a),(b) and
(c) presents the comparison results of DATASET1 and DATASET2. DATASET1 achieves
better results in all statistical evaluation measures including dice, sensitivity, and specificity
as compared with DATASET?2. The reason is the shortage of MRI scans in DATASET?2. The
results may be improved by adding more patient data or using more data augmentation tech-
niques. Moreover, some other reasons for the low performance of DATASET? are explained
in Sections (4.1 and 4.2) of the experimental results.

In this research, the ET class is debatably the most challenging to segment. The way
this class is evaluated when the source segmentation of an image does not include this class
makes it difficult. The BraTS evaluation scheme inspires postprocessing because it benefits
the expulsion of small ET lesions. This property is not generally preferred in a clinical setting
where the correct diagnosis of a small ET region is essential, and we suggest neglecting the
postprocessing introduced in this paper.

One major shortcoming of our model is that our network is struggling to enhance tumor
results. It will be of interest to train this model using ROIs as input instead of the whole MRI
image. The scarcity of labeled medical imaging data is a significant impediment to model gen-
eralizability. One strategy for achieving good generalization is to augment the given dataset
with more data. Post-processing techniques like CRF are effective in improving segmentation
performance. It would be interesting to see how potentially meaningful models affect segmen-
tation results. Many additional observations, modifications, and experimentations have been
left for future work due to restricted computational resources and limited time. There are sev-
eral ideas given below that can be implemented to enhance the proposed process even better.
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Fig. 11 (a) Comparison results of the whole tumor region for DATASET1 and DAASET?2 (b) Comparison

results of tumor core region for DATASET1 and DAASET?2 (c) Comparison results of enhancing tumor region
for DATASET1 and DAASET2

5 Conclusion

To summarize, we developed an efficient 3D U-Net-based network for brain tumor substruc-
ture segmentation from non-invasive multimodal MRIs. This paper designed an improved and
intelligent three-dimensional U-Net system that uses convolution blocks on the encoder and
decoder side followed by transitional layers blocks for the brain tumor segmentation assign-
ment. BraTS 2018 and the locally acquired dataset were used to evaluate the performance of
the proposed approach. This method showed superior results owing to (1) the implementation
of a transitional layer after each convolutional block in the encoder and decoder network,
whereas the original 3D U-Net employed a simple convolution block. (2) Implementation of
several skip connections to support the transmission of high-resolution features from shal-
low layers to deeper layers which improves the efficiency of information flow, therefore
avoiding the degradation difficulty. In this study, the 3D U-Net approach is applied for brain
tumor segmentation. However, this approach bears a vast amount of parameters. Further-
more, one major limitation of the proposed architecture is that the network is struggling in
the performance of enhancing tumor results. Cascaded U-Net approaches include two or
more encoder-decoder networks to resolve the issue of medical image segmentation. How-
ever, to overcome this limitation we can employ a U-Net-based cascaded scheme to enhance
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the performance of enhancing tumor class and also other regions in the future. Moreover,
some advanced deep learning models can be employed to obtain more robust performance.
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