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Abstract
Most existing models for video saliency prediction heavily rely on 3D convolutional oper-
ations to extract spatio-temporal features. However, it is worth noting that 3D convolution
produces a local receptive field, which may struggle to capture long-range spatio-temporal
dependencies effectively. To compensate for such shortage, this paper introduces a novel
approach called the Transformer-based Multi-level Attention Integration Network (TMAI-
Net) for video saliency prediction. TMAI-Net is designed as a two-stream encoder-decoder
model, carefully integratingmulti-level features of semantic information.Ourmodel incorpo-
rates aMulti-level InteractiveAttention(MLIA)module and aTransformer, both implemented
based on self-attentionmechanism,which are placed at different levels of themodel to capture
long-range spatio-temporal feature dependencies. Additionally, our model operates on input
video frames and attentional patches, allowing the Transformer module to capture structural
similarities between related objects in global features and attention features. This, in turn,
enables themodel to allocate increased attention to salient areas. The efficacy of our proposed
approach is validated through extensive experiments conducted on three widely recognized
benchmark datasets.

Keywords Video saliency prediction · Transformer · Spatio-temporal feature · Self-attention

1 Introduction

One of the most enduring research problems in computer vision is the video saliency predic-
tion. It aims to find the most noticeable regions of a dynamic scene. Video saliency prediction

B Minghui Sun
smh@jlu.edu.cn

Rui Tan
tanrui22@mails.jlu.edu.cn

Yanhua Liang
yhliang@jlu.edu.cn

1 Software College, Jilin University, Qianjin Street, Changchun 130012, Jilin, China

2 College of Computer Science and Technology, Jilin University, Qianjin Street, Changchun 130012,
Jilin, China

3 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin
University, Qianjin Street, Changchun 130012, Jilin, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-024-19404-4&domain=pdf
http://orcid.org/0000-0002-1809-8187


Multimedia Tools and Applications

models have been extensively adopted in a variety of video processing applications, including
video compression [1, 2], video captioning [3], and video surveillance [4, 5].

Historically, video saliency predictionmethodologies have traditionally relied on the amal-
gamation of visual cues, including intensity, color, motion, and spatial frequency. These cues
arewoven together to generate a saliencymap, offering insights into regions of visual saliency.
However, earlier methods exhibited limitations, manifesting in their inability to effectively
incorporate temporal dependencies and the indiscriminate treatment of individual pixels,
often leading to suboptimal results. In recent years, the advent of deep learning has been
combined with the proliferation of high-quality video saliency prediction datasets, which
has catalyzed significant advances in video saliency prediction and the emergence of several
different model categories. These models include two-stream models [6–9], LSTM-based
models [10–12], and 3D convolutional models [13–15]. The two-stream model acquires
temporal and spatial information separately, and then fuses them into the spatio-temporal
information to obtain the final saliency map. However, the two-stream model often extracts
temporal information based on optical flow, so it only considers the temporal information
between adjacent frames. The emergence of the LSTM-based model alleviates this limita-
tion because LSTM can extend temporal perception. However, since the LSTM-based model
processes spatial information and temporal information with convolutional networks and
LSTMs respectively, the model cannot use spatial information and temporal information at
the same time, which is important in the field of saliency prediction. To address this issue,
Min et al. [13] proposed TASED-Net, a model founded on a 3D convolutional network,
specifically devised for the joint processing of spatio-temporal information. While there has
been substantial progress in 3D convolution-based models, they are still unable to overcome
the inherent limitations of local receptive fields. This is where our research strives to reach
a solution. Since the long and short term memory of the human visual system affects visual
attention processes, we take inspiration from the self-attention mechanism [16]. We note
that the dot product attention inside the self-attention mechanism can be used to establish
long-range spatio-temporal interactions between features at different time steps. As a result,
we added MLIA and Transformer, both implemented on a self-attention mechanism, to the
model, placed at different levels to generate a global spatiotemporal context. The reason for
choosing Transformer is that due to its inherent attention mechanism and Multilayer Percep-
tron (MLP) structure, Transformer can split input object features into patch tokens to mine
the patch structure similarity of related objects. It makes the model pay more attention to the
saliency region while establishing long-range dependencies.

We propose a novel approach, the Transformer-based Multi-level Attention Integration
Network (TMAI-Net). This innovative model is designed to collectively address the previ-
ously mentioned limitations. The encoder for TMAI-Net is a 3D fully convolutional network
from S3D [17] that was pre-trained on the Kinetics dataset [18]. 3D convolutional layers have
the ability to encode hierarchical spatio-temporal information, which can encode not only
low-level information such as colour contrasts, but also high-level semantic information such
as persons. In our model, the 3DCNN encoder extracts four branches from different levels
from shallow to deep, which produce different features from low to high levels. We place
MLIA and Transformer at the shallowest and deepest levels of the four branches respectively
to construct long-distance spatial-temporal interactions through the self-attentionmechanism
they both have. Besides, we use a two-stream input strategy in our model [19], where the
model receives the stacked original video frames together with their appropriate attentional
patches as input. We use Transformer to mine the structural similarity of related objects in
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the extracted global features and attention features to make the model focus more on saliency
regions. Overall, the following are our main contributions:

• We propose a Transformer-based Multi-level Attention Integration Network (TMAI-
Net) for video saliency prediction, which introduces the self-attention mechanism to
compensate for the limitations of existing 3D CNN-based models.

