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Abstract
Instantaneous data processing has the potential to enhance scalability, lessen power usage, 
and permit and improve data presentation in Consumer Internet of Things (CIoT) devices. 
In simple terms, cloud-based solutions cannot handle many IoT applications. According 
to Industrialized IoT (IIoT) technologies, an automated resource allocation system can 
improve service delivery and minimize healthcare costs. To maximize resource usage and 
response time for end users, there needs to be an effective method to efficiently distribute 
workload between Fog Layer and Cloud Connection and enhance cloud network capital 
allocation. Data analytics of complex and vital healthcare data requires timely responses, 
making it complicated. This paper proposes a design based on the Lanner Swarm Opti-
mization (LSO) algorithm, which was developed to overcome inefficient heuristic strate-
gies where data is transported to the cloud layer based on traffic type. The LSO algorithm 
is used to improve resource allocation and workload distribution in cloud-assisted CIoT 
applications for smart healthcare systems, improving scalability, power consumption, and 
data processing. The objective function determines if diverse virtual machines (VMs) vary 
accomplishment time the most, considering this study’s updating and pruning restrictions. 
The experimentation analysis demonstrated that the proposed load balancing and work 
scheduling method outperforms evolutionary and heuristics algorithms. In experimenta-
tion, the research model attains a makespan of 10 s, response time of 5.5 s, resource utiliza-
tion with a rate of 0.9, execution time of 13 s, latency of 10 ms, throughput of 0.78 s, and 
delivery rate of 0.74%. At resource scheduling, the LSO model had the best payload rout-
ing, latency, packet delivery ratio, and network lifetime.
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1  Introduction

The IoT, one of the fastest-growing technologies, offers the community, organizations, and 
consumers many opportunities [1]. It builds smart infrastructure in electricity, mobility, 
safety and protection, remote medical management, agriculture, smart homes, and smart 
cities using connecting devices. Figure 1 shows the differences between the applications 
in terms of Industrial IoT and CIoT [2]. Worldwide IoT may reach 26.4 billion by 2026, 
according to projections. Cellular technology will be 20% of this. The consumer-business 
IoT device ratio may be 45:55 [3]. The National Digital Communication Policy (NDCP) 
2018 by the Department of Telecommunications calls for an ecosystem of 5 billion net-
worked devices in 2022. Thus, India has 3 billion connected devices in 2022, 60% of the 
global total of 5 billion [4].

CIoT applications improve personal healthcare by integrating wearable IoT-connected 
devices that send data to doctors, families, and neighbors [5]. The public IoT is growing 
rapidly because of the requirement for personal healthcare IoT systems. They are also being 
utilized increasingly frequently in a range of different sporting events. Clinicians make 
use of them to maintain a level of awareness regarding the needs and well-being of their 
patients. Many CIoT devices track sleep, pulse, glucose, and other factors [6]. Although 
e-healthcare intends to improve patients’ quality of life and reduce costs, health-monitoring 
device data has expanded dramatically, making virtualized central information processing 
increasingly difficult [7]. Cloud-based infrastructure affects real-time applications by mov-
ing local workloads to the cloud. Conventional techniques, which generally entail technol-
ogy integrating sensing devices and the cloud, are impractical for providing healthcare to a 
large number of patients due to the lack of consideration for various healthcare issues [8].

Task scheduling and load balancing should fairly distribute loads among VMs to drive 
them to use resources efficiently, minimizing makespan and improving system efficiency. 
Even though cloud technology is dynamic, these ways are better because they apply 
more effective systematic and load-balancing strategies [9]. Delays, security flaws, or 
other issues detected in the cloud are permitted to achieve these standards. The increased 

Fig. 1   Application differences between IIoT and CIoT
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security, privacy, mobility, and network capacity were made possible and made more 
accessible so that the service could fulfill the needs of latency-sensitive or real-time appli-
cations. To realize the concept of huge computing and vast storage availability, devices 
included in the fog computing architecture are linked to the cloud [10]. On the other hand, 
how fog and clouds are distributed is also important. For applications needing low latency 
and quick response, for instance, healthcare CIoT systems, the fog computing-based archi-
tecture shows improved services [11].

In general, healthcare applications generate a lot of data that can be stored and accessed 
in real-time. Fog computing is excellent for this application since it fits the needs of this 
architecture. Processing and reaction times vary by device because heterogeneous data is 
produced differently. Each layer in a heterogeneous public cloud CIoT platform has features 
crucial for data transportation and processing pipelining. Hence, the research addresses this 
topic. This design efficiently allocates resources and balances the load to handle diverse 
data streams. The proposed work uses discrete traffic analysis to improve load balancing, 
latency, power consumption, and communication costs in e-healthcare. Previous surveys 
examined cloud utilization in IoT-enabled healthcare [12, 13]. It also highlighted the limi-
tations of fog-based architectures and offered more reliable and secure IoT alternatives. 
The cloud-enabled IoT method solves this issue.

Since cloud-oriented processing has latency and power consumption constraints, fog-
assisted frameworks build gateways between devices and the cloud to improve CIoT 
framework energy efficiency, dependability, and performance. Some data processing only 
requires lightweight processors since the input device tasks vary by application. Thus, 
assigning all functions to the same units is unsuitable. The proposed work uses a fog layer 
to prevent loss-sensitive, delay-sensitive, and security-sensitive data. It also reduces smart-
phone-to-cloud data transfer. Fog alone makes additional data accessible to users, not the 
cloud. In some cases, the fog node processes and prepares data before sending it to the 
cloud, lowering latency. Thus, rule-based filtering reduces data with the fog layer. Only 
the cloud processes security-sensitive data, which is then immediately made accessible 
to the final user. This CIoT architecture ensures optimal resource usage with prioritized 
load balancing, enabling differentiation and selection of the suitable policy for various data 
sources.

