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Abstract
Predicting energy consumption has become crucial to creating a sustainable and intelligent 
environment. With the aid of forecasts of future demand, the distribution and production 
of energy can be optimized to meet the requirements of a vastly growing population. How-
ever, because of the varied types of energy consumption patterns, predicting the demand 
for any household can be difficult. It has recently gained popularity with social Internet 
of Things-based smart homes, smart grid planning, and artificial intelligence-based smart 
energy-saving solutions. Although there are methods for estimating energy consumption, 
most of these systems are based on one-step forecasting and have a limited forecasting 
period. Several prediction models were implemented in this paper to address the prob-
lem mentioned above and achieve high accuracy, including the baseline model, the Auto-
Regressive Integrated Moving Average (ARIMA) model, the Seasonal Auto-Regressive 
Integrated Moving Average (SARIMAX with eXogenous factors) model, the Long Short-
Term Memory (LSTM) Univariate model, and the LSTM Multivariate model.

Keywords Deep learning · Energy consumption · Internet of things · Prediction analysis · 
Smart homes · Time Series forecasting

1 Introduction

 The Internet of Things (IoT) is a novel paradigm of interconnectivity that has recently 
garnered momentum in the field of modern telecommunications. The IoT ecosystem is 
expected to usher in an era of the ubiquitous presence of uniquely identifiable physical 
objects or “things” (referred to as IoT devices or smart devices) connected via the Internet 
to measure, report and, in some cases, perform actions autonomously [1].

There are tens of IoT use-case applications and services across many industries, includ-
ing but not limited to E-Health, Smart Building, Smart Manufacturing, Smart Agriculture, 
Connected Vehicles, Environmental Monitoring, and Home Automation & Security (HAS)/
Smart Home. These IoT services are becoming increasingly popular with users, partly 
aided by products and services from leading technology pioneers like Apple, Google, and 
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Amazon. To mention a few, they include HAS (such as Apple HomePod, Google Home, 
and Amazon Echo), video surveillance (such as Google Nest Cam, and Netgear Arlo), and 
wearable applications (such as FitBit). Many of these services are still in the early stages of 
development and have not yet received thorough literary characterization. In smart homes, 
there are numerous IoT applications. In contrast to a normal home, which has functional 
furniture and housing for habitation, a smart home aims to offer services that improve the 
user’s comfort and enjoyment. A smart home is a sizable collection of IoT applications that 
go beyond simply being a place to live and give consumers access to new services and con-
trol over daily activities and leisure pursuits [2].

Despite the growth of the sector and its technologies, many experts claim that there 
are problems with network congestion and electricity usage in the IoT space. The methods 
available to solve these challenges are inadequate, and modern smart home services lead 
to indiscriminate network and energy use. Due to battery issues with IoT devices and a 
sharp rise in electrical energy usage, numerous research projects on alternate energy have 
recently been undertaken. However, this innovative energy production necessitates lengthy, 
extensive research; as a result, it is a very speculative, forward-looking enterprise. These 
issues demand autonomous and effective network processing and a technique that can 
reduce excessive energy use by precisely operating IoT depending on user usage patterns 
[3].

The usage data of IoT users must be studied to solve these issues, and an intelligent 
manager is needed as a platform that fully controls and manages this analyzed usage data. 
Here, the phrase “intelligent manager” refers to a manager who offers services that build 
a tailored space for the user in line with the objective of a smart home and network tech-
nology to reduce energy usage, as opposed to an IoT platform that merely connects IoT 
devices. IoT platforms currently offer intelligent services, but most of these process mas-
sive amounts of data and perform mathematical computations more rapidly and correctly 
than a person. A smart home intelligent manager controls groups of devices and provides 
customized services for each user using algorithms that learn from and analyze user data. 
This enables smart homes to prepare for a variety of features in a wide range of circum-
stances and environments. These forecasts and preparations allow the IoT applications to 
be monitored and controlled in line with the researched data, hence reducing network uti-
lization and energy waste. Additionally, automated services anticipate the user’s feelings, 
thoughts, and needs to create a comfortable environment.

