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Abstract
The proliferation of fake images generated by deepfake techniques has significantly threat-
ened the trustworthiness of digital information, leading to a pressing need for face forgery
detection. However, due to the similarity between human face images and the subtlety of arte-
fact information, most deep face forgery detection methods face certain challenges, such as
incomplete extraction of artefact information, limited performance in detecting low-quality
forgeries, and insufficient generalization across different datasets. To address these issues,
this paper proposes a novel noise-aware multi-scale deepfake detection model. Firstly, a
progressive spatial attention module is introduced, which learns two types of spatial feature
weights: boosting weight and suppression weight. The boosting weight highlights salient
regions, while the suppression weight enables the model to capture more subtle artifact
information. Through multiple boosting-suppression stages, the proposed model progres-
sively focuses on different facial regions and extracts multi-scale RGB features. Additionally,
a noise-aware two-stream network is introduced, which leverages frequency-domain fea-
tures and fuses image noise with multi-scale RGB features. This integration enhances the
model’s ability to handle image post-processing. Furthermore, the model learns global fea-
tures from multi-modal features through multiple convolutional layers, which are combined
with local similarity features for deepfake detection, thereby improving the model’s robust-
ness. Experimental results on several benchmark databases demonstrate the superiority of
our proposedmethod over state-of-the-art techniques. Our contributions lie in the progressive
spatial attention module, which effectively addresses overfitting in CNNs, and the integration
of noise-aware features and multi-scale RGB features. These innovations lead to enhanced
accuracy and generalization performance in face forgery detection.
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1 Inroduction

Recent years have witnessed rapid progress in facial manipulation [1, 2] based on Variational
AutoEncoders and Generative Adversarial Networks. This manipulation enables attackers
to change the identity or expression of a target subject to that of another and subsequently
produce high-quality forged faces. These manipulation techniques are prone to misuse for
malicious purposes, leading to serious security issues and even a crisis of confidence in our
society [3]. Therefore, it is crucial to developmore effective and generalmethods for deepfake
detection.

Most existing methods model deepfake detection as a straightforward binary classifica-
tion problem and develop Convolutional Neural Networks (CNNs) to model the decision
boundary between real and fake faces [4–11]. However, the inherent structure of CNN-based
models leads to a bias towards emphasizing a single salient region of interest, which makes
it challenging to capture other subtle yet distinguishable artifacts. This tendency limits the
model’s ability to generalize and increases the risk of overfitting [12]. Although some recent
approaches that employ multitask learning have made progress in addressing this limitation
[13, 14], they still remain susceptible to post-processing techniques such as compression.

Furthermore, some scholars have found that the facial forgery method will eliminate
artifacts through post-processing so that they cannot be detected in the color domain, but
still leaves tampering traces in high-frequency information. To improve the robustness of
the detection model, noise information is introduced as a high-frequency information for
forgery detection [15–18].Most of the noise features introduced in current forgery detec-
tion approaches are manually extracted, like the spatial rich model (SRM) filters [18] which
lack some flexibility in handling some forged videos after complex processing. Moreover,
it was also found that real faces are coherent in different local regions, while forged faces
are mixed from different face sources and thus produce inconsistent information at certain
locations. Therefore, the concept of consistency learning [19] was introduced into forgery
detection [20–22], which usually measures the local similarity between individual patches
of an image to capture the inconsistency between tampered and authentic regions. However,
these methods tend to overlook the importance of global features, which encompass valu-
able discriminative information such as the colors of the artifacts in different facial regions
and the contextual links between individual artifacts. In scenarios where captured artifacts
are scattered across multiple local regions, the local inconsistency may not be prominent.
Nevertheless, the combined statistical information from these artifacts can exhibit stronger
discriminative properties at a global level. Consequently, incorporating global feature as a
complement to local consistency information can improve the performance of the classifier.