The novelty of this research is the dynamic adaption of the LSO algorithm, which 
strikes a unique balance between exploitation and exploration to improve resource allo-
cation and workload distribution in cloud-assisted CIoT applications for smart healthcare 
systems for the purpose of optimizing resource allocation. The contributions of the work 
are as follows:

•	 The proposed load balancing method offers the model suffering latency, throughput, 
and network congestion metrics of the results generated for allocating the appropriate 
operating device of the diversified data traffic.

•	 An optimization problem that considers bandwidth and demand restrictions has been 
developed to address such problems. Additionally, the General idea has been modified 
to address the issue such that, at any given time, global particles indicate the advanced 
machining unit to be allocated to each data stream to get the best results.

•	 The originality of the proposed work is found in the LSO algorithm’s adaption, which 
iterates with a new change in inertia weight to balance exploitation and exploration.

•	 The performance comparison between proposed and existing methods is done based on 
metrics such as makespan, resource consumption, execution time, latency, throughput, 
and delivery ratio.
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The remaining sections of this research are organized as follows: Section 2 of the paper dis-
cusses the related works based on resource allotment and routing protocols for IoT in health-
care. Section  3 briefly discusses the implementation of the proposed technique. Section  4 
explains the experimental findings and discussion. Section 5 discusses the conclusion and the 
work that will be done in the future.

2 � Related work

In an IoT-enabled healthcare system, Li et  al. [14] build an architecture for SDN-based 
Edge computing. The edge servers of this architecture used a simple authentication tech-
nique to verify the IoT devices’ authenticity. These devices captured patient data after 
authentication and transferred it to edge devices for archiving, processing, and analysis. An 
SDN controller that managed the healthcare system’s routing protocols, network optimiza-
tion, and practical resource usage was connected to the edge servers. This framework was 
assessed through simulations that were performed on computers. The outcomes showed 
that the framework offered superior solutions for IoT-enabled medical systems. However, 
these underpowered devices and the patient data they were connected to were vulnerable to 
several security risks.

To reduce latency and network use, Asghar et  al. [15] suggested a health monitoring 
system. In addition, because when the health monitoring framework was developed on 
a broad scale, a Load Balancing Scheme (LBS) was implemented for balancing the load 
across fog nodes. This work performed in-depth simulations using the sufficient form tools 
to evaluate the viability of the model and correlated the findings with the cloud implemen-
tation’s Fog Node Placement Approach, denoted as FNPA, and Load Balancing, denoted 
as LAB scheme, in relation to network and latency use. In correlation to secure access, 
FNPA, and LAB scheme, the LBS model of health tracking system dramatically lowers 
latency and network use. However, the substantial deployment of proxy healthcare appli-
cations was constrained due to the significant delay produced by cloud-based framework 
when processing huge data.

Through considering the resources in instances format of VMs, Dubey et al. [16] sug-
gested a flexible cloud-fog integrated architecture for processing whole IoT applications 
and dramatically enhanced the latency, compute cost, packet forwarding, and usage of 
energy. The Cuckoo Search Optimizer (CSO) and Particle Swarm Optimization (PSO) 
approaches were utilized in this work. This work has created a safe framework to handle 
IoT service allocation in a cloud infrastructure while reducing the key factors. The effec-
tiveness of this work was thoroughly assessed using synthetic datasets and resource het-
erogeneity in a fog and cloud simulation scenario. According to the simulation findings, 
the hybrid metaheuristic algorithm performed better than alternative baseline policies and 
enhanced several key metrics. With this setup, users may access a subset of cloud services 
with minimal latency and power consumption at the edge node. However, they will be una-
ble to run highly computational IoT applications.

An efficient resource allocation and prediction method for Fog environments that was 
appropriate for healthcare applications was introduced by Talaat in [17]. Resource alloca-
tion was an interesting task since it calls for a variety of resources and fog nodes to do 
the calculations necessary for the IoT systems. Through real-time resource allocation and 
prediction algorithms, this model aimed to manage resources effectively in a fog environ-
ment. The Data Processing Module (DPM), Resource Allocation Module (RAM), and 
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Effective Prediction Module (EPM) make up the three primary components of EPRAM. A 
target field was predicted by the EPM utilizing more predictions and the PNN. An ensem-
ble classifier was developed using the given data to determine the likelihood of a heart 
attack. To determine the likelihood of a heart attack and choose the best course of action, 
PNN was then evaluated utilizing the patient’s sensory data from the IoT layers. The sys-
tem’s primary objective was to reduce latency while enhancing Quality of Services (QoS) 
parameter, including bandwidth effectiveness, allocation response time, and consumption 
of energy. In contrast to earlier RA methods, the model used a novel model-free reinforce-
ment Learning (RL) algorithm. Additionally, the PNN was utilized in the prediction pro-
cess. The use of deep RL, as well as PNN, has enabled it to perform in such an accept-
able manner. This model was efficient at tracking and immediately forecasting the patient’s 
condition. However, if the servers’ processing power varies, one of them can experience 
overload and crash.

A Structured Literature Survey (SLR) was presented by Ghanbari et  al. [18], and the 
algorithms that were employed and resource allocation techniques in the IoT were exam-
ined. To examine the resource allocation strategies, several classifications, such as outlay, 
situation, efficiency-aware, huge pile, power-aware, QoS-aware, SLA-based, and appro-
priation capital allocation mechanisms, were organized. In each category, the work list 
discussed several parameters. Additionally, the parameters utilized in various papers were 
assessed, the key accomplishments in each area were reviewed, and the new difficulties 
were described. The structure of different technological keys around energy allocation as 
in IoT and its platforms was presented in this paper, along with the critical areas for future 
method improvements and the unresolved problems with resource distribution in the IoT 
that need to be addressed to maximize the technology’s potential. This study demonstrates 
that there was no stand-alone method that could handle all the problems and difficulties 
associated with allocating resources for IoT.