Several prediction models, such as the baseline model, ARIMA basic model, ARIMA 
Dynamic model, Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model, 
SARIMAX model, LSTM Univariant and LSTM Multivariant model have been imple-
mented in this paper. The applied prediction models predict the near future and real-time 
electric energy consumption of Heating, Ventilation, and Air Conditioning (HVAC) for 
equipment, furnaces, fridges, dishwashers, wine cellars, etc.) in smart homes.

The paper introduces several prediction models, namely ARIMA, SARIMAX, LSTM 
Univariate, and LSTM Multivariate, without delving into the specific rationale behind their 
selection. To address this, it is essential to underscore that energy consumption inherently 
exhibits time series patterns, making time series models particularly apt for prediction 
tasks. The choice of these models is grounded in their capacity to capture and analyze tem-
poral dependencies within the data.

ARIMA and SARIMAX These models are renowned for their effectiveness in capturing the 
temporal dynamics and seasonality of time series data. ARIMA focuses on auto-regression, 
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integrated differencing, and moving averages, while SARIMAX extends this approach 
by incorporating exogenous variables, providing a robust framework for time series 
forecasting.

LSTM Univariate and LSTM Multivariate Long Short-Term Memory networks excel in 
modeling sequential dependencies over extended time intervals. The ‘Univariate’ variant 
operates on a single variable, suitable for unidimensional time series data. In contrast, the 
‘Multivariate’ LSTM accommodates multiple correlated variables, offering a more com-
prehensive understanding of complex energy consumption patterns.

By employing this diverse set of models, we aim to harness their unique strengths in 
deciphering different facets of energy consumption behavior, ensuring a comprehensive 
comparative analysis that enriches the insights into the predictive capabilities of each 
model.

The objectives of this paper are as follows:

• Development of an IoT-driven smart home case study environment.
• To do a predictive analysis of the energy consumption patterns between an IoT-enabled 

home using deep learning techniques.
• To study the effect and response of external factors, such as weather conditions, power 

supply, hardware architecture, etc., on the IoT system’s energy consumption.

This paper makes an addition to the field by addressing the drawbacks of conventional 
methods, including the need for improved predictive accuracy, the difficulty of account-
ing for a variety of environmental factors, and the inability to accurately capture dynamic 
patterns in energy usage. Our research intends to considerably improve the accuracy and 
dependability of energy consumption predictions by recognizing and resolving these 
issues, providing insightful information for energy optimization tactics and smart home 
applications. There are many state-of-the-art models, such as transformers. However, we 
did not find a particular transformer for our use case, and it was not feasible to train a trans-
former; hence, we used more conventional models such as LSTM Multivariate, ARIMA, 
etc.

The remaining sections are organized as follows: The development of the IoT-driven 
building case study environment and the IoT device measurement data are described in 
Section  2. The problem of predicting electric energy consumption is discussed in Sec-
tion 3. Section 4 presents the electric energy prediction results obtained from the prediction 
models and their comparisons, discussions, and applications. In Section 5, the conclusion 
is presented.

2  Literature survey

This section focuses on a selection of publications by researchers on appliances and socio-
economic factors that aid in recognizing the diverse data and methodologies that have been 
used to identify appliances’ energy usage. Table 1 summarizes various research works [4, 
6, 11–26] on electric power consumption.

Aswathi Balachandran et al. [4] used machine learning techniques for energy consump-
tion analysis. To analyse the variable energy consumption, the datasets are trained with the 
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k-Nearest Neighbour (kNN) algorithm so that they are clustered. This algorithm can make 
suggestions for future homes, and their energy consumption can be estimated. Josephat 
Kalezhi et al. [5] proposed an Energy Management System (MES) capable of regulating 
appliances’ energy consumption in a home environment using IoT infrastructure. The sys-
tem uses various sensors to continuously track multiple situations, using the information to 
operate appliances. The power usage of specific appliances can also be observed. The out-
comes demonstrate that the system reacts quickly to alterations in the home environment. 
Sangyoon Lee et al. [6] proposed a hierarchical deep reinforcement learning algorithm for 
the scheduling of energy consumption of smart home appliances and distributed energy 
resources, including an energy storage system and an electric car is presented. Two agents 
interact in the proposed deep reinforcement learning method to schedule the ideal residen-
tial energy use in an effective manner.

