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Abstract
Due to the complexity of the underwater environment, underwater acoustic target recogni-
tion is more challenging than ordinary target recognition, and has become a hot topic in
the field of underwater acoustics research. In recent years, deep learning has been widely
used in underwater recognition due to its powerful feature learning capabilities. However,
most deep learning-based underwater target recognitionmethods use only the time-frequency
domain features of signals, ignoring the frequency domain image features of signals. Addi-
tionally, they only use simple summation or splicing strategies to fuse and discriminate
the extracted features, which leads to limited improvement in the accuracy of underwater
target recognition. To address these issues, this paper proposes an underwater target recog-
nition method based on an adaptive multi-feature fusion network. The method consists of a
data pre-processing module, a multi-dimensional feature extraction module, and an adaptive
multi-feature fusion module. In the multi-dimensional feature extraction module, the long
short time memory network (LSTM) and the one-dimensional convolutional neural network
(1DCNN) are used to extract the time-frequency features of the underwater signal. Further-
more, the two-dimensional convolutional neural network (2DCNN) is used to extract the
image features in the frequency domain. The adaptive multi-feature fusion module uses an
attentionmechanism for adaptiveweighted fusion tomake full use of the learned features. The
effectiveness of the proposed method is validated on the ShipEar dataset, and the recognition
accuracy reaches 94.92%, which is higher than other existing methods.

Keywords Underwater target recognition · Deep learning · Adaptive weighting · Feature
fusion

1 Introduction

Underwater target recognition is one of the most important research directions in underwater
acoustics signal processing and a hot topic in the field of underwater acoustics [1]. It has
significant importance in both the national economy and defense and military fields. Under-
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water acoustic signals are widely used in underwater detection, communication, rescue, and
ocean development, among other fields [2]. In carrying out underwater warning defense and
military attack activities, sonar needs to distinguish between true and false targets based
on the received noise signals. Moreover, when detecting multiple targets simultaneously, it
needs to recognize the types of each target and decide what actions to take against them, such
as attack or avoidance, based on the results of the above two judgments [3].

Underwater target recognition technology canbemainly divided into twocategories: active
recognition and passive recognition [4]. Active sonar recognition uses active sonar to transmit
sound signals and makes judgments about the target’s properties based on the received echo
signal characteristics. The advantage of this method is that the received echo signal carries
a lot of information that is beneficial for classification and recognition, and reflects the
essential features of the target. However, it has the disadvantage of being easily exposed and
not conducive to self-protection. Passive sonar recognition technology uses passive sonar to
receive target radiation noise for classification and recognition. It has the characteristics of
high security and strong concealment, and is suitable for the classification and recognition of
remote targets. It can provide strong support for detecting and effectively attacking enemies.
This article mainly studies passive sonar target recognition, that is, recognizing targets by
studying the signals radiated by ships.

The core of underwater target recognition lies in the processing of acoustic signals, which
are inherently complex due to the source and propagation environment of the sound. The
signals received by passive sonar are highly varied because of the various noise sources,
considerable differences in the radiation noise, and the complexity, diversity, and strong
time-varying characteristics of the ocean environment [5]. Therefore, how to extract target
features with discriminative power is the key issue for passive underwater target recognition,
and it is also the primary issue for achieving automatic target recognition [6].

Common methods for underwater target recognition can be roughly classified into three
categories based on the type of classifier: traditional methods based on signal analysis, tra-
ditional machine learning methods, and deep learning methods. Traditional methods based
on signal analysis usually rely on sonar operators to discriminate the types of targets. This
method is constrained by manual experience and is relatively unstable, leading to low recog-
nition accuracy. Traditional machine learning methods usually involve manually extracting
features and then processing the extracted features before inputting them into a machine
learning model. The model then automatically learns the correlation between features and
target categories and makes decisions accordingly. This method can overcome the limita-
tions of manual experience and achieve higher recognition accuracy than traditional methods
based on signal analysis, while also achieving a certain degree of automation. However, the
accuracy of this method mainly depends on complex feature engineering, making it increas-
ingly difficult to meet the requirements of high-precision and high-intelligence underwater
target recognition.

Deep learning is a special type of machine learning method that enables computers to
automatically learn pattern features and incorporate them into the model building process,
thereby reducing the incompleteness caused by human-designed features. Specifically, it
involves constructingmachine learningmodelswithmultiple hidden layers and large amounts
of training data to automatically learn more useful features, ultimately improving classifica-
tion or prediction accuracy. An increasing number of scholars are introducing deep learning
into the field of underwater target recognition. Deep learning-based methods for underwater
target recognition can satisfy the requirements of high accuracy and high intelligence, and
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are becoming mainstream in the field of underwater acoustic recognition. Han X C et al.
[7] proposed a method for underwater target recognition based on a one-dimensional con-
volutional neural network (1DCNN) and long short-term memory networks (LSTM). This
method fully utilized the temporal characteristics of ship noise signals and used Mel-scale
Frequency Cepstral Coefficients (MFCC) features as input to further extract deep temporal
features for underwater target recognition. The recognition results showed that considering
the temporal nature of underwater signals could effectively improve recognition accuracy.
Zhang Q et al. [8] proposed a 2DCNN-based method for underwater target signal recog-
nition. This method fully utilized the frequency domain information of ship noise signals.
First, it extracted the Short-Time Fourier Transform (STFT) amplitude spectrum, STFT phase
spectrum, and bicepstrum of the underwater signal. Second, it designed an ensemble neural
network consisting of three 2DCNNs, each trained using a different spectrum. Finally, the
Shuffled Frog Jumping Algorithm (SFLA) was used to combine the recognition results of the
three networks. Experimental results demonstrated that considering the frequency domain
information of underwater signals could effectively improve recognition accuracy. Although
the above methods have achieved excellent results, most of them are based on extracting
time-frequency domain features from sequence data and have not explored the image features
of frequency domain maps. The time-frequency domain features of sequential underwater
signals and the image features of two-dimensional frequency spectra can describe the char-
acteristics of underwater targets from the perspectives of both signal and image, which can
improve the accuracy of underwater target recognition. In addition, these methods usually
use simple addition or concatenation strategies for feature fusion and discrimination, and do
not fully utilize the learned deep features.