Abdulhammed [19] developed an IoT-based healthcare system that consisted of two 
parts: establishing and resolving the issue of cloud computing load balancing by employing 
an intelligence algorithm called the sparrow search algorithm (SSA). Through using SSA, 
the optimal VM was selected from a group of VMs. The SSA was also used to schedule 
numerous and diverse tasks with primary consideration and allocate them to the best VMs 
based on their instruction millions (IM), only with the task with the greatest IM delegated 
to the best VM with the most significant fitness value. The results demonstrated that this 
method focused on minimizing network congestion and delay while producing or deliver-
ing in the medical system; likewise, the optimization model has evidenced its reliability, 
performance, and accomplishment when correlated to various models in the decrease of 
scheduling time, overall manufacturing time, and offers scheduling policy between many 
VMs, in which it value of resource utilization time, time consumption, and level of dis-
crepancy has decreased. The focus of this strategy was on the lag in wireless connections, 
which was a drawback.

To reduce scheduling latency, Kanbar and Faraj [20] proposed the RADISH (Region 
Aware DynamIc ScHeduling) model, which consisted of five successive processes. The 
first process used a task nature-based bi-class neural network to classify incoming tasks 
as sensitive or non-sensitive by considering the user’s login information, email address, 
password, the services they use, and QoS parameters. The second step used a multi-cri-
teria-based improved moth flame optimization (QoS aware AMFO) to schedule the cat-
egorized tasks while taking non-sensitive, sensitive, energy, priority, completion time, and 
workload into account. Due to this algorithm’s strong convergence, the scheduling lag was 
decreased. The work conducted load balancing in the third step by recommending SAC 
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with a prospective field clustering approach. The VM categorization was considered while 
calculating local potential, energy, and density. To balance the workload and increase the 
effectiveness of the procedure, three repositories were created. To minimize allocation 
delay and enhance QoS, the work introduced the VM state-aware Hopcroft-Karp algorithm 
in the task allocation proposal. The work accomplished good SLA but also QoS in an IoT 
fog number of co-systems in this way. The simulation was carried out using the CloudSim 
simulation tool, which assessed effectiveness in terms of latency, connectivity, deadline, 
throughput, energy demand, CPU and memory use, SLA violations, and overhead. Addi-
tionally, the platform’s delayed and operation latency may both increase because of this 
architecture.

Jangra and Mangla [21] suggested a congestion control model for resource allocation 
implementation in cloud-based healthcare settings. In this work, the RL approaches like 
SARSA, GA, and Q-learning were utilized. These approaches were applied in cloud-based 
medical facilities to predict the optimal technique for controlling load. This model reduced 
latency, had a fast production cycle, and was energy-saving. Utilizing MATLAB, the rec-
ommended procedure was implemented. Utilizing performance metrics like delay, make-
span, and bandwidth, the performance of the model was evaluated. The model has a shorter 
make time than the current approach but a more significant throughput.

Abdelmoneem et  al. [22] expanded the subject by proposing effective IoT architec-
ture, resource allocation, and scheduling approaches for healthcare. To assist the patient’s 
mobility, this model employed a delivery mechanism based on the adaptive Reference Sig-
nal Strengths (RSS). In this model, a mobility-aware heuristic-based scheduling and alloca-
tion approach (MobMBAR) enabled the dynamic spread of healthcare operations across 
computing nodes, whether cloud or fog devices. Patient activities and the temporal and 
territorial leftover of their visual information dynamically balance the distribution of task 
performance. Using task features such as threshold and optimum response time during the 
sorting and redeployment stages, the model aimed to minimize the total schedule time. The 
findings indicated that the frequency of tasks missed was less, that the system consumes 
92% less energy, and that it has a Makespan that was 88% shorter than that of reducing 
systems.

In the study [23], a strategy for dynamic resource allocation based on optimization tech-
niques and the evolutionary algorithm was proposed. This model employed a dynamic 
resources allocation strategy to manage requests incoming and distribute those fairly across 
the servers available while monitoring and controlling network traffic and collecting statis-
tics on each server’s load. As a result, performance was enhanced even during peak hours. 
Consequently, this model was efficient in genuine fog computing systems, like those uti-
lized in the healthcare industry. The model focused on the design of an IoT-based health-
care framework. The IoT-Fog model consisted of an IoT, a fog, and an upper layer. The 
testing has finally been concluded, and the results reveal that the model improved the qual-
ity of service in the cloud/fog computing system by decreasing allocation costs and reduc-
ing response time. Consequently, this model was an effective way of measuring resource 
use and guaranteeing service continuity. This concept has consequences for privacy and 
security.

Meng et al. [24] reviewed the current state of the art of possible responses to the secu-
rity and privacy issues raised by the IoT platforms. This work provided a detailed analysis 
of the number of new attacks on the speech interface of home automation platforms. These 
attacks were aimed at gaining illegal access and acting in ways that were too powerful to 
protect the privacy of the user. To counter these threats, a new voice liveness detection 
system was presented, which first analyzed the radio signals emitted by IoT devices and 
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then used the voice samples it received to verify the identity of the user. This work was 
executed on a real-world experimentation with Samsung’s SmartThings platform to evalu-
ate the effectiveness of the system and demonstrate its efficacy.

Baho et  al. [25] helped to identify cybersecurity risks and control IoT vulnerabili-
ties by providing insight into current methods for assessing the vulnerabilities. Readers 
from a wide variety of backgrounds were drawn to it, from experts in vulnerability man-
agement and cybersecurity risk research to academics specializing in the IoT. This study 
increased IoT security awareness and supported research into IoT risk assessment meth-
odology by providing the most up-to-date perspective on current IoT vulnerability assess-
ment approaches. Future scholars with an interest in IoT security challenges and solutions 
will benefit from the information offered by this work. Those attempting to develop new 
techniques to identify IoT vulnerabilities may find this work helpful because it clarifies the 
research direction in existing vulnerability assessment procedures.