• We present a Multi-Level Interactive Attention (MLIA) module to capture long-range
spatio-temporal relationships between time steps. The MLIA module utilize the self-
attention mechanism at the pixel level to predict human visual attention.

• The MLIA module and Transformer module are placed in the shallowest and deep-
est levels of the four branches extracted from the model’s encoder, respectively, and
directly establish the global spatio-temporal context at most levels. Besides, the struc-
tural similarity among related objects in global and attention features is mined through
the Transformer, which helps the model to focus more on saliency regions.

2 Related work

2.1 Recent video saliency predictionmodels

The traditional video saliency prediction model combines both static and motion information
and uses hand-designed spatio-temporal features for saliency modeling [20, 21]. Given the
swift development of deep learningmethodologies and the accessibility of extensive dynami-
cally annotated datasets, such as DHF1K [11], deep learning-based video saliency prediction
models have prevailed, demonstrating notable superiority over conventional models. Bak et
al. [6] proposed a two-stream convolutional neural network that takes video frames and corre-
sponding optical flowmaps as input, merging spatial and temporal streams to produce salieny
maps. Li et al. [22] presented a precise end-to-end learning framework for video saliency
prediction, which collects motion information through optical flow and enhances temporal
coherence by employing LSTM networks to encode sequence features. Wang et al. [23] pro-
posed ACLNet, which enhances the CNN-LSTM architecture with an attention mechanism,
facilitating rapid end-to-end saliency learning and enabling temporal saliency representation
across consecutive frames via LSTM. Liu et al. [24] designed a novel saliency detection
algorithm that effectively transfers image reconstruction knowledge to the learning process
of saliency detection. Liu et al. [25] designed a new scene-guided two-branch network for
salient object detection that allows cross-task knowledge distillation from scene classifica-
tion. Liu et al. [26] extended residual pose routing to saliency prediction, which improved the
computational efficiency while reducing the parameters. In addition, some methods intro-
duce the nature of the study of part-whole relationships into salient object detection and
use multi-flow strategies and confidence scores to improve the model’s ability to segment
salient objects [27–29]. Moreover, 3D convolutional architectures have been investigated
for video saliency prediction tasks. Min et al. [13] proposed TASED-Net, a 3D convolu-
tional encoder-decoder model designed to concurrently manage temporal information while
extracting spatial features. Furthermore, Xue et al. [19] proposed a novel 3D convolutional
encoder-decoder network named ECANet, which proposes explicit cyclic attention for tem-
poral modeling and pixel emphasis. ViNet is an innovative visual architecture that includes
an auditory module to investigate the fusion of audiovisual cues in video saliency predic-
tion tasks [30]. STA3D is a spatio-temporal attention 3D network that selectively propagates
saliency temporal features and refines spatial features for video saliency prediction [31]. The
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above video saliency prediction model is constructed based on 3DCNN. However, the 3D
convolution operation only produces local receptive fields and ignores feature dependencies
at long distances.

In our work, our model uses MLIA and Transformer to model long-range spatio-temporal
relationships at different levels, directly constructing global context and enabling interactive
attention across spaces and scales.

2.2 Attentionmechanism

In a variety of computer vision [32, 33] and natural language processing tasks [34, 35], atten-
tion mechanisms have recently shown exceptional effectiveness. The input labels are initially
transformed into queries, keys, and values at the embedding layer in the conventional atten-
tion mechanism. Then, dot product attention is used to compute the long-range relationships
among the labels in the input sequence. In the domain of computer vision, Oh et al. [36]
proposed a temporal memory network utilizing an attention mechanism for video image seg-
mentation, effectively capturing long-range dependencies between current and past frames
while maintaining memory updates for enhanced performance. Yuan et al. [16] proposed a
novel feature pyramidal interactive attention network for egocentric gaze prediction, which
leverages an attention mechanism to facilitate interactive attention across space and scale,
effectively capturing long-term relationships among spatio-temporal features at various time
steps. Wang et al. [37] proposed the STSANet to model long-range spatio-temporal relations
separately for different levels of information extracted, and then fuse the spatio-temporal
features of different levels to output saliency maps. Zhang et al. [38] designed an attention-
guided mechanism that adaptively learns adjacent feature fusion weights to perform better
learning of multiscale spatio-temporal features.

The above models use self-attention mechanism to model long-range spatio-temporal
dependencies, which compensates for the limitations of 3DCNN in modeling local spatio-
temporal features. Besides, given the different perceptual fields and the different richness
of semantic information at each level, it is also necessary to consider the differences in the
way of modeling the global dependencies at different levels. In our module, in order to better
utilize multi-level features, maximize the accuracy of the model, and reduce the complexity
of the model, we place MLIA and Transformer in the shallowest and deepest levels of the
four branches extracted by the model encoder, respectively. We leverage the self-attention
mechanism in MLIA and Transformer to model long-range spatio-temporal dependencies.