To overcome the aforementioned challenges, we propose a noise-aware progressive multi-
scale network. Firstly, we address the issue of overfitting and capture more comprehensive
features by suppressing features from salient regions during training andmining features from
other regions. This is achieved through the design of a progressive spatial attention module,
which incorporates a boosting-suppression mechanism. Secondly, we enhance the sensitivity
of the high-frequency noise filter by using adaptive learning-based SRM filters (Conv-SRM)
instead of fixed-parameter SRM filters. This adaptation makes the Conv-SRM filters more
effective in detecting certain artifacts, as illustrated inFig. 1.Additionally, considering that the
phase spectrum [24] is also sensitive to artifacts resulting from up-sampling operations [23]
just as shown in Fig. 1, we introduce the phase spectrum as a supplement of noise information.
To leverage both RGB and noise information, we construct a two-branch network that learns
a composite representation by combining the RGB features from various boosting regions
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Fig. 1 Comparison of different filters on real and fake faces. Red boxes from fake faces mark artifacts that are
biased to eyes and mouth. The Conv-SRM filter and the phase spectrum of the face can capture the eyes and
mouth of the tampered face more obviously

with high-frequency features. Furthermore, we merge the local consistency information with
global features learned from the multi-modal features for deepfake detection, enhancing the
model’s robustness.

The contributions are summarized as follows:

• A progressive spatial attention module is proposed to address the overfitting issue. It
forces the model to explore more potential features and enables the network to focus on
the salient region of faces.

• Noise features are extracted by adaptive learning instead of hand-crafting, and phase
features which are more sensitive to forged faces after post-processing are introduced.

• Global information is added to collaborate with local consistency information to detect
deepfake and improve the model’s discriminatory ability.

2 Related work

Currently, various deep forgery detectionmethods are emerging, with early attempts focusing
on detecting forged faces throughmanual features [4, 13, 25].With thewidespread use of deep
learningmethods [26–30] such as: amultitaskmanifold deep learningmethod effectively used
to estimate face-pose [26], hierarchical deep click feature prediction for better fine-grained
Image recognition [28],multimodal deep autoencoder andmulti-view locality sensitive sparse
retrieval successfully applied to human pose recovery [29, 30] and so on. Researchers are
beginning to explore the use of deep neural networks to capture high-level semantic features
in the spatial domain of forged images to improve detection. Most works [5, 7–10, 31] use
a CNN to extract discriminative features for forgery detection. Nguyen et al. [5] designed
a network model combining a VGG network and a capsule network to detect fake faces.
Dang et al. [7] proposed a detection system based on CNN and attention mechanisms to
process and improve the feature maps of the classifier model. Afchar et al. [8] proposed
MesoNet combined with the Inception module to extract mesoscopic features and detect
forged videos. Rossler et al. [9] constructed a deep forgery dataset FaceForensics++ and
used seven convolutional networks to compare the classification performance of real and
fake faces, among which XceptionNet gave the best results. Kohli et al. [31] extracted facial
features from the frequency domain using a two-dimensional global discrete cosine transform
(2D-GDCT) and used a three-layered frequency convolutional neural network (fCNN) to
detect forged facial images. Although these works have achieved a significant performance
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level, they are easily overfitting and perform worse on some low-quality databases as the
CNN-based method tends to emphasize more on a single salient region of interest.

Forgery detection with noise features. Several attempts [15–17] have been made to
solve forgery detection based on noise features. Zhou et al. [15] used SRM filter based
on steganalysis method to extract noise information as the input of noise stream together
with RGB stream for forgery detection. Masi et al. [16] presented a two-branch network: one
branch propagates the original information,while the other branch suppresses the face content
yet amplifies multi-band frequencies using a Laplacian of Gaussian (LoG) as a bottleneck
layer to assist in isolating the forged faces. Qian et al. [17] explored two complementary
frequency-aware clues including frequency-aware decomposed image components and local
frequency statistics to mine subtle forgery patterns. Although these studies extract features
more comprehensively, the filters used in these works are often fixed, and the single type of
high-frequency information cannot guarantee strong generalization.