Harkin et al. [26] discussed the results of interviews with 32 influential Australians in 
the disciplines of data security, regulation and policy, consumer and data privacy laws, 
and the IoT industry and academics. It described a wide range of problems and challenges, 
including those related to the effects on populations at risk, ecology, and the norms of 
IoT production, which extend beyond the well-known issue of privacy and the scientific 
requirements of data safety. However, the respondents did not identify any clear regulatory 
priorities or strategies, despite the consensus among key stakeholders that Australia needs 
stricter regulation. Future regulatory tactics and the consequences of these findings for the 
legalization of consumer IoT were discussed.

Verhoef et al. [27] provided a quick summary of the current state of knowledge on the 
connections between people, objects, and the natural environment, described the POP 
framework, and described how these linkages lead to an explosion in the volume of related 
data. This study also mapped out areas for further investigation into the ways in which the 
IoT and smart products may alter consumer habits and business practices.

Olga & Sarmah [28] conducted a study on the cyber security standards and ratings of 
CIoT requirements to determine their adequacy. Comparisons were made between Cyber 
Security for CIoT (CSCIoT) and other relevant projects, such as the Secure by Design study 
by the UK Department for Digital, Cultural Background, Journalism, and Sport and the 
worldwide professional IoT standard IEC 62443. Implications for consumer accountability 
in security were also discussed. The purpose of this analysis was to increase the specificity 
and breadth of criteria for consumer IoT devices to reduce the likelihood of cyberattacks.

Poyner et al. [29] considered the necessity of healthcare solution security and privacy 
frameworks. This work evaluated the limitations of these strategies within the context of 
an IoT system. Ngwenya and Ngoepe [30] used a Delphi method in conjunction with narra-
tive inquiry to investigate South Africans’ faith in CIoT data. This study primarily relied on 
semi-structured conversations, surveys, and unstructured interviews to obtain its data. Five 
experts were selected for the Delphi method based on their experience with IoT, either as 
sellers or buyers of IoT services or as providers of support services for IoT ecosystems. Six 
participants for the narrative inquiry were chosen using the snowball method based on their 
familiarity with consumer IoT solutions, their capability to provide comprehensive descrip-
tions of their experiences, and their readiness to describe the lessons learned.

Wood et al. [31] proposed a means for automatically identifying cleartext data that may 
reveal private medical states and behaviors in internet traffic from medical IoT devices. 
The study was done in three steps: collecting traffic, finding clear text, and analyzing meta-
data. Four widely used consumer medical IoT devices were examined, one of which was 
found to leak sensitive medical data in cleartext. An easy-to-use system for capturing and 
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analyzing network traffic was also provided, making it possible for users to keep tabs on 
the information flowing in and out of their homes via IoT devices. Alladi et al. [32] pro-
vided a detailed account of the threats that consumer IoT devices face and offered advice 
on how to defend against them. The research presented here should prove helpful in shap-
ing how future IoT devices are developed.

Summary  The literature review emphasized the threats associated with the widespread 
utilization of such (unsafe) devices in areas like smart cities, smart homes, and critical 
infrastructure. As the world becomes more reliant on IoT devices, security and privacy 
should not be an afterthought in their design. Attacks like those discussed in this section 
could have disastrous implications. Standards, prevention strategies (such as secure-by-
design), continual testing and maintenance, and cross-sector partnerships are, therefore, 
urgently required to handle both current and future security threats.

3 � Proposed methodology

To monitor patients, the CIoT equipment in the information gathering layer captures near 
the actual healthcare data as well as nonreal-time data. The IoT-focused access points serve 
as gateways to receive the collected data. This material can be handled at the cloud and fog 
layers, as detailed in the preceding sections, depending on the transportation class and pro-
cessing needs. The proposed CIoT framework’s throughput, energy efficiency, end-to-end 
(E2E) latency, and packet loss must all be improved through the effective processing of this 
data. The efficient handling of this diverse data while upholding QoS necessitates dynamic 
resource allocation. The CIoT framework of this research work, which is installed on top of 
the frameworks as a decentralized control layer for networking, resource allocation, sched-
uling, and flow control with the aid of LSO, depends on software-defined networking to 
accomplish this purpose. With grid virtualization, which separates the data plane from the 
control flat, LSO satisfies the demands of many applications and workloads (Fig. 2).

3.1 � Network framework

This research assumes the presence of an external intruder, referring to an unauthorized 
user who lacks the necessary permissions to manage the sensor network. The invader 
intends to compromise the network’s availability, but is unable to directly target the con-
troller. To carry out a successful attack, the intruder has to acquire knowledge about the 
network’s architecture and detect the prominent nodes that have significant involvement in 
network communication. These nodes include sink nodes, intermediary nodes, and shared 
nodes that handle both data and control traffic. Most communications are sent along routes 
that consist of nodes with significant visibility. This results in distinct traffic patterns that 
disclose information about the traffic paths, direction, and therefore the details of these 
nodes. To get unauthorized access, the intruder must initiate either a traffic analysis attack, 
a remote software-based, or a physical attack on the network. The intruder could seize con-
trol of sensor nodes, allowing them to access the flow table. This enables the intruder to 
passively monitor and intercept communications within the node’s range, therefore disclos-
ing some statistics about the surrounding area. The intruder can covertly acquire infor-
mation about the network without rising suspicion, as the sensor node will maintain its 
usual behavior without engaging in any nefarious activities. The attacker is only able to 
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compromise a limited number of nodes within an acceptable timeframe. This research 
assumes, without any loss of generality, that the intruder has the ability to compromise just 
one node within a control period ∆t. As can be seen in Fig. 3, this architecture is divided 
into four separate layers: the data collection, the fog layer, the cloud layer, and the network 
protocol.