2.3 Visual transformer

The advent of the Transformer architecture has considerably accelerated development in the
areas of computer vision and natural language processing (NLP). It has gained widespread
adoption in tasks encompassing classification [39–42], segmentation [43], and detection
[44–47], consistently delivering outstanding performance. Compared with the limited CNN
modeling of local spatio-temporal feature, the Transformer has been used for the modeling
of global spatio-temporal feature due to its inherent self-attention mechanism. Liu et al. [48]
proposed a Video Swin Transformer based on spatio-temporal local sensing bias, which is
a network designed based on Swin Transformer [49], which computes self-attention cor-
relations by processing spatio-temporal inputs through a window shifting mechanism. Ma
et al. [50] applied the Transformer to video saliency prediction and obtained the temporal
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dependence of input past frames and target future frames by the Transformer and achieved
excellent performance.Wang et al. [51] proposed a novel saliency detection algorithm applied
to optical remote sensing images, which exploits the advantages of both CNN and Trans-
former to better extract local and global contextual information in complex scenes. Su et al.
[52] proposed a unifiedTransformer framework for group-based segmentation, throughwhich
long-range dependencies between image features are captured and patch-structural similari-
ties between related objects are explored. Zhou et al. [53] used Video Swin Transformer as
a model backbone to generate multilevel spatio-temporal features with rich contextual cues.

In our module, Transformer is used to find out how structurally related the global features
and attention features are. The Transformer module’s inherent ability to interact with global
features allows it to be used in combinationwith our proposedMLIAmodule to simulate long-
range spatio-temporal dependencies at various information levels, significantly enhancing the
model’s performance.

3 Approach

3.1 Overall architecture

TMAI-Net is a two-stream structured model based on the Transformer module and MLIA
which built by 3DCNN tomodel the human visual attention processes. Ourmodel predicts the
frame-by-frame saliency map by means of a sliding window. For a video with a total number
of frames N , the saliency prediction of any frame in the video is achieved by considering a
fixed number of consecutive past frames, which is referred to as T in our work. The input
to this model is the original video frame F and the corresponding attentional patches A. In
other words, St , a saliency map at t , is predicted given an input clip (Ft−T+1, . . . , Ft ) and
attentional patch (At−T+1, . . . , At ) for any t ∈ {T , . . . , N } where Ft is the frame at time
step t and At is the attention patch at time step t . St can be calculated using the following
equation:

St =
{
Q

({Ft+T−i }Ti=1 , {At+T−i }Ti=1

) · · · t ∈ (0, T )

Q
({Ft−T+i }Ti=1 , {At−T+i }Ti=1

) · · · t ∈ [T , N ] (1)

where Q represents our TMAI-Net model.
The proposedmodel’s structure and design are illustrated in Fig. 1. Ourmodel employs the

full convolutional component of theS3Dnetwork [17],whichhas beenpre-trainedonKinetics
data[18], as its foundational architecture. In the S3D network, our model implements the
encoding of multi-level features by 3DCNN. For the four branches output from the backbone
part of the model corresponds to low-level features and high-level features, respectively.
At the lowest level (closest to the pixel) of the model we add the Multi-level Interactive
Attention (MLIA) module based on a self-attention mechanism that implements long-range
spatio-temporal relationships modeling. In addition, we add the Transformer module to mine
the structural similarity associated with each video frame and the corresponding attention
patch of themodel input, which helps themodel to focusmore on the salient regions. Besides,
the Transformer works together with the MLIAmodule to implement global spatio-temporal
feature modeling at different levels. Lastly, the features output by the MLIA module and the
Transformer module are combined and decoded in the decoder to output the saliency map.
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Fig. 1 Detailed structure of the TMAI-Net. The model contains two encoders (global encoder and attentional
encoder) and a decoder, the Multi-level Interactive Attention (MLIA) module, and the Transformer module.
The encoder encodes the input of the model to generate multi-level spatio-temporal features corresponding
to four branches. MLIA and Transformer are placed at the shallowest and deepest levels of the four branches
respectively to establish long-term spatio-temporal dependencies with different time steps. Then, the saliency
map is generated by the decoder

3.2 Encoders and decoder

The encoder and decoder architecture used in [13] provides the basis of our TMAI-Net. To
implement temporal modeling and pixel emphasis we introduce the explicit circular attention
mechanism proposed by [19]. Both encoders of TMAI-Net use the S3D network as the basic
structure. After that, we fuse the global features and attention features and input them into
the decoder. The decoder performs spatial decoding of features while jointly aggregating
temporal information to produce saliency maps.

The global encoder of TMAI-Net uses the S3D network as the underlying architecture,
removing the final pooling, convolutional and fully connected layers to extract spatio-

temporal features from multiple levels. The output
{
Ci
g

}4
i=1

of the four branches of the

global encoder can be calculated using the following formula.