To address the aforementioned issues, we propose a method based on an adaptive
multi-feature fusion network for underwater target recognition. The method consists of a
data preprocessing module, a multi-dimensional feature extraction module, and an adap-
tive multi-feature fusion module. The data preprocessing module extracts the MFCC
and two-dimensional time-frequency spectrogram of the underwater acoustic signal. The
multi-dimensional feature extraction module utilizes LSTM and 1DCNN to extract the time-
frequency features of the underwater acoustic signal from both the time and frequency
domains. Additionally, 2DCNN are used to extract the image features of the frequency
domain of the underwater acoustic signal, resulting in a more comprehensive feature set. The
adaptive multi-feature fusion module employs channel attention mechanisms to adaptively
weight and fuse the extracted multi-dimensional features, thereby improving the discrim-
inability of the features and fully utilizing the learned features to achieve high-precision
target recognition.

The contributions of this paper are as follows.

(1) Introducing a multi-dimensional feature extraction method that simultaneously exploits
the complementary information of time-frequency features in the signal domain and
image features in the two-dimensional frequency spectrum.

(2) Proposing an adaptive multi-feature fusion module that leverages a channel attention
mechanism to intelligently weight and fuse diverse feature information, thereby maxi-
mizing the potential of learned features and significantly enhancing recognition accuracy.

(3) Conducting experiments on the standard ShipEar dataset, and our proposed method
based on an adaptive multi-feature fusion network achieved a 2.78% improvement in
recognition accuracy compared to the suboptimal results on the same dataset.
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2 Related work

Currently, commonly used methods for underwater target recognition can be roughly cate-
gorized into three types based on the classifier: traditional methods based on signal analysis,
traditional machine learning-based methods, and deep learning-based methods.

Traditional methods based on signal analysis for underwater target recognition heavily
rely on the subjective judgment of sonar operators, who make the final classification decision
based on LOFAR and DEMON spectrograms and auditory analysis [9]. However, due to
the constraint of human expertise, these methods exhibit poor stability and limited accuracy
in recognition [10]. With the advance of machine learning techniques, methods based on
traditional machine learning have gained popularity among researchers, as they demonstrate
higher recognition accuracy than traditional signal analysis methods.

The methods based on traditional machine learning typically involve several compo-
nents, including data acquisition, data preprocessing, feature extraction, feature selection,
and classification decision. This approach can overcome the limitations of relying on manual
experience and achieve a certain degree of automation. It has been found to have significantly
higher recognition accuracy than traditional methods based on signal analysis. Farrokhrooz
et al. [11] roposed a probabilistic neural network (PNN)-based method for ocean vessel
classification. In this approach, the acoustic radiated noise of a vessel is modeled using
an autoregressive (AR) model of appropriate order, and the model coefficients are used as
classification features. Experimental evaluations demonstrated that using the ARmodel coef-
ficients as discriminant features input to PNN can achieve high recognition rates. Meng Q et
al. [3] constructed a nine-dimensional feature vector comprising statistical features such as
zero-crossing wavelength, peek amplitude, zero-crossing wavelength difference, and beam
area. These feature vectors were input to a support vector machine (SVM) to identify under-
water acoustic targets, achieving an accuracy of 89.5% on the test set. H. Yang et al. [12]
roposed a weighted sample and feature selection AdaBoost method (WSFSelect-SVME) for
underwater acoustic target recognition. The AdaBoost method constructed an ensemble clas-
sifier that iteratively focused each new SVM classifier on the most difficult samples. By using
a weighted immune clone sample selection algorithm and mutual information sequence for-
ward feature selection algorithm, the number of training set samples and features was reduced
while maintaining the performance of each new individual SVM classifier. The experimental
results showed that the algorithm improved accuracy while reducing the spatial complex-
ity of the ensemble. However, the recognition accuracy of these research methods mainly
depended on complex feature engineering, and the classifiers adopted were mostly shal-
low classifiers such as SVMs and shallow neural classifiers, which had weaker fitting and
generalization capabilities when dealing with complex and large samples. Therefore, it was
becoming increasingly difficult tomeet the requirements for high-precision underwater target
intelligent identification.