Data Collection Layer: This is the foundational layer in the proposed architecture. The 
data capture layer is responsible for the identification of actual objects and the collection 
of environmental and medical data from several devices that supply both actual and back-
ground information. The link between the devices and the communications system is estab-
lished. In addition to the immediate data generated by this equipment, big data in health-
care demands specialized management [33], as it necessitates extensive data analyses. This 
large amount of data includes medical files, standardized EHR, detailed medical records, 
and information from medical imaging. Depending on the information kind and treatment 
needs, the appropriate layer, whether fog or cloud, will receive health information.

Fog Layer details: The mobile cloud layer has been added to the model to facili-
tate the analysis of time-sensitive information. One of the primary motivators for the 
growth of the IoT is the capacity to review data "on the fly," provide real-time alerts, 
detect anomalies, and initiate the required actions immediately. The additional fog 
layer relocates computing power towards the edge, hence accelerating reaction times. 
In addition, it does filter, fusion, compression, consolidation, and intermediary data 
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analytics and offers local storage to reduce the cloud’s load during regulation compi-
lation of sensor data. As a result, QoS, operation of the system, and bandwidth con-
sumption are improved. An illustration of the involvement of the fog layer is when 
a patient experiences symptoms of extreme blood pressure fluctuations. Therefore, in 
this instance, pretreatment and decisions are performed at the fog nodes, and the find-
ings are delivered to the stakeholders for more decision-making.

Cloud Layer: The data collecting surface, fog plane, and interface layer are all con-
nected to the cloud layer. Computed healthcare data from the fog layer is sent to the 
cloud layer for big data statistics and long-term archiving. Additionally, some data, 
including EHR, e-prescription, and other types of EHR, is easily transported from the 
provider to the cloud. Due to the heterogeneous nature of the data collected in the 
cloud, a variety of advanced data analytics, including information retrieval, machine 
learning, automation reasoning-based algorithms, and rule-based processing, are used 
to extract valuable insights from the data. Fog for low-cost and clouds for high-cost 
calculation activities are therefore combined to boost performance. Data collected 
from medical reports, medical equipment, and predictive analysis are a few examples 
of how the cloud layer is utilized. MRI can only be performed on the cloud since it 
produces thousands of high-resolution pictures that demand more power, storage, and 
calculation. Thus, without any processing at the fog layer, data will be sent directly out 
from the device to the cloud.

Application Layer: This research proposes an IoHT framework, and this layer serves 
as the very last of that structure. It allows a platform between the structure and IoHT 
stakeholders and customers so that the created social and economic advantages may be 
reflected in those interfaces. These user interfaces allow various healthcare applica-
tions to be made available to their target audiences.
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3.2 � LSO‑based load balancing and resource allocation

Getting the schedule right requires an effective optimization technique. LSO’s useful-
ness comes from the fact that it can be used to optimize issues that occur in real time 
[33]. In addition, it is simple to implement due to the reduced number of parameters.

LSO  The metaheuristic algorithm described by [34] was motivated by the hunting activi-
ties of a Lanner. The LSO, which includes a three-stage procedure that necessitates modi-
fications to a variety of parameters, is a reliable approach for solving randomized popula-
tion-based issues. The hunting strategy adopted by Lanners while they were flying in quest 
of their prey served as the model for the proposed method. Retired Lanners modify their 
hunting techniques to meet their unique dietary requirements. As a result, novel tactics 
develop, and unique models maintain assumptions about flying. Tucker asserts that lanners 
are the bird species with the best flying abilities. The appropriate objectives are evaluated 
at various levels of enhanced hunting to see if they go beyond what is possible in the air 
[35]. One of the fastest creatures on the earth, stoops have been seen to attain speeds of 
more than 200 mph (320 km per hour).

Lanners have several tiny tubercules in their beaks that allow them to breathe eas-
ily. These control how the air is directed through fast stoops. The majority of hunting 
occurs daily (including morning and night). Smaller and medium-sized birds make up 
the majority of their prey, although they will also consume insects, including grasshop-
pers, worms, swarms, and crickets [35]. To reach its prey, the lanner takes a variety of 
flight paths. Each route has two parts: a straight section where the lanner keeps flying 
and aims when it is in its line of sight and a logarithmic spiral where the lanner keeps its 
head straight and its eyes fixed on the prey with exceptional accuracy. This makes it pos-
sible to divide the method by which a Lanner accomplishes movement into three steps. 
A graphic representation of a Lanner’s flight route during a hunt is shown in Fig. 4.

During transmission, minimizing both the long delay ( �� ) and the packet loss rate 
( ��� ) will improve resource allocation. It involves load balancing and the best resource 
allocation. Suppose the processing device’s capacity is � . In that case, the jth user’s 
resource allocation needs are described as < ��j , ���j > , and the corresponding resource 
demand is < �j , ��j >, where �j and ��j indicate the jth CIoT user node’s bandwidth 
need and safeguard length demand, respectively. When the average buffering length 
AQj is smaller than the required safeguard length D��j = ( ��j∕�size ), where �size is 
packet size, and D��j is, then ���j may be computed as

The scheduler chooses several links to distribute the traffic, and the load distribution 
problem may be stated as,

where �� represents throughput, �k is the percentage of the kth link’s allotment based on 
the kind of traffic. In the provided scheduling issue, Lanners are produced at random for 

(1)���j =
AQj −D��j

AQj

(2)max

(

��,
AQj

AQj −D��j

)

⋅

∑K

k=1
�k
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allocating classified traffic to random links, and the fitness is assessed by considering 
Eq.  (2). Below is the short approach for implementing the LSO, which consists of five 
steps [36].