Forgery detection based on consistency learning. Recent works [19–22] show that the
manipulation methods typically disrupt the correlation between the local regions of the faces
and attempt to utilize consistency learning to capture the local artifacts. Zhao et al. [20]
extracted the middle layer features of the ResNet network and constructed patch similarity
features based on them, which were used to assist in locating the forged regions and guide
the model to detect the local inconsistencies of the forged faces. Chen et al. [21] constructed
the similarity matrix of the frequency domain stream and the RGB stream to capture the
local inconsistencies of the forged faces in both the spatial and frequency domains. Kuang
et al. [22] proposed a dual-branch (spatial branch and temporal branch) neural network to
detect the inconsistency in both spatial and temporal for DeepFake video detection. The
spatial branch aims at detecting spatial inconsistency by the effective EfficientNet model.
The temporal branch focuses on temporal inconsistency detection by a new network model.
The softmax scores of two branches are finally combined with a binary-class linear SVM
classifier. However the independent learning of each branch loses spatio-temporal contextual
information, and the non-end-to-end leaningmake it difficult to co-optimise the two branches.
In addition, the above methods based on consistency learning only use local information for
their final discrimination, ignoring the global information that is also discriminative.

3 Proposedmethod

3.1 Overview

The proposed framework is shown in Fig. 2. It is a two-stream network consisting of RGB
stream and noise-aware stream and contains three main modules as follows:

Progressive SpatialAttentionModule (PSAM).Thismodule achieves feature extraction
of theRGB stream, and its core is theDual Feature SelectiveModule (DFSM). TheDFSMcan
adaptively learn twoweights of the spatial features, namely boosting and suppressionweights.
Multiplying by the original feature, the boosting and suppression features are respectively
obtained. The boosting features prepare for the subsequent fusion with noise features, while
the suppressed features are input again to the next stage ofDFSMafter convolution operations,
forcing the model to mine potential features in regions other than the currently significant
ones. Three different scales of boosting features are obtained from three DFSM.

Noise-aware Module (NAM). As for the noise stream, the adaptive noise features are
extracted by the Conv-SRMfilter and combinedwith the phase spectrum features as the input.
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Fig. 2 Pipeline of the proposed Noise-aware Progressive Multi-scale Deepfake Detection

Then, the outputs of three convolutional layers are combined with boosting features obtained
from the corresponding stage of the PSAM to produce dual-stream multi-scale features.

Integrated Prediction Module (IPM). The multi-scale features leaned from NAM are
pairwise fused and then fed into the convolution block to obtain global features. Meanwhile
they are divided equally into several local patches to produce local consistency information by
calculating the similarity among the patches. Finally, the global features and local consistency
information are combined to achieve the prediction.

3.2 Progressive spatial attentionmodule

The pipeline of the core module DFSM is shown in Fig. 3. In DFSM, the boosting and
suppressionweights are computed to serve as the basis for selecting boosting and suppression
features, respectively. More formally, denote the input face image of the RGB stream as I
and the feature map extracted from the specific layer as X of dimensions H ×W ×C , where
C is the number of channels, whereas H and W are the height and width of the feature map,
respectively. The computation process of the boosting/suppression weights is as follows:

First, X is evenly divided into k parts along the width dimension denoted as Xi ∈
R

H×(W/k)×C , i ∈ [1, k]. Second, these parts are input to the 1 × 1 convolution block
for dimensionality reduction, and the output is activated through the normalization layer
and ReLu to obtain the initial weight of each part as Si ∈ R

H×(W/k)×1. Inspired by the
Convolutional Block Attention Module (CBAM) [32], the normalized weight Ssof tmax =
(s1, ..., sL ) , L = W/k are obtained by respectively fusing the results of average-pooling and
max-pooling on Si .

Then the boosting weight Wboost = (
wb1 , ..., wbL

)
is calculated as follows:

wbi =
{
α, i f si ≥ T
0, else

, (1)

where i ∈ [1, L], T is the threshold taken from the nth largest weight in Ssof tmax , and the
default setting of n is L/4. If si is greater than or equal to the threshold, it can be regarded as
a boosting spatial part and its weight is set to the hyper-parameter α which controls the extent
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Fig. 3 Pipeline of the Dual Feature Selective Module

of boosting. Otherwise, it is set to 0 and it is considered that no boost is applied to this part.
Similarly, the suppression weights Wsuppress = (

ws1 , ..., wsL

)
are calculated as follows:

wsi =
{
1, i f si < T
β, else

, (2)

where β is a hyper-parameter that controls the extent of suppression. The effect of α and β

on the performance will be discussed in Section 4.2.
Finally, the boosting features XB and suppression features XS are obtained by fusing

Wboost and Wsuppress with the feature map X as following:

XB = X + (Wboost ⊗ X), (3)

XS = Wsuppress ⊗ X , (4)

where ⊗ represents the element dot product. The boosting features XB will be directly used
as the output of DFSM for subsequent feature fusion, and the suppression features XS will
be put into the next boosting-suppression stage to learn potential boosting features in other
regions. Learned through several such stages, the boosting features at different scales can be
obtained.