In recent years, with the further development of computer hardware technology and signal
processing technology, artificial intelligence technologies represented by deep learning have
made great achievements in problems such as target recognition [13]. Deep learning, also
known as deep machine learning, is a type of machine learning algorithm that effectively
trains deep neural networks (DNNs) and can be used for high-level abstract modeling of
data. Based on various models and algorithms, deep networks can learn suitable and effective
features from large amounts of complex data. These features often achieve excellent results in
solving practical problems, making deep learning widely favored by academia and industry.
Therefore, more and more scholars are beginning to introduce deep learning into the field of
underwater acoustic target recognition and have made breakthrough progress. Zhang et al.
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[14] roposed an underwater target recognitionmethod based on LSTM,which utilized LSTM
to extract deep features from theMFCCof underwater targets and recognized. The recognition
results showed that the method effectively differentiated different underwater targets. Abdoli
et al. [15] roposed an end-to-end method for environmental sound classification based on
1DCNN,which directly recognized the original audio signal as the input target. Experimental
results showed that the average accuracy of the method reached 89%. Mishachandar et al.
[16] proposed an underwater target recognitionmethod based on 2DCNN,which obtained the
spectrogram of underwater target signals through short-time Fourier transform and then used
it as the input for 2DCNN recognition. The results showed that combining the spectrogram
with 2DCNN effectively reduced the influence of original signal noise, thereby improving
the recognition accuracy.

3 Methodology

3.1 Overall analysis workflow

The overall framework of the underwater target recognition method based on the adaptive
multi-feature fusion network proposed in this article is shown in Fig. 1. The method mainly
consists of three modules: data preprocessing, extraction of multi-dimensional deep features,
and adaptive multi-feature fusion. In the data preprocessing module, the original audio files
are segmented into equal-length small audio segments, and the MFCC features and two-
dimensional time-frequency spectrograms are extracted based on each small audio segment.
In the multi-dimensional deep feature extraction module, 1DCNN and LSTM are used to
extract deep time-frequency features of underwater signals, while 2DCNN is used to extract
image features of underwater signal frequency domain. In the adaptive feature fusionmodule,
the attention mechanism is applied to adaptively weight and fuse the features extracted by
the three networks to fully utilize the features learned by each network.

3.2 Data pre-processing

3.2.1 Mel-scale frequency cepstral coefficients

Mel-scale Frequency Cepstral Coefficients (MFCC) is one of the most common speech
features, which are obtained by extracting cepstral coefficients in the Mel-scale frequency
domain. By combining the perceptual characteristics of the human ear with the mechanisms
of speech production, MFCC are able to capture important information for speech recogni-
tion [17]. Owing to their resilience in acoustically challenging environments, MFCC have
exhibited remarkable superiority in the domain of underwater target recognition. The process
of extracting MFCC features is shown in Fig. 2.

In the pre-emphasis step, the high-frequency part of the audio signal is enhanced by a
high-pass filter. To ensure the smoothness of the input signal, the speech signal needs to
be segmented into small frames, which are usually 20-30ms long, and typically 25ms long.
After the audio signal is framed, each frame needs to be windowed to increase the continuity
of the ends of the frames and reduce spectral leakage. The most commonly used window
function is the Hammingwindow. The transformed signal after windowing is usually difficult
to observe its characteristics in the time domain. Therefore, it is generally converted into
the energy distribution in the frequency domain by performing Discrete Fourier Transform
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Fig. 1 The overall workflow of this study

(DFT) to further observe the characteristics of the signal. Mel filters consist of a bank of
triangular band-pass filters that convert linear frequency into a nonlinear scale called Mel
frequency. By passing the energy spectrum through the Mel filters, the spectrum can be
smoothed and harmonic components can be removed. Additionally, data reduction can be
achieved, which subsequently reduces the computational burden in the following processes.
Since the human ear responds to sound on a logarithmic scale, the output of the Mel filters is
typically logarithmically compressed to approximate the human auditory system. After the
logarithmic operation, the signal values of different orders are correlated to a certain degree.
Discrete cosine transform (DCT) can remove this correlation and reduce the dimensionality
of the signal. Finally, the signal is mapped into a low-dimensional space to obtain MFCC
features that can be used for recognition and classification.

3.2.2 Two-dimensional time-frequency spectrum

Two-dimensional time-frequency spectrogram is a spectrogram generated by performing
a Fourier transform on the original audio signal, which contains abundant time-frequency
domain information. Converting underwater acoustic signals into two-dimensional time-
frequency spectrograms can effectively reduce the impact of noise, thus improving
classification and recognition performance. The process of generating a two-dimensional
time-frequency spectrogram is shown in Fig. 3.

1) Framing. Due to the non-stationarity and time-varying nature of ship signals, they are
typically segmented into smaller frames for analysis, a process known as framing. To

Fig. 2 The extraction process of MFCC features

123



Multimedia Tools and Applications

Fig. 3 The process of generating two-dimensional time-frequency spectrograms

ensure smooth transitions between signal frames, there is usually an overlap between
adjacent frames.

2) Adding windows. Fourier transform of signals can suffer from spectral leakage due to
non-periodic truncation. Adding windows can better meet the periodicity requirement
for fourier transform processing and reduce spectral leakage. The most commonly used
window function is the Hamming window, whose formula is:

w (n) =
{
0.54 − 0.46 cos 2πn

M−1 , 1 � n � M
0, otherwise

(1)

Where M is the window length.
3) Fast Fourier Transform (FFT). Performing Fast Fourier Transformon thewindowed signal

frames can transform the signal from time domain to frequency domain. This allows for
more efficient analysis and processing of the signal in the frequency domain.

4) Logarithmic calculation. Taking the logarithm of the spectral energy computed from the
Fourier transform results in a more compact representation of the energy.

5) Color mapping. Color mapping is applied to discretized energy spectrum values in order
to map them to corresponding RGB color values.
Stacking the discretized color values in chronological order produces the final two-
dimensional time-frequency spectrogram, which can be used for applications such as
target recognition.