Ci
g =

⎧⎨
⎩

R
(
F ∗ wi

g + big
)

i = 1

R
(
Ci−1
g ∗ wi

g + big
)
i �= 1

, (2)

where i ∈ (0, 4]; R(·) represents the ReLU activation function, and w and b represent the
weight and bias of the ith branch, respectively.

The attentional encoder of TMAI-Net reduces the max-pooling layer next to and inside
the first convolutional layer compared to the global encoder. For the specific convolutional
layers in the S3D network see [17].The output

{
Ci
a

}4
i=1 of the four branches of the attentional

encoder can be calculated using the following formula.

Ci
a =

{
R

(
A ∗ wi

a + bia
)

i = 1
R

(
Ci−1
a ∗ wi

a + bia
)
i �= 1

, (3)
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The parameters in the formula for the attentional encoder are similar to those of the global
encoder. At the lowest and highest level of the four branches extracted from the encoder we
placed the MLIA and Transformer architecture for establishing long-range spatio-temporal
interactions, respectively.

3.3 Multi-level Interactive Attention (MLIA) module

Video saliency prediction entails the challenge of emulating human visual attention in
dynamic scenes, necessitating a comprehensive grasp of the contextual information present
within the video. Such a task requires not only combiningmultiple levels of semantic informa-
tion, but also capturing long-range relationships between visual features at differentmoments.
In our model, after input pass through the model’s backbone, the temporal channel dimen-
sion of the multilevel features is compressed to 4 by the 3D convolutional layer. Given the
persistent limitations in existing video saliency prediction models concerning the learning of
spatio-temporal feature correlations and saliency region identification, we propose a novel
approach. In our model, we incorporate the MLIA module at the most granular level within
the four branches originating from the model’s backbone. This integration aims to effectively
model long-range dependencies among time steps within the temporal channel at the pixel
level.

We propose a Multi-level Interactive Attention module (MLIA) as shown in Fig. 2. Our
MLIA module references the SATA module proposed in [37]. In method [37], the SATA
module is placed for use on four branches on the backbone, enhancing the visual character-
istics between the different time steps at different levels. However, the SATA module does
not work in our approach because we have two feature streams and it does not make sense to
consider the update of long-range spatio-temporal relationships for only one feature stream.
In this case, it is necessary to consider how the fused auxiliary feature stream is processed
by MLIA.

As shown in Fig. 2, MLIA contains a total of three sub-modules including a feature
stream fusion module and two self-attention sub-layers. The inputs to the MLIA module
are the outputs of the lowest level in the encoder of the TMAI-Net. In our model, the two
input feature streams go through the feature stream fusion module in MLIA and enter into
the two self-attention sublayers, which directly capture the long-range relationship between
spatio-temporal features at different time steps through the dot product attention. The input

Fig. 2 The overall structure diagram of the Multi-level Interactive Attention (MLIA) module
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of the MLIA module can be denoted as L ∈ R
C×4×H×W , where C represents the semantic

channel, 4 represents the temporal channel, and H and W denote the dimensions for height
and width, respectively. In Self-attention Layer 1, as illustrated in Fig. 3(a), the input feature
L is split into 4 sub-features along the time channel

{
L1, L2, L3, L4

} ∈ R
C×1×H×W . We

convert the obtained sub-features into queries, keys and values and measure the two-by-two
relationships by dot product attention. The global dependencies of spatio-temporal features
are captured based on these relational aggregation information. The dot product attention is
depicted in Figure 4. The specific computation is as follows:

DP − Att
(
Lq , Lk, Lv

) = Softmax
((

Lq
)T

Lk

)
(Lv)

T (4)

Fig. 3 The self-attention sub-layers of theMulti-level Interactive Attention (MLIA) module. (a) Self-attention
Layer 1 of MLIA. (b) Self-attention Layer 2 of MLIA
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Fig. 4 The details of the dot product attention in the Self-attention layer. SF stands for the softmax operation

Where DP −Att(·) stands for dot product attention, Lq , Lk , and Lv represent the query,
key, and value after sub-feature transformation, respectively. Sof tmax(·) is the softmax
activation function. Subsequently, they are recombined along the temporal channel. Unlike
theSelf-attentionLayer 1, theSelf-attentionLayer 2, as depicted inFig. 3(b), the input features
are partitioned into two sub-features

{
L12, L34

} ∈ R
C×2×H×W . The subsequent operation is

the same as the Self-attention Layer 1, where the long-range dependence of spatio-temporal
features is established by dot product attention. By computing the dot product attention in two
sub-layers ofMLIA, it is possible to realize that any one of the four features

{
L1, L2, L3, L4

}
can be updated directly by the long-range spatio-temporal relationship with the other three
features.