Regarding the forecast of energy consumption, a substantial quantity of literature has 
been produced representing various attempts to anticipate the energy required by various 
equipment. Elkonomou described [7] an artificial neural network-based approach for pre-
diction. A series of tests were conducted using the multilayer perceptron model to deter-
mine which architecture provided the best generalization. Input and output data were uti-
lized in the training, validation, and testing processes. Gray and Chrispin Alfred’s [1] thesis 
sought to examine and better understand the energy consumption of IoT network applica-
tions and services by creating energy consumption models and energy-efficient network 
architectures for the delivery of IoT services. To accomplish this purpose, they used a few 
case studies, including video surveillance services and HAS, two of the most well-known 
and commonly used IoT services. Gonçalves Ivo et al. [8] proposed an Energy Manage-
ment System (EMS) to minimize cost and customer dissatisfaction.

A sustainable, energy-efficient intelligent street lighting system is proposed by Zhon 
Chen et  al. [9] that uses IoT sensors, renewable energy sources, an effective decision-
making module, and a dimming system to aid in energy conservation. We use a variety 
of sensors and actuators that detect motion and light, transmitting that data to the master 
control unit over the ZigBee network and to determine traffic flow and ambient status. For 
hourly building energy forecast, Wang Zeyu et al. [10] suggested a homogenous ensemble 
approach using Random Forest (RF). The method was used to forecast how much power 
would be used per hour in two educational facilities in North Central Florida. To find out 
how parameter setting affected the model’s ability to predict outcomes, the RF models 
trained with various parameter settings were compared. The results demonstrated that RF 
was not overly sensitive to the number of variables and that the empirical number of vari-
ables is preferable because it is faster and more accurate. These models were compared 
head-to-head to demonstrate the superiority of RF over Regression Tree (RT) and Support 
Vector Regression (SVR) in predicting building energy consumption.

Geetha et al. [22] proposed using an RF-supervised learning model to forecast power 
consumption and identify the level of peak demand. This model outperforms the existing 
models in terms of accuracy, stability and generalization.The forecast says that the boom of 
electric vehicles will increase the electricity demand globally by 3% for the upcoming year. 
This forecast analysis helps the service providers and the government understand the cus-
tomers’ lifestyles. The prediction of electricity consumption is a vital foundation for smart 
energy management. Yağanoğlu et al. [23] proposed a study that aims to develop a smart 
classroom concept that provides energy savings and air conditioning based on the analy-
sis of the environmental parameters in the classroom environments in real-time. Measured 
values are then analyzed for anomaly detection and energy saving. Tests were performed 
for seven different scenarios, and the best accuracy and sensitivity were calculated as 98%. 
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It shows that the proposed IoT-based smart classroom architecture is suitable for creating 
smart classrooms. The IoT integrates objects used in daily life with digital platforms by 
connecting to the Internet. The amount of data captured increases in direct proportion to 
the number of sensors on the objects. In this study, embedded systems, the IoT and artifi-
cial intelligence applications have been implemented to monitor and regulate the physical 
conditions in university classrooms.

Table 1 provides a summary of the studies on electrical power consumption discussed 
in the article and their key findings. It includes the study’s focus, methods used, and main 
conclusions. It provides a useful overview of the current state of research on electrical 
power consumption and can be used as a reference for further study and analysis. The lit-
erature survey summarises and highlights the following points:

1. The energy consumption of the appliances represents a significant portion of the residen-
tial sector’s accumulated electricity demand. It is essential for the smart home’s power 
management [27].

2. Due to the growing number of electrically powered machines, it is crucial to identify 
the primary energy consumers.

3. The consumed energy can be broken down into components, including heating, ventila-
tion, and air conditioning systems.