3.3 Multidimensional feature extraction

The multi-dimensional feature extraction module includes deep temporal feature extraction,
deep spatial feature extraction, and deep frequency domain image feature extraction. Audio
MFCC feature data has both temporal and spatial continuity. Therefore, this paper uses LSTM
network and 1DCNN network to further extract deep temporal information and deep spatial
information from MFCC feature data, respectively. Based on the two-dimensional time-
frequency spectrogram generated from the audio, which contains rich frequency domain
information, this paper uses 2DCNN to further extract deep frequency domain image infor-
mation.

3.3.1 Deep time-series feature extraction

Long Short-TermMemoryNetwork (LSTM) [18] is an improved network based onRecurrent
Neural Network (RNN) [19]. The main purpose of LSTM is to solve the problems of gradient
vanishing and exploding in the training process of long sequences. Compared with ordinary
RNN, LSTM can perform better in longer sequences [20]. Therefore, LSTM has gradually
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become the mainstream model in the field of speech recognition. LSTM mainly designs
a special structural unit on the original RNN structure, which mainly includes forgetting,
selecting memory, and outputting three stages. Through these three stages, the information
of each time node can be selectively added or removed.As theMFCC features of audio exhibit
temporal continuity, we have utilized LSTM network to extract deep temporal features for
identification based on the MFCC features of underwater acoustic signals in this paper. The
constructed LSTM network structure is shown in Fig. 4.

The constructed LSTM consists of 4 layers, including an input layer, an LSTM layer, a
dropout layer, and a fully connected layer. The input layer is a one-dimensional sequence
vector of length 40. The number of hidden units in the LSTM layer is set to 128. To prevent
overfitting of the LSTM on the training set, a dropout layer [21] is introduced to reduce the
computational complexity during training, with a dropout rate of 0.2. The output from the
dropout layer is a feature vector comprising 128 nodes. The output fully connected layer
contains 5 nodes, representing the probabilities of the predicted samples being different
underwater sound targets. Finally, the output of the dropout layer is extracted as the deep
temporal feature set of the underwater sound signal.

3.3.2 Deep space feature extraction

Convolutional Neural Network (CNN) is a type of feedforward neural network that includes
convolutional calculations and typically consists of three parts: a convolutional layer, a pool-
ing layer, and a fully connected layer. The convolutional layer is used to extract features,
the pooling layer is used to compress feature information, and the fully connected layer is
used to output the final prediction results [22, 23]. Based on the dimension of kernel sliding,
CNN can be divided into one-dimensional convolutional neural networks (1DCNN) and two-
dimensional convolutional neural networks (2DCNN). Among them, themovement direction
of the convolution kernel and pooling kernel of 1DCNN is one-dimensional, which is suitable
for processing sequence data [24]. Due to the fact that the MFCC feature data exhibits both
spatial continuity and temporal continuity, we have employed 1DCNN to process the MFCC
features of underwater acoustic signals in this paper. By utilizing the spatial properties of
1DCNN, we are able to further extract the depth spatial features of underwater acoustic sig-
nals for identification. The 1DCNN network structure that we have designed for this purpose
is shown in Fig. 5.

Input layer

…

…

LSTM layer … ……

Dropout layer

Fully connected layer

…

Fig. 4 The structure of the LSTM model
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Fig. 5 The structure of the 1DCNN model

The designed 1D-CNN network consists of 9 layers, including one input layer, two con-
volutional layers, two pooling layers, two dropout layers, and two fully connected layers.
The input layer accepts MFCC features of size 40×1, thus the input size is set to 40×1. The
two convolutional layers are used to extract spatial features of the underwater sound signal,
while one max pooling layer and one global max pooling layer are used for feature com-
pression. The two dropout layers are added to prevent overfitting of the model. The output
of the two fully connected layers predicts the probability of the input sample belonging to
different underwater targets. Finally, the output of Fully-connected layer1 is extracted as the
deep spatial feature set of the underwater sound signal. The detailed network parameters are
shown in Table 1.

3.3.3 Deep frequency domain image feature extraction

2DCNN consists of three parts: convolutional layers, pooling layers, and fully connected lay-
ers. It is primarily used for image-related tasks. The original image is dynamically extracted
with rich image features through convolutional layers. The features are compressed through
pooling layers to extract the main features, and the final prediction results are obtained
through fully connected layers [25]. This paper employs 2DCNN to extract deep frequency
domain image features from the two-dimensional spectrogram obtained from the original
audio signal. The 2DCNN structure is shown in Fig. 6.

The designed 2DCNN network consists of 10 layers, including one input layer, three
convolutional layers, three pooling layers, two dropout layers, and one fully connected layer.

Table 1 Parameters of 1DCNN Network Layers

Layer Activation function Kernel size Padding Output Shape

Input - - - (None, 40, 1)

Conv1 Relu 3×3 Valid (None, 38, 64)

Max pool1 - 2×2 - (None, 19, 64)

Droupt1 - - - (None, 19, 64)

Conv2 Relu 3×3 Valid (None, 17, 128)

Max pool1 - 2×2 - (None, 128)

Droupt2 - - - (None, 128)

Fully-connected layer1 Relu - - (None, 64)

Fully-connected layer2 Softmax - - (None, 5)

123



Multimedia Tools and Applications

Fig. 6 The structure of the 2DCNN model

The input layer receives a time-frequency spectrogram with a size of 224 × 224 and three
RGB channels. Therefore, the input size is set to 224 × 224 × 3. The three convolutional
layers extract image features, and two max pooling layers and one global max pooling layer
compress the feature information. Two dropout layers are used to prevent overfitting, and a
fully connected layer is connected to output the probability of the predicted sample belonging
to different underwater targets. Finally, the output of the max pool3 layer is extracted as
the deep frequency-domain feature set of underwater sound signals. The detailed network
parameters are shown in Table 2.