3.3 Noise-awaremodule

3.3.1 Acquisition of phase spectrum and adaptive noise features

After inputting face image I and converting it to grayscale map Igray ∈ R
H×W×1 by an

image processing algorithm, the phase and adaptive noise features are obtained as follows:
Phase spectrum.With Discrete Fourier Transform (DFT), the grayscale map Igray is first

transformed into the frequency domain to obtain its frequency spectrum. The InverseDiscrete
Fourier Transform (IDFT) is then applied with the frequency spectrum without amplitude to
obtain the spatial domain representation of the phase spectrum as Iphase ∈ R

H×W×1.

123



Multimedia Tools and Applications

Adaptive noise features.Aconstrained convolution layer [33] is introduced and the kernel
parameters of the Conv-SRM are adaptively updated through network training. Specifically,
the constraint is applied as follows:

{
Ck(0, 0) = −1∑

m,n �=0 ck(m, n) = 1
k ∈ {1, 2, 3} , (5)

where ck represents the kth convolution channel updated with the model parameters and
(0, 0) is its central coordinate. The adaptive noise features Isrm ∈ R

H×W×3 of the image can
be obtained by inputting Igray into the constraint convolution layer.

3.3.2 Complementary fusion of noise and RGB streams

As shown in the noise stream of Fig. 2, the phase features Iphase are concatenated with the
adaptive noise features Isrm in the channel, resulting in 4-channel noise features Inoise which
are then input into the noise stream, and the noise features at different scales are obtained
after different layers of convolution blocks. To enhance the model’s ability to detect artifacts,
the fusion of noise features with the corresponding scaled RGB boosting features are added
to the output of each convolutional block of the noise stream, which is then fed into the next
convolutional block for higher-level feature learning.

Denote the features obtained by the three convolutions of the noise stream as X (i)
N , i ∈

{1, 2, 3} and the corresponding boosting features obtained by the PSAMas X (i)
B , i ∈ {1, 2, 3}.

These feature maps are then flattened into two-dimensional vectors along the spatial
dimension as X̃ (i)

N and X̃ (i)
B , respectively. Inspired by self-attention [34], the dual-stream

complementary fusion is as follows:

F (i)
BN = X (i)

B + ρ × attBN , (6)

F (i)
N B = X (i)

N + ρ × attN B , (7)

where ρ is the hyper-parameter controlling the fusion level, attBN and attN B represents the
complementary weights which are calculated as follows:

attBN = so f tmax

(
X̃ (i)
B X̃ (i)T

B√
H × W × C

)

X̃ (i)
N , (8)

attN B = so f tmax

⎛

⎝ X̃ (i)
N X̃ (i)T

N√
H × W × C

⎞

⎠ X̃ (i)
B , (9)

The F (i)
N B obtained from (7) will be input to the next convolutional block to learn higher-level

noise features X (i+1)
N . The F (i)

BN obtained from (6) is left as the input feature map for the
following integrated prediction module, which incorporates the complementary features to
provide more detailed information.

3.4 Integrated predictionmodule

Given the remarkable performance achieved by consistency learning in forgery detection, it
is also introduced into the final prediction module and further fused with global information
learned from complementary features for discrimination.
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3.4.1 Global feature extraction

To further enhance the feature representation capability of the input integrated prediction
module, the different scale complementary features F (i)

BN obtained from (6) are fused with
each other so that the features at each scale aggregate discriminative information from other
scales and fully combine the contextual information of the images. A fusion method similar
to that in Section 3.3.2 is used here to produce newmulti-scale complementary features F∗(i)

BN
as follows:

F∗(i)
BN = F (i)

BN +
∑

j �=i

μ × att (i, j) i, j ∈ {1, 2, 3} (10)

where μ is used to control the fusion level, and att i, j represents the complementary weights
of F ( j)

BN for F (i)
BN which are calculated as follows:

att i, j = so f tmax

⎛

⎝ F̃ (i)
BN F̃

(i)T

BN√
H × W × C

⎞

⎠ F̃ ( j)
BN , (11)

where F̃ (i)
BN and F̃ ( j)

BN are the two-dimensional vectors that flattened F (i)
BN and F ( j)

BN along

the spatial dimension, respectively. As the feature map F∗(i)
BN is complementarily fused in

spatial and frequency domains and at different scales, it can highlight the artifact region
at the different granularities and supplement the detail information from other scales and
noise features. A bilinear interpolation algorithm is used to make the feature maps equal
in size. They are then concatenated along the channels and learned by a certain number of
convolutional layers to obtain the features F̂BN which can be regarded as a global feature
covering different artifacts of concern at different scales.