4. The energy consumption patterns of appliances can vary considerably.
5. External factors have a greater impact on appliances in highly insulated buildings [28].

3  Methodology

3.1  System architecture

Machine learning has allowed computer systems to automatically learn without being 
explicitly programmed. The authors have used three machine learning algorithms 
(‘baseline’, ‘ARIMA basic’, ‘long short-term memory networks’’). The architecture dia-
gram depicts a high-level overview of the system’s major components and significant 
interdependencies.

The flowchart, as shown in Fig.  1, comprehensively represents our research project’s 
system architecture. It outlines the sequential execution flow and highlights the major steps 
involved in refining raw data and predicting future data. The six crucial steps in the process 
are as follows:

1. The flow of the process used to refine raw data and predict data is depicted in the archi-
tecture diagram.

2. The next step is pre-processing the collected raw data into an understandable format. 
This involves handling missing values, data normalization, and feature extraction to 
prepare the dataset for model training.

3. The data must be trained by separating the dataset into train data and test data. This 
ensures that the model’s performance is evaluated on unseen data, providing a reliable 
assessment of its capabilities.

4. The data is evaluated with the application of a machine learning algorithm, which is the 
baseline Model, RNNs, and ARIMA algorithm. Each model’s classification accuracy 
and forecasting performance are measured to gauge its effectiveness.
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5. After training the data with these algorithms, we test the models on the same dataset to 
validate their predictive capabilities. This step is crucial for determining the models’ 
robustness and suitability for real-world applications.

6. Finally, the result of these algorithms is compared based on classification accuracy.

4  Experimental results and discussion

Predicting energy consumption remains difficult despite the abundance of research studies 
employing various techniques and models, owing to the extent of consumption-influencing 
factors (e.g., physical properties of the building, installed equipment, weather conditions, 
and energy-use behavior of building occupants). To address the difficulties, this paper pro-
poses a novel approach and provides a summary of forecasting models that incorporate 
occupant behavior and weather conditions.

The prediction models can generate information about the patterns that drive energy 
consumption, enabling designers to incorporate more accurate input parameters into energy 
models. In other words, the suggested model’s results can be integrated with those of exist-
ing building simulation models to generate relevant operating variables. For instance, 
a simulation model can use the anticipated energy consumption to infer occupancy and 
building operational data. Tenants and building owners can use this information to man-
age the building more efficiently. Using Root Mean Squared Error (RMSE), models were 
determined to be directly comparable to data-based energy values. The findings suggest 
that electricity demand can be predicted using machine learning algorithms, deploying 

Fig. 1  Block diagram of the proposed technology
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renewable energy, planning for high/low load days, minimizing energy waste, recognizing 
anomalies in consumption trends, and quantifying energy and cost-saving actions.

One potential application of these findings is in the field of smart grid management. 
Using machine learning algorithms to predict electricity demand, utilities can better plan 
for and manage integrating renewable energy sources into the grid. This can help to mini-
mize energy waste and ensure that the grid remains stable and reliable. Additionally, by 
identifying anomalies in consumption trends, utilities can quickly identify and address any 
issues that may arise, such as equipment failures or network outages. Another potential 
application is in the commercial and industrial sectors. By using machine learning to pre-
dict electricity demand, businesses can take proactive measures to reduce their energy con-
sumption and costs. For example, they can schedule energy-intensive tasks during periods 
of low demand and take action to maximize energy efficiency.

While the use of ARIMA and LSTM models in energy prediction is not unprecedented, 
this study introduces several methodological distinctions and novel aspects. The employ-
ment of a Multivariate LSTM model sets this study apart. The model captures intricate 
relationships that univariate models may overlook by incorporating multiple predictor vari-
ables, including environmental factors and household characteristics. This study offers a 
comprehensive comparative analysis of various models, including ARIMA, SARIMAX, 
LSTM Univariate, and LSTM Multivariate. The rationale for the selection of each model 
and a detailed evaluation using multiple metrics distinguish this work from others.