3.4 Adaptive multi-feature fusion

The adaptive multi-feature fusion module uses an attention mechanism to adaptively fuse
the three features extracted by the multi-dimensional feature extraction module, providing
more discriminative features for subsequent target recognition. The module adopts a channel
attention mechanism, which adaptively weights the dependencies of each channel to improve
the network’s representation ability by assigning more weight to effective features, thereby
solving the problem of inaccurate weight allocation for the extracted feature maps. With the
channel attentionmechanism, the network can selectively enhance useful feature information
and suppress irrelevant features by learning from global information. The network structure
of the adaptive multi-feature fusion module is shown in Fig. 7.

Table 2 Parameters of 2DCNN Network Layers

Layer Activation function Kernel size Strides Padding Output Shape

Input - - - - (None, 224, 224, 3)

Conv1 Relu 5×5 1 Same (None, 224, 224, 8)

Max pool1 - 2×2 2 - (None, 112, 112, 8)

Droupt1 - - - - (None, 112, 112, 8)

Conv2 Relu 5×5 1 Same (None, 112, 112, 16)

Max pool2 - 2×2 2 - (None, 56, 56, 16)

Droupt2 - - - - (None, 56, 56, 16)

Conv3 Relu 5×5 1 Same (None, 56, 56, 32)

Max pool3 - - - - (None, 32)

Fully-connected layer Softmax - - - (None, 5)
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Fig. 7 The structure of adaptive multi-feature fusion module

The adaptive multi-feature fusion module consists of a total of four layers, including one
input layer, one adaptive multi-feature fusion layer, and two fully connected layers. The input
layer receives the mixed features after concatenating the three network features. Since the
dimension of themixed feature is 224×1, the input layer size is set to 224×1. To facilitate the
adaptive multi-feature fusion layer’s calculation of attention weights, the input is reshaped
to 1× 1× 224, which corresponds toW × H ×C , where C is the number of input channels,
and W × H is the feature dimension of each channel. The implementation of the adaptive
multi-feature fusion layer mainly consists of three modules, namely, Squeeze, Excitation,
and Scale [26]. Squeeze utilizes global average pooling (GAP) operation to compress the
global spatial information of each channel, i.e., compress the two-dimensional feature of
each channel (W × H ) to 1 × 1 × C . The formula for global average pooling operation is:

zc = Fsq (uc) = 1

W × H

W∑
i=1

H∑
j=1

uc (i, j) (2)

where zc represents the weight parameter after the compression operation, Fsq (·) denotes
the feature compression operation, uc represents the cth two-dimensional matrix inU , which
is the set of multiple local feature maps; H is the height of the feature matrix,W is the width
of the feature matrix. Excitation generates a range of (0,1) weights for each feature channel
by means of the parameter w, which is learned to explicitly model the correlation between
feature channels. Specifically, two fully connected layers (FC-ReLU-FC-Sigmoid) are used
to calculate the weight values, and the weight calculation formula is:

s = Fex (z, w) = σ (g (z, w)) = σ (w2δ (w1z)) (3)

where δ (w1z) represents the first fully connected operation, w1 is a C/r × C dimensional
matrix and r is a scaling parameter used to reduce the number of channels and computational
complexity, set to 4 in this paper. The dimension of z is 1 × 1 × C , thus the result of w1z is
1 × 1 × C/r , which is then passed through a ReLU layer with unchanged dimension. The
result of δ (w1z) is multiplied with w2 for the second fully connected operation, wherew2 is a
C×C/r dimensionalmatrix, resulting in a dimension of 1×1×C . Then, the sigmoid function
is applied to obtain the final weight s. Scale weights the normalized weights obtained earlier
by multiplying them with the features of each channel. In the Scale module, the normalized
weights obtained earlier are used to weight the features of each channel. Finally, the weighted
information from the adaptivemulti-feature fusion layer is fed into two fully connected layers
with 64 and 5 nodes respectively for underwater target recognition.
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4 Experimental results

4.1 Dataset

The dataset used in this paper is sourced from the publicly available ShipEar dataset [27],
which consists of oceanic recordings collected between 2012 and 2013 along the Spanish
coastline using the MarSensing Lda company’s (Portugal, Faroe Islands) autonomous acous-
tic digitalHyd SR-1 recorder. The dataset includes a total of 90 audio recordings, ranging
from 15 seconds to 10 minutes in duration, and covers 11 categories of vessels and envi-
ronmental noise. According to the dataset’s source paper, it can be further classified into
five categories: A, B, C, D, and E, where A, B, C, and D represent four major categories of
vessel types and E represents environmental noise. The original audio data consists of only
90 recordings, and the significant differences in the number of recordings between different
categories may lead to underfitting of the model. To address this issue, the original audio data
was segmented into 3-second clips, resulting in an expanded dataset. After segmentation, the
total number of audio clips reached 3824, as shown in Table 3.

Each audio is preprocessed as follows:MFCCfeatures are extracted and a two-dimensional
spectrogram is generated.

1). Extracting MFCC features: The dimension of the extracted MFCC features is (40, 309).
The feature column vectors are compressed by taking their mean, resulting in an MFCC
feature dimension of (40, 1).