3.4.2 Local consistency calculation

Local similarity calculation is introduced to measure local consistency. The robust multi-
scale complementary feature map F∗(i)

BN , i ∈ {1, 2, 3} obtained in (10) is applied as input
and the bilinear interpolation algorithm is used to resize the different scale features into
the same dimensions. They are then concatenated into Z ∈ R

H×W×C in the channel. Z is
equally divided into M × M patches along the spatial dimension and flattened into a one-
dimensional vector.Denote the one-dimensional vectors obtained from the i th and j th patches
as pi , p j ∈ R

M2C , respectively. The similarity simi, j between the patches is calculated based
on the dot product as follows:

simi, j = δ

(
pi p j√
C

)
, (12)

where δ is the Sigmoid activation function, and the value of simi, j is between 0 and 1;
the closer to 1, the higher the similarity between the two patches, otherwise, the lower the
similarity. The multi-scale local features Fsim can be constructed by iteratively calculating
the similarity between each patch and all other patches.

3.4.3 Integrated Prediction

To improve the classifier’s decision performance, F̂BN is flattened into a one-dimensional
vector together with the local similarity Fsim , and the final prediction probability ŷ is then
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obtained through the fully connected layer followed by the Sigmoid activation function. The
cost function uses the cross-entropy loss as follows:

loss
(
y, ŷ

) = − [
ylogŷ + (1 − y)log(1 − ŷ)

]
, (13)

where y is set to 1 if the input image is a forged face, otherwise it is set to 0. During the
training process, the loss back propagation drives the network to learn the difference between
real and forged faces.

4 Experiments

4.1 Settings

Datasets. Following recent works of face forgery detection, the benchmark dataset Face-
Forensics++(FF++) is used for evaluation. The dataset consists of 740 videos for training,
140 videos for validation, and 140 videos for testing. There are four versions of FF++ in
terms of common face manipulation methods, i.e., DeepFakes (DF) [35], Face2Face (F2F)
[36], FaceSwap (FS) [37] andNeuralTextures (NT) [38]. Additionally, FF++ consists of three
versions of compression level, i.e., raw, lightly compressed (HQ), and heavily compressed
(LQ). We adopt the HQ version by default and otherwise specify the version. To evalu-
ate the robustness of our method, we also conduct experiments on the recently proposed
large-scale face manipulation datasets, i.e., Celeb-DF [39], DeepfakeDetection (DFD) [9],
DeepForensics-1.0 (DF1.0) [40].

Evaluation metrics. In our experiments, the Accuracy rate (ACC) and the Area Under
Receiver Operating Characteristic Curve (AUC) are mainly used as evaluation metrics. A
higher ACC or AUC value indicates better performance. ACC is used as the major evaluation
metric while AUC is adopted to evaluate the performance on cross-dataset. Parameter count
(Params) and the number of floating-point operations (FLOPs) are additionally introduced
to measure the model’s computational workload.

Implementation.All experiments were done in Ubuntu 16.04 operating system equipped
with 12 GB of RAM and a GTX 2080 Ti GPU. The proposed framework is implemented in
Pytorch 1.3.0 with a configuration environment of CUDA10.2, CUDNN7.6.5. The backbone
network used for theRGBstreams is theEfficientNet-B4 [41]model pre-trained on ImageNet,
and the noise branch is a custom stacked convolutional block. The MTCNN [42] is used for
face extraction and alignment, and the aligned faces are resized to 256 × 256. The model
has a batch size of 32 and an iteration epoch number of 30. The RAdam optimizer is used to
train the model with a learning rate of 0.002 and a weight decay of 0.0005. The learning rate
is adjusted using the cosine annealing algorithm. The model hyper-parameters α, β, ρ and
μ are set by cross-validation on the training set with regard to the value of ACC and AUC in
each procedure.