4.1  Descriptions of dataset

The dataset used in this study for smart home energy prediction was gathered from an open 
source. To compute and analyse appliances’ energy usage, this data includes information 
for 503,910 instances with 32 attributes, as shown in Table 2. The prediction dataset for 
this energy of appliances has 32 input attributes and a date (time) value. This CSV file 
includes the readings of household appliances in kW from a smart meter for a period of 
350 days, together with local weather data for that location.

In our dataset, the given attributes are described as follows: use represents the total 
energy consumption of the household, gen represents the total energy generated using solar 
or other power generation resources. The dishwasher, furnace, wine cellar, fridge, etc., rep-
resents the energy consumption of various appliances. The attributes like pressure, wind-
speed, cloud-cover, dewpoint, etc., cover the weather-related parameters. Figure 2 repre-
sents the correlation between weather parameters.

4.2  Performance measures

Performance evaluation measures serve as essential parameters for conducting a compara-
tive analysis of different deep learning techniques, aiming to identify the best algorithm 
or method for predicting energy consumption in smart homes. These evaluation measures 
provide insights into the relative performance of various models and assist in determining 
the most effective approach.

To establish an RMSE threshold, we employ the moving average technique. The moving 
average is a statistical method used to analyze and smoothen data fluctuations over a spe-
cific period. It calculates the average value of a series of data points within a defined win-
dow or interval, commonly applied in time series analysis. By utilizing the moving average 
as a baseline, we can set an RMSE threshold that other models should strive to exceed. 
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Consequently, the RMSE values of alternative models can be compared against the RMSE 
of the moving average model, enabling a relative performance assessment.

In addition to RMSE, various metrics are employed to evaluate prediction findings. 
These metrics include Mean Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE), Mean Absolute Scaled Error (MASE), and R-squared (R2) score. These meas-
urements offer distinct perspectives on predictive models’ accuracy, error, and goodness of 
fit. By considering these metrics, we gain a comprehensive understanding of the predictive 
power of each model. These metrics are defined as:

• mean_squared_error (MSE): The mean_squared_error function computes mean 
square error, a risk metric corresponding to the expected value of the squared (quad-
ratic) error or loss.

  If  ŷi s the predicted value of the  ith sample, and yi  is the corresponding true value, 
then the mean squared error estimated over nsamples is defined as:

Table 2  Explanation of attributes Data variables SI units

Time Date-time
Use kilowatt(kw)
Gen kilowatt(kw)
House Overall kilowatt(kw)
Dishwasher kilowatt(kw)
Furnace 1 kilowatt(kw)
Furnace 2 kilowatt(kw)
Home office kilowatt(kw)
Fridge kilowatt(kw)
Wine cellar kilowatt(kw)
Garage door kilowatt(kw)
Kitchen 12 kilowatt(kw)
Kitchen 14 kilowatt(kw)
Kitchen 38 kilowatt(kw)
Barn kilowatt(kw)
Well kilowatt(kw)
Microwave kilowatt(kw)
Living room kilowatt(kw)
Solar kilowatt(kw)
Temperature ℃
Humidity %
Visibility meter(m)
Apparent temperature ℃
Pressure Pa
Wind speed m/s
Cloud cover %
Wind bearing degree
Precip intensity %
Dew point ℃
Precip probability %
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• root_mean_squared_error (RMSE): RMSE, or Root Mean Square Error, is a metric 
used to measure the average difference between predicted values and actual values. It 
quantifies the accuracy of a predictive model, with lower values indicating better per-
formance.

• r2_score: The r2_score function computes the coefficient of determination, usually 
denoted as R2. It represents the proportion of variance (of y) explained by the mod-
el’s independent variables. It provides an indication of goodness of fit and, therefore, 
a measure of how well unseen samples are likely to be predicted by the model through 
the proportion of explained variance.