Step 1: Starting with the optimization problem’s parameters, such as the number of 
Lanners ( NL ), maximum speed ( �max ), cerebral pace ( C� ), socializing tenacious ( S� ), 
ensuing consistent ( �� ), diving rate ( �� ), and awareness probability, the method is then 
initialized ( ��).
Step 2: Based on the boundary constraints, randomly determine the speed and location 
of the Lanners in a D-dimensional space, with each lanner’s position taking the total 
number of NP applicants into account throughout all of the space’s D dimensions. The 

Fig. 4   The schematic represen-
tation of a Lanner flight route 
during a prey hunt
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�min and �max limitations, which were each defined in the following equations, were 
used arbitrarily to obtain the speeds:

 where �� stands for the upper bound, which is the region around all dimensions bound-
ary, creating the pairs of integers ( ℘��,℘�� ) for all lanners connection between the 
dive and awareness probabilities at random first.
Step 3: Choose the global ( gbest ) and best ( xbest ) sites after computing the value of fit-
ness. New locations will be generated from the selected ones using the logic that gov-
erns the action of diving and the probability of being aware of it.
Step 4: Along with creating new sites, the lanner’s location has also been updated. 
Afterward, compare ℘�� with the likelihood of cognizance �� ; if �� > ℘�� , the 
Advice or assistance switches from hunting for prey relying on its activities and some 
other memories from other Lanners:

where �it represents the current speed, and Xit represents the lanner’s current location 
( C� = S� = 1.5). If ℘�� is greater than �� , then first compare ℘�� to the dive likeli-
hood �� . If �� < ℘�� , the Lanner ( X� ) completes its first phase in the hunting process 
by selecting one of the objectives as its � victim. A polynomial spiral is offered.

where f  is a constant that causes the spiral logarithm’s state to be 1, and α is an arbitrary 
value between (-1,1) that specifies the lanner’s following location about its precise des-
tination. In the event when �� > ℘�� , then particular of the chosen prey will first be 
compared to the system equation of the lanner. When it comes to a diving step, the lan-
ner will follow through with it everywhere the prey is most suitable, and this includes:

In terms of the velocities and geographical boundaries, the newly discovered place will 
be examined in the future. Following this, its new scoring function is constructed, and 
the multiple features of Xbest and gbest are figured out.
Step 5: In the last step, additional assessments of Step 4 are kept going until the maxi-
mum number of possible iterations (itermax) is achieved.
Figure 5 and Table 1 exhibit, respectively, the flowchart and pseudocode of LSO-based 
wealth distribution and load balancing.

4 � Experimentation results and discussion

The advantages and viability of the proposed fog-cloud CIoT architecture are shown through 
an example model. It considers 100 CIoT nodes to gather loss- and delay-sensitive medi-
cal data from diverse residences or hospitals. Five edge devices, 1 server, and a 54  Mb/s 

(3)�max = 0.1 × ��

(4)�min = −�max

(5)Xit+1 = Xit +�it + C�
(
Xbest,Xit + S�

(
gbest,Xit

))

(6)Xit+1 = Xit +
|||
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2
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(7)X
it+1 =

{
X
it+1 = X

it
+�

it+1 + r
(
��

(
X𝜁 ,Xit

))
�� > ℘��

X
it+1 = X
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otherwise
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connection data rate are present. Depending on the kind of traffic, created data is sent to the 
cloud for preprocessing before being offloaded to the cloud. Additionally, it is assumed that 
the gateways’ and router’s connection bandwidths are allocated randomly. The LSO method-
ology is used to choose the fog nodes based on buffer demand, throughput, and processing 
latency. Results are compared to current techniques such as MobMBAR [22], SSA [19], and 
LBOS [23] algorithms for the metrics makespan, response time, resource utilization, execu-
tion time, latency, throughput, and delivery rate.

Start

Initialize tasks and VMs as 

lanners, = 0, = 100

Run load balancing 

algorithm using Eq. (1)

Update the position of 

lanners according to the Eq. 

(3)

Evaluate the fitness of 

each lanner using Eq. 

(2)

If >

Update the position of lanners 

according to the Eq. (5)

If <

Update the position of 

lanners according to 

the Eq. (6)

Yes

No

Update the position of lanners 

according to the Eq. (7)

Yes

No

Modify the solution based on 

fitness value

new score function and update the 

position 

If max 

iterations 

reached

End process

Yes
Increment the 

iteration

No

Fig. 5   Flowchart of LSO-based resource allocation and load balancing
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Table 1   Algorithm of lanner optimization algorithm based resource allocation and load balancing

3. For each lanner, create an N-dimensional vector =

, . . . , , 1,2, … indicates the 

total VMs on the task ( {1, 2, . . . , }) which is to be processed.

4. Compute PDR using Equation (1)

5. Establish position and velocity for each Lanner’s arbitrarily, 

compare all lanners by score functions, and discover the best in the 

present location.

6. For loop to maximum iterations number.

7. For loop to population size.

8. Produce random values , . Choose the new best positions

by correlating the score functions of every lanner.

9. if > , update lanner velocity with Equation (5); else

10. if < ,  update  lanner velocity with Equation (6). Else, 

equivalence is the score functions of the previous and current one. If 

this one is healthier, update Lanner velocity using Equation (7); if not, 

use Equation (8).

11. Update position .

12. Lanner optimization algorithm for load balancing with fitness 

function using eq. (2)

13. Evaluate the groove function of the new position, and the best 

score values and solutions are stored for resource allocation. 

14. If max iteration is met, then end the iteration process, and the 

system is balanced, results are obtainable. If not, go to Step 5.