2). Generating two-dimensional spectrogram: A two-dimensional spectrogram is obtained
by performing fourier transform on the original audio. The size of the two-dimensional
spectrogram is 569×435 with RGB three channels. For the network, a large input image
sizewill increase the computational cost,while a small cropping sizewill cause significant
information loss. Therefore, in this paper, the generated two-dimensional spectrogram is
resized to 224 × 224 × 3.

The 3824 samples in this paper are divided into a training set, validation set, and test set in
a ratio of 6:2:2. There are 2292 samples in the training set, 765 samples in the validation set,
and 767 samples in the test set. After 35 epochs, the loss and accuracy curves were obtained,
as shown in Figs. 8 and 9. The blue curve represents the variations in the training set, while
the orange dotted line depicts the changes in the test set.

4.2 Ablation experiments

In this paper, the code is written using the Keras platform and experiments are conducted
on a server with an Intel(R) Xeon(R) Silver 4216 CPU@2.10GHz and an NVIDIA GeForce

Table 3 Classification results of the dataset

Target CategoryShip Category Original numberNumber after cutting

A fishing boats, trawlers, mussel boats, tugboats and dredgers17 635

B motorboats, pilot boats and sailboats 19 532

C passenger ferries 30 1441

D ocean liners and ro-ro vessels 12 826

E background noise recordings. 12 390
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Fig. 8 Variation of loss

GTX 1080 Ti GPU. For the LSTMmodel, the learning rate is set to 0.001, the optimizer is set
to Adam, the loss function is set to Categorical_crossentropy, the evaluation metric is set to
Accuracy, the batch size is set to 64, and the number of training epochs is set to 200. For the
1DCNN, 2DCNNmodels, and the adaptive fusionmodel, the training parameters are the same
as the LSTM model. To prevent overfitting, the early stopping strategy [28] is introduced
during network training to monitor val_loss, with patience set to 20. To comprehensively
evaluate the recognition performance of the network, recall, precision, and f1-score metrics
are further used to evaluate the performance of the network on the test set.

To verify the effectiveness of the proposed adaptive multi-feature fusion network, ablation
experiments are conducted on both the multi-dimensional feature extraction module and the
adaptive multi-feature fusion module.

Fig. 9 Variation of accuracy
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4.2.1 Validation of multidimensional feature extraction module

Firstly, the proposed adaptive multi-feature fusion network was compared with single sub-
networks including 1DCNN, 2DCNN, and LSTM. Then, using the 2DCNN model as a
baseline, the features extracted by 1DCNN and LSTM were concatenated and used for
underwater target recognition. The experimental results are shown in Table 4. Finally, the
features extracted by different networks were input into the adaptive multi-feature fusion
module for underwater target recognition. The experimental results are shown in Fig. 10.

From Table 4, it can be seen that the single LSTM outperforms the 1DCNN and 2DCNN
networks in terms of classification accuracy, recall, precision, and f1-score on the underwa-
ter sound dataset, with values of 0.9022, 0.9017, 0.8926, and 0.8967, respectively. As the
underwater sound data is a time-series signal, the LSTM network pays more attention to
temporal features, and thus performs better among the three single sub-networks. When the
features extracted by different networks were grouped and fused, the recognition accuracy
was higher than that of any single network. Among them, the recognition accuracy of fusing
the features extracted by all three networks simultaneously was the highest, with values of
0.9348, 0.9296, 0.9336, and 0.9315 for accuracy, recall, precision, and f1-score, respectively.
Compared to the performance of the single LSTM, it improved by 3.26%, 2.79%, 4.1%, and
3.48%, respectively. Compared to the second-best fusion feature set (2DCNN+LSTM), it
improved by 1.31%, 0.82%, 2.03%, and 1.47%, respectively. It can be inferred that consid-
ering only the time-frequency domain features or the frequency domain image features of
underwater sound signals in a single sub-network can lead to incomplete feature informa-
tion, thus leaving room for improvement in recognition accuracy. The proposed model in this
paper not only considers the time-frequency domain feature information of underwater sound
signals but also explores the image feature information of frequency domain images, thus
performing better than a single network and significantly improving recognition accuracy.

4.2.2 Validation of the effectiveness of the adaptive multi-feature fusion module

Common decision weighting strategies include direct averaging, simple weighted averaging,
and inverse variance weighting. These methods assign different weights to each sub-model
through different calculation methods, and thenmultiply eachmodel’s prediction result by its
corresponding weight and sum them up to obtain the final prediction result. Direct averaging
sets the reciprocal of the current number of sub-models as the weight for each sub-model,
and each model has the same weight. Simple weighted averaging ranks the models based on
their prediction errors (i = 1, 2, . . . , n), with models with larger errors ranked first, and each
model’s weight is calculated as i/ (1 + 2 + . . . n). The larger the model’s prediction error,

Table 4 Experimental results of model structure ablation

Network Type Accuracy Recall Precision F1-score

2DCNN 0.8396 0.8449 0.8344 0.8374

1DCNN 0.8604 0.8378 0.8675 0.8473

LSTM 0.9022 0.9017 0.8926 0.8967

2DCNN+1DCNN 0.9087 0.9097 0.9067 0.9076

2DCNN+LSTM 0.9217 0.9214 0.9133 0.9168

2DCNN+1DCNN+LSTM 0.9348 0.9296 0.9336 0.9315
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Fig. 10 Results of weighted strategy ablation experiments

the smaller the weight it will be assigned. Inverse variance weighting calculates a prediction
error square for each sub-model, and the weighted weight for each model is the proportion
of its own error square inverse in the sum of all models’ error squares inverse. Models with
smaller error squares will be assigned higher weights.