(1)MSE
(
y, ŷ

)
=

1

nsamples

∑nsamples−1

i=0

(
yi − ŷi

)2

(2)MSE
(
y, ŷ

)
=

√
1
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∑nsamples−1

i=0

(
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)2
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i=1
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2

∑n
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−
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Fig. 2  Correlation between weather parameters
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• mean_absolute_error (MAE): The mean_absolute_error function computes mean 
absolute error, a risk metric corresponding to the expected value of the absolute error 
loss or l1-norm loss. If ŷi s the predicted value of the ith sample, and yi is the corre-
sponding true value, then the mean absolute error estimated over nsamples is defined as:

• mean_absolute_percentage_error (MAPE): The mean absolute percentage error, 
also known as Mean Absolute Percentage Deviation (MAPD), is an evaluation metric 
for regression problems. The idea of this metric is to be sensitive to relative errors. It 
is, for example, not changed by a global scaling of the target variable. It is given as fol-
lows:

Utilizing these evaluation metrics, in conjunction with the moving average as a base-
line, allows for a comprehensive comparative analysis of alternative models in predicting 
energy consumption in smart homes. The results obtained from this analysis contribute to 
informed decision-making and the selection of optimal predictive models.

The evaluation metrics used in this study include MAE, MASE, RMSE, and Coeffi-
cient of Determination (R2 Score). MAE measures the average absolute errors between 
predicted and actual values, MASE provides a scaled error considering the mean absolute 
error and a scaled mean absolute error of the naïve model. RMSE quantifies the square 
root of the average squared differences between predicted and actual values. R2 Score, or 
the Coefficient of Determination, indicates the proportion of the variance in the dependent 
variable (energy consumption) that is predictable from the independent variables (predictor 
variables).

In simpler terms, achieving a higher R2 Score signifies a better predictive power of the 
model. A higher R2 Score indicates that a larger proportion of the variation in energy con-
sumption can be explained by the predictor variables, making the model more reliable and 
effective in capturing the underlying patterns in the data.

4.3  The baseline model

A baseline model is the simplest effort at modeling; it provides us with a reference metric 
that we can use throughout the development process. This baseline model is frequently a 
heuristic (rule-based) model but could also be a straightforward machine learning model. 
When plotting time series data, these fluctuations may prevent us from clearly understand-
ing the plot’s peaks and valleys. As a result, we use the rolling average concept to create 
the time series plot so that the data’s value is evident.

The rolling average, also known as the moving average, is the simple mean of the pre-
vious ‘n’ values. It can help us detect trends that would otherwise be difficult to identify. 
Additionally, they can be utilized to identify long-term trends. The rolling average can be 
calculated by adding the previous ‘n’ values and dividing by ‘n’ itself. In contrast, the roll-
ing average’s first (n-1) values would be NaN in this case. Figure 3 represents the rolling 
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mean and the data house overall graph of 2016 with respect to the energy consumption and 
time for the baseline model, with Table 3.

4.4  ARIMA model

Class of models that “describes” a given time series based on its own past values, that is, 
its own lags and the lagged forecast errors, so that the resulting equation can be used to 
predict future values. ARIMA models can be used to model any “non-seasonal” time series 
that exhibits patterns and is not random white noise [29].

Making the time series stationary is the first step in developing an ARIMA model. In 
ARIMA, the term ‘Auto Regressive’ refers to a linear regression model that employs its 
own lags as predictors. As you are aware, linear regression models perform optimally when 
the predictors are uncorrelated and independent. The most prevalent method is differentia-
tion. That is, deduct the prior value from the current value. Depending on the complexity 
of the series, multiple differencing may be required at times. Therefore, d represents the 
minimal number of differentiations required to make the series stationary. Figure 4 depicts 
the step-by-step process of the ARIMA model.