4.2 Ablation Study

In order to analyze the individual contributions of each module in the proposed model,
we conduct experiments using the EfficientNet-B4 model as a backbone. The performance
metrics of the algorithm on the low-quality (LQ) version of the FF++ dataset are evaluated
when progressively adding the PSAM, the NAM, and the IPM respectively. This allows us
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Table 1 Comparison of the
performance gains generated by
each improvement strategy (%)

EfficientNet-B4 PSAM NAM IPM ACC AUC

� - - - 88.67 91.20

� � - - 90.73 94.71

� - � � 89.72 92.68

� � � - 91.09 95.27

� � � � 91.65 96.34

Bold fonts highlight the best results of the experiment

to examine in detail the performance gains generated by each module in detail. The results
are shown in Table 1.

As can be seen from Table 1, each module contributes to the performance improvement,
with the progressive spatial attention module contributing the most, increasing the model
performance gain by almost 2%. This is mainly due to its ability to force the model to learn
other discriminative regions and boost the features of useful ones (this propertywill be further
discussed in subsequent sections using Grad-CAM [43] visualization). The model’s perfor-
mance in dealing with post-processed videos can be further improved by adding noise-aware
and integrated prediction modules. Finally, combining all the modules, the proposed method
achieves a better performance with an ACC and AUC of 91.65% and 96.34%, respectively.

In addition, as shown in (1) and (2), different boostingweightsα and suppressionweightsβ
will have different effects on themodel’s performance. Specifically, the larger α is, the greater
the weight assigned to the boosting spatial part. The smaller β is, the greater the suppression
level of the boosting spatial part. To investigate the effects of the two hyper-parameters on the
model, an experimental analysis was conducted using the LQ version of the FF++ dataset, as
shown in Fig. 4, where Fig. 4a shows the ACC and AUC variation curves with respect to the
suppression weight β without boosting, and Fig. 4b shows the curves variations with respect
to α when the suppression weight β is fixed to the optimal value. From Fig. 4a, it is known
that when β is small, i.e., when the suppression level in the boosting spatial part is large, more

(a) (b)

Fig. 4 Effects of different boosting-suppression weights on the detection performance of the model. (a)
Variation of detectionmetrics with suppression weight when there is no boosting weight. (b) Effect of boosting
weight on the model when the suppression weight is fixed
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useful information might be lost, which has a greater impact on the model’s performance.
As β increases, the useful information is retained, and the optimum is finally reached at
about 0.8. Fig. 4b indicates that appropriately assigning larger weights to the features of the
boosting spatial part can effectively improve the performance of the model, while excessive
boosting might introduce additional noise leading to performance degradation. Therefore, α
is uniformly taken as 0.6 and β as 0.8 in the following experiments.

4.3 Visualization of PSAM

To enhance the interpretability of the progressive spatial attention module, the Grad-CAM
visualization method is adopted to visualize the feature maps output by both the proposed
model and EfficientNet-B4 at the same scale. The decision basis of the model is significantly
displayed by representing the regions of interest in the pictures as heat maps, as shown in
Fig. 5.

It can be observed that although the EfficientNet-B4 model can also capture artifact
regions, such as nose and eye regions, it tends to focus excessively on a certain part in
the subsequent stage of the model and ignore the effective information of other regions, thus
easily causing overfitting issues. Comparatively, the proposed model can effectively address
this issue, as shown in the first row of Fig. 5. The proposed model tends to focus on the
eye region in the first stage, followed by the suppression operations in the DFSM so that the
network captures the nose region, which is also discriminative in the second stage. Similarly,
the network focuses on the fusion boundary region in the last stage (Stage 3). Comparatively,
the EfficientNet-B4 model is limited to detecting the nose region after stage 2 of the net-
work and is less robust. Therefore, the proposed model not only captures different artifact
regions at different scales but also better fits the characteristics that the artifacts of actual
forged images tend to be concentrated in key regions such as eyes, nose, and mouth. These
regions are the essential discriminative information for the model to perform subsequent
learning.