This paper proposes an adaptive weighting strategy to fuse the features extracted by
the three sub-networks and discriminate the target categories for prediction. To verify the
effectiveness of the adaptive weighting strategy, we compared it with three other weight-
ing strategies, namely direct average weighting, simple average weighting, and reciprocal
of variance weighting. Firstly, 1DCNN, 2DCNN, and LSTM were used to identify under-
water acoustic signals. Then, the identification results of the three networks were separately
weighted and fused using the direct averageweighting, simple averageweighting, and inverse
of variance weighting methods. Finally, the features of the three networks’ intermediate lay-
ers were extracted and adaptively weighted for identification through a channel attention
mechanism. The experimental results are shown in Table 5.

As shown in Table 5, the accuracy, recall, precision, and f1-score of the adaptive weighted
fusion recognition using features extracted from the three sub-networks were 0.9492, 0.9448,
0.9443, and0.9442, respectively.Compared to the direct averageweightingmethod, theywere
improved by 0.62%, 0.71%, 0.36%, and 0.56%, respectively. Compared to the simple average
weighting method, they were improved by 1.83%, 1.99%, 1.86%, and 1.98%, respectively.

Table 5 Comparison experimental results of different integration strategies

Integration Strategy Accuracy Recall Precision F1-score

direct average weighting method 0.9430 0.9377 0.9407 0.9386

simple weighted average method 0.9309 0.9249 0.9257 0.9244

inverse of variance method 0.9295 0.9232 0.9221 0.9219

adaptive weighting method 0.9492 0.9448 0.9443 0.9442
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Compared to the inverse variance weighting method, they were improved by 1.97%, 2.16%,
2.22%, and 2.23%, respectively. This indicates that traditional weighting strategies that rely
on the decision-making of sub-networks’ recognition results cannot adaptively utilize the
learned information to improve recognition accuracy. Instead, by calculating the weights of
features extracted from different sub-networks using channel attention and integrating them,
important feature information can be better highlighted, thereby effectively improving the
accuracy of underwater target detection.

To further verify the effectiveness of the proposed adaptive weighting strategy, we con-
ducted the following ablation experiments. First, we extracted the features from the intermedi-
ate layers of the three networks and then combined and concatenated them(2DCNN+1DCNN,
2DCNN+LSTM, 2DCNN+1DCNN+LSTM) for underwater target recognition. Then, we
added attention to each concatenated feature set (2DCNN+1DCNN+Attention, 2DCNN+
LSTM+Attention, 2DCNN+1DCNN+LSTM+Attention) for adaptive weighting and under-
water target recognition. The experimental results are shown in Fig. 10.

Figure 10 shows the results of the weighted strategy ablation experiment. It can be seen
from the figure that the recognition accuracy of underwater targets is generally improved by
weighting and fusing the features extracted from different networks using channel attention.
Among them, the multi-feature fusion model proposed in this paper achieved the highest
classification accuracy, recall, precision, and f1-score on the underwater dataset, which were
0.9492, 0.9448, 0.9443, and 0.9442, respectively. Compared with the performance before
adding attention, theywere improved by 1.44%, 1.52%, 1.07%, and 1.27%, respectively. This
indicates that simple fusion of features extracted from three different networks can indeed
take into account the complementary information of feature extraction from both the signal
domain and the image domain, thereby improving the recognition accuracy. However, this
simple feature fusion method did not consider that different features from different sources
have different effects on the final recognition. The multi-feature fusion model proposed in
this paper weights and fuses the features extracted by 2DCNN, 1DCNN, and LSTM using
channel attention, which can allocate more weight to important features and better leverage
their role. Therefore, it can significantly improve the recognition accuracy.

4.3 Comparison experiments

4.3.1 Comparison algorithm

1. Mishachandar et al. [16] proposed an underwater target recognition method based on
2DCNN. This method uses short-time Fourier transform to obtain the spectrogram of
underwater target signals, which is then used as the input for 2DCNN recognition.

2. ZhangQet al. [8] proposed an integrated neural network-based underwater target recogni-
tionmethod using 2DCNN. Thismethod fully utilized the frequency-domain information
of ship noise signals, firstly extracting the short-time Fourier transform (STFT) ampli-
tude spectrum, STFT phase spectrum, and bicepstrum of underwater acoustic signals.
Secondly, an ensemble neural network consisting of three 2D-CNNs was designed to
train with different spectra. Finally, the shuffled frog jumping algorithm (SFLA) was
employed to weight the recognition results of the three networks for decision-making.

3. Han X C et al. [7] proposed a water acoustic target recognition method based on 1DCNN
and LSTM, which fully utilizes the temporal characteristics of ship noise signals. The
method uses the MFCC feature of the audio as input and further extracts deep temporal
features for water acoustic target recognition.
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4.3.2 Comparison of the experimental results

To further demonstrate the superiority of our proposed method in underwater target recog-
nition tasks, comparative experiments were conducted with the methods proposed by
Mishachandar B, Zhang Q, Han X C, and others. To ensure the fairness and validity of the
comparative experiments, all the data processing steps involved in the comparisons adhered
to a uniform standard, wherein the original data was consistently segmented into multiple
3-second audio clips. The comparative experimental results are shown in Table 6.