In addition, the fusion of the two input feature streams needs to be implemented in the
MLIA. The fused feature stream C f can be computed using the following equation:

C f = R
(
Concate (C1,C2) ∗ w f + b f

)
(5)

Where R(·) is the ReLU activation function,w and b represent the parameters corresponding
to the weight and bias of the fusion module, Concate(·) represents concatenation operation
of two feature streams, C1 and C2 represent the input video stream and the explicit cyclic
attention stream, respectively. The MLIA module enables the modeling of spatio-temporal
features with different time steps, which greatly improves the performance of the model.
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3.4 Transformer block

The Transformer [32] has garnered substantial interest within the realm of computer vision
due to its proven ability to capture long-range relationships. In our model, we include the
Transformer block at the deepest level of the four branches drawn from encoder, which helps
to leverage structural similarities between related objects in the attention and global features
to better achieve pixel emphasis. Transformer is able to capture the long-range dependence
of spatio-temporal features thanks to the self-attention mechanism. It and MLIA can model
the long-term spatio-temporal relationship at different levels, which significantly improves
the model performance.

Themodule of ourTransformer block is shown inFig. 5.ConventionalTransformermodels
use an encoder and decoder architecture with stacked self-attention layers and point-wise,
completely connected layers in both the encoder and the decoder. The encoder in our module
consists of a stack of M identical layers, with two sub-layers in each layer. The first sub-layer
involves a multi-head self-attention mechanism (MSA), while the second sub-layer consists
of a fully connected feedforward network (FFN) equipped with a multi-layer perceptron
(MLP). Two sub-layers are joined using residuals and then layer normalized (LN). For the

Fig. 5 Transformer-based feature interaction module
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input token X ∈ R
C×L , the Transformer processes it through position encoding and two

sub-layers of the encoder, as follows:

x0 = [u1 + p1, u2 + p2, . . . , uL + pL ] (6)

x ′
m = MSA (LN (xm−1)) + xm−1 (7)

xm = MLP
(
LN

(
x ′
m

)) + x ′
m (8)

y = LN (xm) (9)

where pi represents the position embeddings for input tokens ui , y refers to the output. M
represents the number of encoders and m ∈ {1, . . . , M}. MSA builds on the self-attention
mechanism, whichmaps queries and sets of key-value pairs to outputs.Within theMSA, each
set of quiries’ attention function is calculated in parallel and combined into a matrix called
Q. Similarly, matrices K and V , containing the keys and values, are packed accordingly. The
MSA is calculated as follows:

Self −Attention(Q, K , V ) = softmax

(
QKT

√
dk

)
V (10)

Hi = Self −Attention
(
QWQ

i , KWK
i , VWV

i

)
(11)

MSA(Q, K , V ) = Concat (H1, . . . , Hh)W
O (12)

where the parameter matrices WK
i ∈ R

dmodel ×dk , WQ
i ∈ R

dmodel ×dk , WO ∈ R
hdv×dmodel , and

WV
i ∈ R

dmodel ×dv . dk represents the dimension of the query, dv represents the dimension
of the value, and dmodel signifies the number of dimensions in the output generated by all
sub-layers and embedding layers within the model. The decoder consists of M identical
layers stacked like the encoder. The decoder adds a third sub-layer, which is utilized for
multi-head attention on the encoder stack’s output, in contrast to the encoder. Through the
incorporation of the attention mechanism, the Transformer effectively captures long-range
dependencies and alleviates the computational challenges associated with calculating self-
attention relationships for extensive image and video entities.

In our module, both encoders use the S3D network as the basic structure and generate four

distinct branches
{
Ci
g

}4
i=1

and
{
Ci
a

}4
i=1, respectively. We fuse the C4

g and C4
a from the 4-th

branch of the two encoders into C f . For C f ∈ R
B×C×4×H×W , in the Transformer module,

where B represents the batch size and C , 4, H , and W stand for the semantic channel,
temporal channel, height, and width, in that order. Concretely, we first reshape C f into a
sequence flattened tokens Ct ∈ R

U×B×C , whereU = 4∗ H ∗W . All these token Ct are then
entered into the Transformer block.

Cy = Transformer (Ct ) (13)

where Cy represents the output of the Transformer block. Afterward, we reshape Cy back
into an feature map C ′

y ∈ R
B×C×4×H×W .
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4 Experiments

4.1 Datasets

DHF1K [23]: DHF1K is a comprehensive dataset tailored for dynamic free gaze prediction.
It consists of videos with a 1000 frame-per-second frame rate and 640× 360 resolution that
feature a wide variety of scenes, actions, activities, and more. Each frame of the video was
viewed from 17 observers. In the DHF1K dataset, 1000 videos are divided into 600 training
sets, 100 validation sets and 300 test sets.

Hollywood-2 [54]: Hollywood-2 stands as one of the most extensive and demanding
datasets accessible in this domain. It contains 1,707 videos featuring human behavior in
Hollywood movies and the corresponding 19 viewers labeled with ground-truth saliency
maps. These videos encompass a wide range of categories, including activities such as phone
calls, driving, exiting a vehicle, handshakes, and running. The Hollywood-2 dataset has been
divided into two sets for training and testing: a test set containing 884 sequences and a training
set with 823 sequences.

UCFSports [54]: UCFSports contains 150 videos of various sports action categories such
as diving, golf swing, weightlifting, horseback riding, walking, etc. Annotations for these
videos have been gathered through a task-driven approach. Following the segmentation of
UCFSports, 103 videos in total were assigned to the training set, while 47 videos constituted
the test set.