Fig. 5 Visualized heat map at different scales
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4.4 Comparison with recent works

To demonstrate the effectiveness of the proposed model, three types of forgery detection
methods are selected to compare their performance with the proposed model using HQ and
LQ versions of the FF++ dataset. The forgery detection techniques used for comparison are:

(1) Conventional CNN methods, including LD-CNN [10], MesoNet [8] and Xception [9].
(2) Forgery detection methods that use noise features to overcome the effects of post-

processing, including Steg.Features [18], Two-branch [16], and F3-Net [17].
(3) Forgery detection methods based on local correlation, including Face X-ray [44] and

LRLF [21].

The comparison results are shown in Table 2. It can be seen that:
Although conventional CNN methods, such as MesoNet and Xception, achieve great

results on the HQ version of FF++ dataset, their performance drops significantly on the
heavily compressed LQ dataset, while the proposed model achieves remarkable performance
on bothHQandLQdatasets andmaintains better and stable performance on the LQversion of
the dataset. This result is not only due to the progressive spatial attentionmodule that captures
the latent artifacts from different boosting regions, but also due to the noise information
introduced to overcome the impact caused by post-processing.

Compared with models based on noise features, such as Steg.Features and Two-branch,
the proposed model can capture more imperceptible artifacts through adaptive noise features
and phase features, thus achieving better performance on datasets of different quality.

Compared with the state-of-the-art LRLF, the proposed model outperforms LRLF in ACC
metrics by 0.18% and 0.26% on two different quality FF++ datasets, respectively. Compared
withLRLF,whichonly uses local similarity features for forgery detection, the proposedmodel
not only adds a progressive learning feature extraction method to enrich feature information
at different scales, but also captures both local and global information, which has better
robustness.

Compared the results of FLOPs and Params, MesoNet achieves the best performance due
to its lightweight structure. However its limited network structure hinders it from capturing
deeper semantic information, resulting in lower ACC and AUC values. In comparison, the
model presented in this paper achieves moderate performance. The computational efficiency,

Table 2 Comparison of ACC, AUC, FLOPs and Params under different quality FaceForensics++ datasets (%)

Methods LQ HQ FLOPs(G) Params(M)
ACC AUC ACC AUC

Steg.Features 55.98 - 70.97 - 20.10 84.05

LD-CNN 58.69 - 78.45 - - -

MesoNet 70.47 - 83.10 - 0.11 1.31

Face X-ray - 61.60 - 87.40 - -

Two-branch 86.34 86.59 96.43 88.70 - -

Xception 86.86 89.30 95.73 - 6.01 22.86

F3-Net 90.43 93.30 97.52 98.10 16.91 41.62

LRLF 91.47 95.21 97.59 99.46 - -

Ours 91.65 96.34 97.85 99.60 13.81 53.24

Bold fonts highlight the best results of the experiment
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Table 3 Comparison of ACC on
datasets from different
manipulation methods of
FF++(LQ) (%)

Methods DF FF FS NT

Steg.Features 67.00 48.00 49.00 56.00

LD-CNN 75.00 56.00 51.00 62.00

MesoNet 90.00 83.00 83.00 75.00

Xception 96.36 86.86 90.29 80.67

F3-Net 97.97 95.32 96.53 83.32

LRLF 98.12 95.25 97.05 84.22

Ours 98.55 94.61 97.32 82.59

Bold fonts highlight the best results of the experiment

as measured by FLOPs, is fair and the number of parameters is relatively large for end-use
applications. This is primarily due to the numerous self-attention computations involved in
fusingmulti-scale andmulti-modal features. Therefore, there is room for significant improve-
ment in this aspect.

To further verify the detection effectiveness of the proposed model for different manipula-
tion methods, comparative experiments were also conducted on four forgery subsets of FF++
(DF, FF, FS, NT), which were generated using different forgery methods. The LQ version of
the FF++ dataset is adopted for the experiments, and the results are shown in Table 3.

As shown in Table 3, the performance of the proposed model outperforms most of the
advancedmethods and demonstrates its robustness in dealing with different forgery methods.
However, compared to the best performance on the full face swap datasets DF and FS, the
performance of the proposedmodel is still inferior on the expression swap datasets FF andNT
datasets. The reason is that the proposed progressive spatial attentionmodule forces themodel
to continuouslymine hidden artifacts outside the boosting region, and aftermultiple boosting-
suppression stages, the model tends to mine more than one suspected artifact regions. That
is beneficial for full-face replacement containing multiple artifacts, whereas for expression
replacement, which is often limited to the replacement of a certain attribute of the face, such
as eyes or mouth, over-mining of artifacts may introduce noise and ultimately affects the
detection results.