15. Return resource allocation and load balancing.

1. INPUT: datasets Population size, parameters of LSO. OUTPUT: 

Resource allocation and load balancing of CIoT

2. Initialized empty structure and initialized parameters of LSO

algorithm.
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4.1 � Makespan comparison results

In terms of makespan, the research model is contrasted with the other current methods 
mentioned above. The research model exhibits a superior result for equally distributing the 
load across nodes, as shown in Fig. 6 and Table 2, which also illustrates the acquired val-
ues of the resource usage for several cloudlets for the various methods with the research 
model. The outcomes demonstrate that the research model responds faster than alternative 
algorithms. The simulation findings show that when the number of cloudlets increases, the 
effectiveness of other comparison methods on makespan declines. However, the research 
model outperforms the comparison well. The proposed research model, the LSO technique, 
performs better because it can use resources effectively by distributing loads across the 
appropriate VMs.

4.2 � Response time comparison results

The response times of the MobMBAR, SSA, LBOS, and LSO techniques in various cloud-
lets are shown in Fig. 7 and Table 3. For the sake of the simulation, cloudlets are consid-
ered autonomous and non-pre-emptive. The research model is used to schedule separate 
jobs dynamically. The size of the cloudlets has an impact on the response time. According 
to the data, LSO has a substantially faster reaction time than MobMBAR, SSA, and LBOS, 
which consume energy at rates of 6.9 s, 6.4 s, and 5.9 s, respectively. Additionally, Table 5 

Fig. 6   Makespan comparison 
results
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Table 2   Makespan comparison 
results

Number of 
cloudlets

Makespan (s)

MobMBAR SSA LBOS LSO

20 4 2 2 2
40 8 5 4 3.5
60 12 6.5 5.1 4.9
80 18 11 9.5 8.5
100 20 12.5 11 10
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shows that SSA, LBOS, and MobMBAR all have longer reaction times. Based on the 
LSO’s outstanding load balancing and quicker reaction times, Table 3 compares resource 
allocation efficiency. However, as the quantity of cloudlets increases, LSO is shown to be 
more efficient than MobMBAR, SSA, and LBOS. The average percentage of reaction time 
is maximum during the cloudlets due to a slightly increased PDR, and the truth is that 
response time employed in the early phases of LSO with a unique data transmission stage 
is regarded as overhead energy. The research model makes use of a suitable load-balancing 
method to distribute cloudlets onto virtual machines.

4.3 � Resource utilization comparison results

The resource requirements of the algorithms mentioned above are compared to those of 
the research model. The research model exhibits a more significant benefit for distribut-
ing the load across nodes equally, as shown in Fig. 8 and Table 4, which also depicts the 
acquired estimates of the resource usage for a quantity of cloud data centers for the various 
methods with the research model. The outcomes demonstrate that, in comparison to other 
algorithms, the research model has superior resource consumption. The simulation findings 
show that when the number of cloudlets grows, other comparison methods perform better 
in terms of resource consumption. The research model can effectively use the resources by 
distributing the loads within the appropriate VMs using the LSO; the LSO algorithm per-
forms better. Due to the decrease in resource use and the heuristic information employed 

Fig. 7   Response time compari-
son results
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Table 3   Response time 
comparison results

Number of 
cloudlets

Response time (s)

MobMBAR SSA LBOS LSO

20 3 2.8 2.7 1.4
40 3.5 3.1 3 2
60 5.5 4 3.9 2.9
80 6.5 4.5 4.2 3.5
100 6.9 6.4 5.9 5.5
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in the algorithm, the productivity of resources is considerably exploited in the condition of 
resource utilization.

4.4 � Execution time comparison results

Comparisons are made between the research model and the existing methods in terms 
of runtime. Thus, according to Fig. 9 and Table 5, the research model demonstrates a 

Fig. 8   Resource utilization com-
parison results
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Table 4   Resource utilization 
comparison

Number of 
cloudlets

Resource utilization

MobMBAR SSA LBOS LSO

20 0.35 0.4 0.6 0.65
40 0.5 0.51 0.68 0.76
60 0.6 0.61 0.71 0.82
80 0.69 0.68 0.79 0.85
100 0.73 0.82 0.85 0.9

Fig. 9   Execution time compari-
son results
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superior result for uniformly distributing the load over all the nodes. This figure and 
table also indicate the acquired estimates of the completion time for a handful of virtual 
machines for the various methods using the research model. The outcomes demonstrate 
that the research model executes more quickly than alternative methods. The simula-
tion findings show that as the number of cloudlets increases, other comparison algo-
rithms perform better in terms of execution time. It demonstrates how well the research 
model distributes the loads within the VMs and how much the level of instability was 
diminished.

4.5 � Latency comparison results

The research model achieves optimum resource usage while reducing delay, as seen 
in Fig. 10. The current approach can use resources to their fullest extent and dramati-
cally increases delay. As a result, LSO thought about using a task-resource suitability 
test to assess how well the assignments for the overcrowded VMs and the underused 
VMs were compatible, given their respective resource availability. According to data, 
LSO has a substantially lower latency than MobMBAR, SSA, and LBOS, which have 
energy consumption values of 20 ms, 12.5 ms, and 11 ms, respectively. Table 6 analyses 
latency efficiencies depending on how well the LSO balances loads while requiring less 
response time.

Table 5   Execution time 
comparison

Number of 
cloudlets

Execution time (s)

MobMBAR SSA LBOS LSO

20 2 3 5 5.8
40 4 4.5 5.2 6.2
60 5.8 6.2 6.9 7.2
80 8.2 8.5 9.5 10
100 11 12 12.5 13

Fig. 10   Latency comparison 
results
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4.6 � Throughput comparison results

Figure 11 contrasts and compares the performance of the existing models and the pro-
posed research model in a standardized environment. The research model has a high 
throughput for a clustering approach, whereas the existing systems, MobMBAR, SSA, 
and LBOS, have durations of 0.55, 0.66, and 0.65, respectively, when the size of the 
cloudlets is 100. The results show that the performance in LSO, even during the initial 
phases of cloud data centers, is relatively low. In Table  7, throughput efficiencies are 
compared depending on how well the LSO balances the load while requiring less reac-
tion time.