4.2 Metrics

To ensure a more precise and equitable assessment of the model’s performance, we employ
five widely recognized metrics, in line with established prior research [13, 19, 54]: NSS,
SIM, CC, AUC-J, and s-AUC. Specifically, NSS is used as a simple correspondence measure
between the salient and true graphs to estimate the linear correlation between the anticipated
result and the true gaze graph. CC is used to assess the degree of correlation or dependence
between the significant plot and the gaze-point plot, also known as the linear correlation
coefficient. SIM is a tool for comparing how similar two distributions are. AUC-J and s-
AUC are both variants of AUC, they are both computed using binary maps of gaze points,
and both are commonly used metrics for assessing saliency maps. Higher scores for the
aforementioned measures indicate that the model is doing better.

4.3 Experimental setup

TMAI-Net is implemented based on Python and Pytorch [55] framework. For the input of the
model, we selected a sliding window T size of 32. Every input frame has a size of 224×384,
and the attention patches that match the input frames have a size of 28×48. The entire model
is trained using the SGD optimizer. We set the model’s learning rate to 0.001 and use an early
stop strategy on the validation set to prevent overfitting during the training phase. The total
number of iterations during training is set at 4000, and the batch size is set at 30.

First, we train our model using the DHF1K training set. We must benchmark the model’s
results on the test set online becauseDHF1Kretains the test set’s annotations. Then,we trained
themodels on Hollywood-2 andUCFSports, respectively. Since DHF1K contains more types
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of objects and scenes compared toHollywood-2 andUCFSports, it has advantages in diversity,
scalability, and generality of datasets, so we mainly evaluate the model on DHF1K and use
the remaining two datasets as supplements.

In video saliency prediction tasks, the Kullback-Leibler divergence (KLD) [7] has demon-
strated its efficacy as a loss function and is extensively employed in the field [13, 19, 54, 56].
Following are the calculations for the KL loss function:

K L(S,G) =
∑
i

Gi log

(
ε + Gi

ε + Si

)
(14)

Where S signifies the predicted saliency map, G represents the ground truth. ε denotes
the regularization constant.

4.4 Comparison with the state-of-the-art models

We perform a quantitative comparative analysis of our TMAI-Net against 12 state-of-the-art
video saliency prediction models, which encompass STSConvNet [6], SALICON [7], OM-
CNN [10], ACLNet [11], STRA-Net [56], TASED-Net [13], SALSAC [12], UNISAL [15],
ECANet [19], ViNet [30], STSANet [37], and TMFI-Net [53]. This evaluation is carried out
using the DHF1K [23] dataset as well as the test sets of Hollywood-2 [54] and UCFSports
[54]. We selected the aforementioned models after analyzing their structure. TASED-Net
was chosen because we adopted this model as the basic structure of TMAI-Net. ECANet
is chosen because we use its proposed two-stream input approach based on explicit cyclic
attention. STSConvNet,OM-CNN, and SALICON were chosen because they are all two-
stream structures like TMAI-Net. STSANet and TMFI-Net were chosen because they are
currently the two best-performing models in the field of video saliency prediction. The other
selected models are also cutting-edge models in the field of video saliency prediction at
present. By evaluating our models with the above models, we can fairly, comprehensively,
and accurately assess the efficacy of TMAI-Net.

Quantitative. Table 1 presents the quantitative results for these models across the five
metrics. Comparing our TMAI-Net against the other 12 state-of-the-art models, it obtained
the top 3 results in 4 out of 5 metrics, suggesting that it is competitive in the DHF1K dataset.
Although our model is not currently the best performing in the field of video saliency pre-
diction, we far outperform the most advanced models in terms of computational efficiency
(model size and running speed). Table 2 shows specific experiments on computational effi-
ciency. The experimental results obtained from the Hollywood-2 and UCFSports datasets
illustrate that our TMAI-Net outperforms both TASED-Net and ECANet across all metrics.
This illustrates the value of our model.

To assess the model’s performance on the Hollywood-2 and UCFSports datasets more
fairly and accurately, we also need to make some additional adjustments. Our model simu-
lates the behavior of the human visual attention mechanism in modeling virtual memories,
which requires sufficient temporal information. Nonetheless, it’s important to note that a few
samples within these two datasets lacked an adequate number of frames for our model to
effectively model virtual memories. Additionally, certain samples within Hollywood-2 and
UCFSports consisted of only one or two images, which resulted in outcomes that didn’t meet
our anticipated performance levels. To address this issue, we selected samples from both
datasets with more than 64 frames to reevaluate our model so that our model has enough
frames to learn saliency patterns and model virtual memories in human visual scenes. The
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Table 2 Model size (MB) and
average prediction time
comparison of video saliency
methods

Model Size(MB) Time

ACLNet 250 0.02

STRA-Net 641 0.02

TASED-Net 82 0.06

SalSAC 93 0.02

UNISAL 15 0.009

ViNet 124 0.016

STSANet 643 0.035

TMFI-Net 234 0.033

TMAI-Net 207 0.018

results of the model re-evaluation based on this method are shown in Table 1, and “TMAI-
long” is the result of the experiment. The outcomes demonstrate that, in both theHollywood-2
and UCFSports datasets, our model can rank in the top 3 for a wide range of metrics.