From Table 6, it can be seen that the multi-feature fusion network proposed in this paper
has higher classification accuracy, recall, precision, and f1-score on the underwater dataset
than other existing methods. Compared with the methods proposed by Mishachandar B,
Zhang Q, and Han X C, our proposed method has improved the accuracy by 8.78%, 4.57%
2.78%, the recall by 8.46%, 4.55%, 2.53%, the precision by 8.53%, 4.22%, 2.12%, and the
f1-score by 8.74%, 4.46%, 2.52%, respectively. Mishachandar B and Zhang Q’s methods
only considered the frequency-domain 2D spectrum of underwater signals, and Han X C’s
method only considered the temporal characteristics of underwater signals. Our proposed
multi-feature fusion model combines the features extracted by 2DCNN, 1DCNN, and LSTM
through adaptiveweighting to jointly consider the temporal-frequency features of underwater
signals and the image features of the 2D spectrum. However, it should be acknowledged that
the parameter count of the proposed method in this study is indeed higher compared to other
existing approaches, potentially leading to increased model complexity, prolonged training
durations, and elevated computational resource consumption. Nevertheless, this increment
in parameter quantity has been intentionally strategized to facilitate more nuanced feature
extraction and more efficacious feature fusion. Although our model’s parameters exceeds
that of Mishachandar B and Han X C methods, it remains less than that required by Zhang Q
method. This highlights our model’s relative efficiency in utilizing computational resources
while achieving significant improvements in accuracy. Therefore, compared with existing
methods that can only consider the temporal-frequency features of underwater signals, our
proposed adaptive multi-feature fusion network can significantly improve recognition accu-
racy.

To provide a more intuitive comparison of the performance of each method on the test set,
the confusion matrices of the recognition results on the test set were visualized, as shown in
Fig. 11. In the figure, the horizontal and vertical coordinates of 0 5 represent the predicted
target categories A-E, respectively. It can be seen from the figure that Mishachandar B’s
method is prone to mistakenly identifying C-class targets as A-class targets, while Zhang Q
and Han XC’s methods are prone to mistakenly identifying B-class targets as C-class targets.
In contrast, our adaptive multi-feature fusion network can effectively alleviate these issues.

The specific recognition accuracies of the four methods for the five target categories were
further calculated using the confusion matrix, as shown in Fig. 12. Mishachandar B, Zhang

Table 6 Comparison of experimental results with other methods

Network Type Accuracy Recall Precision F1-score Parameters

Mishachandar B et al [16] 0.8614 0.8602 0.8590 0.8568 42610

Zhang Q et al [8] 0.9035 0.8993 0.9021 0.8996 174170

Han X C et al [7] 0.9214 0.9153 0.9231 0.9190 45733

Ours 0.9492 0.9448 0.9443 0.9442 132116
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Fig. 11 Comparison of confusion matrix with other methods

Fig. 12 Comparison of confusion matrix with other methods
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Q, and Han X C’s methods all achieved the highest recognition rate for the E-class target and
the lowest for the B-class target. In comparison, our proposed adaptive multi-feature fusion
network achieved recognition rates of 88.97%, 87.85%, 96.19%, 99.39%, and 100% for cate-
gories A, B, C, D, and E, respectively. Compared withMishachandar B’s method, our method
improved the recognition rates of categories A, B, C, D, and E by 1.57%, 15.89%, 9.66%,
10.84%, and 3.9%, respectively. Compared with Zhang Q’s method, our method improved
the recognition rates of categories A, B, C, and D by 3.67%, 9.35%, 3.46%, and 6.02%,
respectively. Compared with Han X C’s method, our method improved the recognition rates
of categories B, C, D, and E by 11.59%, 4.2%, 2.79%, and 1.68%, respectively. The com-
parison results demonstrate that considering only the time-frequency domain features or the
frequency-domain image features of signals alone can result in one-sided feature informa-
tion extraction, and using simple addition or concatenation strategies for feature fusion and
discrimination may lead to inadequate utilization of learned feature information, resulting in
room for improvement in the accuracy of underwater target recognition. Simultaneously con-
sidering both the time-frequency domain features and the frequency-domain image features
of signals can form a more comprehensive feature set. Further, using an attention mecha-
nism to adaptively weight the feature set can enhance the discriminability of features, fully
utilizing the learned features, and effectively improving the accuracy of underwater target
recognition.

5 Conclusion

To fully leverage the time-frequency information of ship signals and improve the accu-
racy of underwater acoustic target recognition, this paper proposes an adaptive multi-feature
fusion network-based method for underwater acoustic target recognition. This method takes
a dual approach from both the signal and image domains and explores the complementary
information between the time-frequency features in the signal domain and the image fea-
tures corresponding to the two-dimensional frequency spectrum in the image domain. In the
data preprocessing module, the original audio files are segmented into equal-length audio
segments, and MFCC features are extracted and two-dimensional time-frequency spectro-
grams are generated to obtain the fundamental time-frequency information of the underwater
acoustic signal. In the multi-dimensional feature extraction module, 1DCNN and LSTM net-
works extract the deep time-frequency features in the signal domain, and a 2DCNN network
extracts the deep image features corresponding to the two-dimensional frequency spectrum
in the image domain, establishing a more comprehensive feature set. In the adaptive multi-
feature fusion module, the deep time-frequency information extracted by the three networks
is adaptively weighted, assigning more weight to important features, and thus better utilizing
the time-frequency information, which significantly improves the recognition accuracy. The
performance of the proposed method is validated on the Shipear dataset, and its recognition
accuracy is higher than other existing methods, which not only fully demonstrates the supe-
riority of this method in solving underwater acoustic recognition tasks but also provides new
ideas for the development of underwater acoustic target recognition methods.
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