Table 6   Results of latency 
comparison

Number of 
cloudlets

Latency (ms)

MobMBAR SSA LBOS LSO

20 4 2 2 2
40 8 5 4 3.5
60 12 6.5 5.1 4.9
80 18 11 9.5 8.5
100 20 12.5 11 10

Fig. 11   Throughput comparison 
results
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Table 7   Results of throughput 
comparison

Number of 
cloudlets

Throughput (s)

MobMBAR SSA LBOS LSO

20 0.48 0.52 0.59 0.67
40 0.51 0.65 0.67 0.76
60 0.53 0.66 0.68 0.77
80 0.54 0.66 0.66 0.77
100 0.55 0.66 0.65 0.78
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4.7 � Delivery rate comparison results

The research model is contrasted with the other current algorithms mentioned above 
regarding the delivery ratio. As shown in Fig.  12 and Table  8, the research model 
achieves a superior result for uniformly distributing the load across nodes and depicts 
the achieved values of the download speed for several cloud servers for the various 
methods. The outcomes demonstrate that the research model outperforms existing algo-
rithms in terms of delivery rate. The simulation findings show that when the number of 
cloudlets rises, other comparable algorithms perform better in terms of delivery rate. 
The buffer size contributes to a reduction in packet drops, which improves the perfor-
mance of the proposed LSO method. The fog layer’s packet delivery rates decrease 
when the storage size is large. Based on the LSO’s outstanding load balancing and 
shorter reaction times, Table 8 examines delivery ratio efficiency.

The dynamic LSO algorithm gives the proposed research better results. It balances 
exploitation and exploration with dynamic inertia weight modifications to distribute 
effort efficiently. The adaptable algorithm optimizes resource allocation for system effi-
ciency by considering real-time situations and varied traffic types. VM accomplishment 
time variation is minimized by the LSO algorithm, improving load balancing delay, 
throughput, and network congestion measures. The algorithm’s responsiveness and opti-
mization help explain its experimental outperformance.

Fig. 12   Delivery rate comparison 
results
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Table 8   Delivery rate 
comparison

Number of 
cloudlets

Delivery rate (%)

MobMBAR SSA LBOS LSO

20 0.25 0.25 0.25 0.25
40 0.5 0.52 0.53 0.54
60 0.58 0.6 0.62 0.64
80 0.59 0.63 0.65 0.69
100 0.69 0.72 0.73 0.74
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4.8 � Advantages & limitations

The proposed research has several advantages. First, the LSO-driven cloud-assisted frame-
work improves resource allocation and workload distribution in CIoT applications for 
smart healthcare systems. Scalability, power consumption, and data processing increase 
with this modification, addressing crucial field concerns. The innovative LSO algorithm 
balances exploitation and exploration with dynamic adaptation, outperforming evolution-
ary and heuristic methods. The load balancing strategy developed in this research improves 
latency, throughput, and network congestion measures, improving system dependability 
and responsiveness. The framework’s extensive performance comparison against existing 
methodologies shows its efficacy and originality, demonstrating its potential influence on 
healthcare-oriented IoT.

Despite substantial advantages, the research has few limitations. The healthcare set-
ting may affect the framework’s adaptation and efficacy. Network changes and hardware 
limits may affect generalizability. The framework’s real-world deployment and scalability 
need more study to determine its practicality in various healthcare contexts and workloads. 
With every algorithmic approach, computational cost and overhead must be addressed, 
especially when using LSO in resource-constrained contexts. Technological advances and 
changing healthcare needs may demand ongoing updates or revisions to the suggested 
framework to be relevant and successful in dynamic CIoT environments.

5 � Conclusion and future work

This work developed the LSO method, which examines the lanner’s positions at the begin-
ning and updates them continuously during each iteration. Utilizing a suitable fitness func-
tion may reduce the makespan and maximize resource consumption. A task similarity test 
has been conducted to evaluate how well tasks on overloaded VMs work with resources 
on underloaded VMs. It has been evaluated and contrasted with other current algorithms. 
Additionally, in any cloud context, the research model can handle independent, pre-emp-
tive, and non-pre-emptive activities. Future solutions to the load-balancing issue with 
diverse resources could be based on meta-heuristics. Applying a growing number of tasks 
and VMs in a diverse environment might solve this issue. To verify the success of the 
method, additional QoS performance measures may also be taken into account. Results are 
compared to current techniques such as MobMBAR, SSA, and LBOS algorithms, where 
the research model attains a makespan of 10 s, response time of 5.5 s, resource utilization 
with a rate of 0.9, execution time of 13 s, latency of 10 ms, throughput with 0.78 s, and 
delivery rate with 0.74%. However, it is important to recognize its limitations, such as the 
impact of unique healthcare contexts, external influences, computational complexity, and 
the need for constant changes to changing technology landscapes. The inherent variability 
in healthcare environments, external factors affecting experimental outcomes, real-world 
deployment challenges, the computational complexity of the LSO algorithm, and evolving 
healthcare technologies can all threaten validity. To assure the framework’s stability and 
applicability in varied CIoT applications in smart healthcare systems, diversified testing, 
continual improvement, and rigorous validation are needed.

Despite these limitations, this research provides a potential path for improving CIoT 
application efficiency in smart healthcare systems, providing the platform for future study. 
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In future, the DL and Reinforcement Learning (RL) together can be developed as an effec-
tive strategy for long-term success with maximum efficiency. Because DL takes a smart 
approach, RL can figure out the optimal reward strategy for carrying out a task. Complex 
patterns in the dataset contribute to the misclassification issue, and RL will learn this pat-
tern without the need for feature engineering and will automatically solve it, setting up an 
effective classification for a DL method.

Data availability  Data sharing is not applicable to this article as no datasets were generated or analyzed dur-
ing the current study.
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