Qualitative. In Fig. 6, we have selected some representative advanced video saliency
prediction models for qualitative comparison with our proposed model, including STRA-
Net [56], TASED-Net [13], and ViNet [30]. We use the DHF1K dataset’s validation set to
qualitatively evaluate our model. The aforementioned procedures are carried out on identical
hardware setups to guarantee the impartiality of the evaluation.

The experimental results show that ourmodel performsmore accurately than othermodels.
In Fig. 6 (a), a woman is pushing a floating ball with a child into the pool. In this case, due to
the interaction between the woman and the ball, attention will transition from the woman to
the floating ball, and the ground-truthmaps record this attention shift. Among allmodels, only
TMAI-Net and TASED-Net predicted the attentional shift from the woman to the floating
ball. Compared with TASED-Net, the prediction result of TMAI-Net is more accurate. In
Figure 6 (b), a man is cutting a stone with a machine. As he moves the tray to cut the stone,
the ground-truth map shows that the viewer’s attention shifts from the machine to the man.
Among all the models, only TMAI-Net provides the most accurate prediction. In Figure 6
(c), a large dog is walking toward a small dog in the shot, and as time passes, the ground-truth
map shows the viewer’s attention moving from the large dog to the small dog. Among all
the models, the prediction result of TMAI-Net is closest to the ground-truth map. In Fig. 6
(d), two men are fishing and one of the men casts his rod into the water. As time passes,
attention transitions from the men to the rod and subsequently to the fish. In this case, only
TMAI-Net accurately predicts this process, ViNet ignores the attention transfer process, and
TASED-Net and STRA-Net pay unnecessary attention to the fishing boat.

Computational load. We compare the computational efficiency of our model to a number
of state-of-the-art models, such as ACLNet [11], STRA-Net [56], TASED-Net [13], SalSAC
[12], UNISAL [15], ViNet [30], STSANet [37], and TMFI-Net [53], in order to assess the
computational efficiency of the model. Table 2 makes it evident that our model exhibits com-
petitiveness. In addition, our model uses a two-stream input, and for a 224×384 video frame
and its corresponding 28 × 48 attention patch. our model takes about 0.018s. The computa-
tional efficiency of our model is significantly better than that of the two most advanced video
saliency prediction models STSANet and TMFI-Net.
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Fig. 6 Qualitative comparisons on several video categories, each sampling three frames for display, between
the TMAI-Net and other state-of-the-art video saliency models

4.5 Ablation studies

In this section, we use the DHF1K dataset to conduct an ablation analysis of TMAI-Net. First,
various variants of themodel were built in order tomore thoroughly examine the applicability
of each component. Specifically, our model offers three settings, including “Two-stream”,
“Two-stream+MLIA” and “Two-stream+Transformer”. “Two-Stream” means that a two-
stream network is constructed using the 3D backbone as a baseline. “Two-stream+MLIA”
means adding the MLIA to “Two-stream”. “Two-stream+Transformer” means to add Trans-
former module to “Two-stream”. Table 3 displays the outcomes of the ablation experiments.
“Ours” refers to our model TMAI-Net.

The Contributions of the MLIA module. The difference in results between “Two-
stream” and “Two-stream+MLIA” in Table 3 shows that the addition of the MLIA to
“Two-stream” improves the performance of four (AUC-J, s-AUC, CC, NSS) of the five
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Table 3 Ablation study on MLIA and and Transformer module

Model AUC-J SIM s-AUC CC NSS

Two-stream 0.910 0.394 0.725 0.515 2.877

Two-stream+MLIA 0.912 0.388 0.726 0.519 2.912

Two-stream+Transformer 0.913 0.386 0.724 0.520 2.906

Ours 0.914 0.399 0.723 0.524 2.937

metrics. This demonstrates that the MLIA can indeed bring performance improvement to our
model.

The Contributions of the Transformer module. Comparing the performance of “Two-
stream” and “Two-stream+Transformer”, we can see that the performance of three(AUC-J,
CC, NSS) of the five metrics improves when “Two-stream” is added with the Transformer
module. This finding implies that the Transformer module in the model does bring perfor-
mance gains.

The Contributions of the MLIA module and Transformer module. Comparing the
performance of “Ours” and “Two-stream+MLIA”, we can see that four (SIM, s-AUC,
CC, NSS) of the five metrics have improved when the Transformer module is added
to “Two-stream+MLIA”. In addition, comparing the performance of “Ours” and “Two-
stream+Transformer”, we can see that four (SIM, s-AUC, CC, NSS) of the five metrics have
performance gains when the MLIA is added to “Two-stream+Transformer”. This proves that
both the MLIA and the Transformer module bring performance gains to the model.