4.5 Generalization Ability Evaluation

The generalization ability of the proposed model is verified by training the model on FF++
dataset and testing it onCeleb-DF,DFD, andDF1.0 datasets. The results are shown in Table 4.
Three additional methods focusing on generalisability were added to this experiment for
comparison, including: Hybrid model [45], Cross-Modality [46] and MA Localization [47].

Celeb-DF,DFD, andDF1.0s are categorized as the second-generation deep forgery dataset.
Compared with FF++, they adopt different forgery synthesis methods, which not only sig-
nificantly improve the synthesis quality of faces, but also make the artifacts less obvious. At
the same time, fake faces under different conditions are also taken into account. For example,
different capture scenes (indoor and outdoor), different light conditions (day and night), the
distance between the video subject and the camera, and head posture changes. Consequently,
performing generalization experiments on such datasets is challenging.

As can be seen from the Table 4, our model’s generalization results are significantly better
than other detection methods. This advantage is mainly due to the following two points:
(1) CNN-based detectors tend to overfit to method-specific color textures and thus fail to
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Table 4 Cross-dataset evaluation
on Celeb-DF, DFD and DF1.0
(AUC (%))

Methods FF++ Testing AUC
Celeb-DF DFD DF1.0

MesoNet 84.70 54.80 - -

Capsule 96.60 57.50 - -

Xception 99.70 68.29 84.86 71.95

Two-branch 93.18 73.41 - -

Face X-ray 99.70 74.20 85.60 72.30

F3-Net 99.30 65.17 87.41 72.59

LRLF 99.80 77.25 89.54 74.58

Hybrid model 99.50 77.40 - -

Cross-Modality 99.80 76.90 - -

MA Localization 95.70 67.20 - -

Ours 99.90 78.47 91.55 76.87

Bold fonts highlight the best results of the experiment

generalize. The multi-scale noise information obtained from the noise stream removes color
textures and reveals discrepancies between authentic and counterfeit regions. It gives the
model a stronger ability to detect post-processing forged faces. As on the DF1.0 dataset with
multiple post-processing, the proposed model can still achieve 2-4% higher detection results
than the F3-Net and LRLF. (2) The PSAM prevents the model from focusing excessively on
a single region while ignoring potential artifacts in other regions, and improves the model’s
ability to detect invisible artifacts.

5 Conclusion

To address the issues of poor generalization and low accuracy in existing deepfake detection
models, this study proposes a noise-aware multi-scale deepfake detection model that focuses
on three key aspects: progressive artefact mining, multi-scale multi-model feature fusion, and
joint prediction based on global information and local similarity. The proposed progressive
spatial attentionmodule can generatemulti-scale features by progressively focusing on differ-
ent salient regions with a boosting-suppression strategy to enable the network to effectively
explore subtle fake features. In addition, the noise-aware dual-stream network integrates
adaptive noise features and phase spectrum with RGB multi-scale features to improve the
model’s ability to handle the effects of post-processing. The robustness of themodel is further
enhanced by the combined discrimination of local consistency and global features. Exper-
iments on widely used benchmarks show the remarkable improvements achieved by the
proposed model in coping with low-quality images and the generalization between datasets.
The proposed model achieves an ACC value of 91.65% and an AUC value of 96.34% on the
low-quality dataset (LQ) of FF. Furthermore, in the generalization experiments from the FF
dataset to Celeb-DF, DFD, and DF-1.0 datasets, the model achieves AUC values of 78.47%,
91.55%, and 76.87% respectively.

However, it was observed that the model exhibits poor performance in detecting single
local forgeries, such as expression swaps. This is because thePSAMtends to examinemultiple
suspicious artefacts across the face through a boosting-suppression mechanism, which may
force the model to mine additional noisy information that does not belong to the region of
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expression-swapping artefacts. Future research will focus on investigating the filtering of
false artefact features to improve the accuracy of the model in detecting expression swap.
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