Ablation Study onMLIA. Several variants of the MLIAmodule were created in order to
further validate its contribution to the model. In our model, the MLIAmodule is placed at the
lowest level (closest to the pixel) of the four branches extracted from the encoder to establish
long-range spatio-temporal dependencies at the pixel level. In order to study and demon-
strate the importance of pixel-level spatiotemporal dependence, we designed three Settings,
as shown in Table 4, including “Setting 1“,” Setting 2 “and” Setting 3”, which represent plac-
ing the MLIA at levels 2, 3 and 4 of the four branches of the model, respectively. “setting4”
stands for our MLIA. The experimental results showed that the metrics of “setting4” were
significantly better than those of other MLIA module variants. This demonstrates the supe-
riority of placing the MLIA module at the lowest level of the model to establish long-range
spatio-temporal relationships at the pixel level.

The visual comparative analyses in ablation studies. In order to more intuitively illus-
trate the effectiveness of each component in the model, we conducted a visual comparative
analysis experiment on the variants of each TMAI-Net designed in the ablation experiment,

Table 4 Ablation study on MLIA
module

Model AUC-J SIM s-AUC CC NSS

setting1 0.909 0.395 0.727 0.515 2.890

setting2 0.909 0.390 0.728 0.515 2.891

setting3 0.910 0.359 0.704 0.493 2.733

setting4 0.912 0.387 0.726 0.519 2.912
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and the experimental results are shown in Fig. 7. The experimental results show that the
structure in TMAI-Net is more accurate than other variants. As shown in Fig. 7(a) and (b),
only TMAI-Net correctly indicates that the saliency region is on the big dog’s head and not
its belly in frame 3 in (a), and in (b), all variants except TMAI-Net incorrectly labelled the
saliency region on the fishing boat. The same difference in results is shown in (c) (d) as in
(a) (b).

4.6 Failure cases and analyses

While our model generally demonstrates strong performance, there are instances where it
encounters challenges. Here, we present a few scenarios that TMAI-Netwas unable to handle,
along with their resolutions.

The failure cases illustrated in Fig. 8 highlight instances in which our model did not yield
satisfactory prediction results. 1) The area of saliency is particularly similar to the background
in terms of color or texture. In Fig. 8(a), since the swimming fish and the deep sea’s blue
backdrop resemble one another quite a bit, it is challenging for TMAI-Net to determine
the exact saliency region. 2) Accurate prediction of saliency results for human postures. In
Fig. 8(b), for the dancer’s dancing limbs or head, TMAI-Net cannot accurately predict the

Fig. 7 The visual comparative analyses in ablation studies
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Fig. 8 Several cases of our method failing on the DHF1K dataset

viewer’s area of attention while watching the dancer dance. 3) Blurred saliency areas in the
shot. In Fig. 8(c), a man is teasing a dog with a dog teaser. When the dog teaser is thrown, the
ground-truth map shows that the viewer’s attention should be drawn to the distant dog teaser.
The ground-truth map reveals that the viewer’s focus is diverted to the far-off dog when it
goes to pick up the faraway stick. However, TMAI-Net’s prediction results in the attention
being drawn to the man in the near distance. 4) There are a lot of things that are moving in
the video. There are a lot of moving persons in the movie in Fig. 8(d). The person whose
motion is most obvious draws the attention of the human eye. However, the results of the
computational model are scattered to the others. The large number of moving objects in the
video makes it difficult for the model to generate accurate predictions.

By analysing the above failure cases, we found that these scenarios are not common in
the dataset. We can add more similar cases in the training set to improve the accuracy of
the model in these scenarios. In addition to this, for cases (a) and (b), there exist specialised
directions in object detection to be researched, i.e., video camouflage object detection and
human pose estimation. In order to improve the accuracy of case (a) and case (b), we can
introduce the solution of these two directions in our model in the future. For cases (c) and
(d), the complex and changing scene and multiple moving objects make it difficult for the
model to accurately localise the saliency region. This is because TMAI-Net can only infer
saliency results from a video clip and cannot understand the contextual information in the
video as humans do, and it is difficult for the model to capture the interactions between
moving objects. How to make the model understand the contextual information conveyed by
the video more accurately is a worthwhile research problem in our future work.

5 Conclusion

In this paper, a novel Transformer-based Multi-level Attention Integration Network (TMAI-
Net) for video saliency prediction is proposed.We propose aMulti-level Interactive Attention
(MLIA)module that can capture long-range dependencies among the temporal channel’s time
steps. In theMLIAmodule, the long-range spatio-temporal dependency update is achieved by
computing dependencies at different time steps using the self-attention mechanism. Based on
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Transformer’s inherent global feature interaction capabilities, we addMLIA and Transformer
to the shallowest and deepest of themodel’s four branches extracted from the encoder, directly
establishing the global context at different levels. Furthermore, for the model’s two-stream
input, we add the Transformer module to mine their structural similarity between related
objects and make the model focus more on saliency regions in the video. Comprehensive
experiments have demonstrated that TMAI-Net is competitive with current state-of-the-art
approaches. The ablation experiment’s findings offer convincing proof of the efficiency of
each TMAI-Net component.
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