Starting with the dataset, we first perform a stationary check and apply series transfor-
mation techniques. Next, we analyze the Autocorrelation Function (ACF) and Partial Auto-
correlation Function (PACF) to determine the appropriate Auto Regressive (AR) and Mov-
ing Average (MA) components for the ARIMA model. Afterward, the time series is split 
into training and testing sets. In one branch, we fit an ARMA model to the training data; in 
another, we employ a SARIMA model. Once the models are fitted, we evaluate their per-
formance using metrics such as R2, MASE, MAPE, MAE, and RMSE. By following the 
systematic approach depicted in the flowchart, we construct an accurate ARIMA model for 

Fig. 3  Results of the rolling mean and the data house overall for the baseline model

Table 3  Metrics representing the 
predictive power of the baseline 
model

Metric Value

RMSE 0.304
MAE 0.194
MAPE 0.233
MASE 0.790
R2 Score -0.203
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time series forecasting, enabling us to make reliable predictions about future values based 
on past data.

Augmented Dickey Fuller (ADF) The ADF test’s null hypothesis is that the time series is 
non-stationary. If the p-value of the test is less than the significance level (0.05), then the 
null hypothesis is rejected, and it is concluded that the time series is indeed stationary. To 
be stationary, the critical values at 1%, 5%, and 10% confidence intervals should be as close 
as possible to the Test Statistics. Figure 5 represents the output of the forecasting model on 
test Data of 2016 for the ARIMA model. From the stats model, we have used AD-fuller, 
whose test results are shown in Table 4: The augmented dickey fuller test operates on the 
statistic that yields a negative number and rejects the null hypothesis. In addition, Table 5 
represents the results of the ARIMA model.

Fig. 4  Flowchart of the ARIMA model

Fig. 5  Results of the rolling mean and the data house overall for the ARIMA model
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Dependent on this negative number, the greater the magnitude of the negative number, 
the greater the confidence of unit root presence at some level of the time series. There are 
several parameters in the ARIMA function that we can set for the optimum result, so we 
have set the values as follows for our prediction:

arima_model = auto_arima (train, start_p = 0, d = 0, start_q = 0, max_p = 5, 
max_d = 5, max_q = 5, start_P = 0, D = 1, start_Q = 0, max_P = 5, max_D = 5, 
max_Q = 5, m = 12, season-al = True, error_action = ‘warn’, trace = True, surpress_
warnings = True, stepwise = True, random_state = 20, n_fits = 50).

4.5  SARIMAX model

The ARIMA class of models is extended by the seasonal auto-regressive integrated mov-
ing average with eXogenous factors or SARIMAX. ARIMA models logically consist of 
the MA term and the AR term. In the former, the value at any given time is simply the 
weighted sum of earlier values. The SARIMAX model’s step-by-step process is depicted in 
Fig. 4 as a flowchart.

The latter model incorporates past residuals instead of weighted sums to represent the 
same value (confer. time series decomposition). SARIMA models can be expressed in sev-
eral ways. One of them is Time Series Forecasting, which is defined as:

where p denotes non-seasonal AR order, d denotes non-seasonal differencing, q denotes 
non-seasonal MA order, P denotes seasonal AR order, D denotes seasonal differencing, Q 
denotes seasonal MA order, and S denotes the length of the repeating seasonal pattern.

SARIMA(p, d, q) × (P,D,Q,S)

Table 4  Dick Fuller test result 
for the ARIMA model

Metric Value

Test statistic -2.988003
p-value 0.036030
#Lags Used 10.000000
Number of observations used 340.000000
Critical value (1%) -3.449730
Critical value (5%) -2.870079
Critical value (10%) -2.571319
dtype Float64

Table 5  Metrics representing the 
predictive power of the ARIMA 
model

Metric Value

RMSE 0.263
MAE 0.174
MAPE 0.226
MASE 0.710
R2 Score 0.095
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SARIMAX results are shown in Table 6, while Table 7 represents the metrics used for 
predicting the power of the SARIMAX, and Fig. 6 represents the predictions made by the 
SARIMAX on test data.

4.6  LSTM model

LSTM stands for Long short-term memory networks employed in deep learning. Many 
RNNs can learn long-term dependencies, particularly in problems involving sequence pre-
diction. Traditional forecasting techniques like ARIMA and HWES are still widely used 
and effective, but they do not have the same level of broad generalizability as memory-
based models like LSTM [30]. The LSTM fixes the serious short-memory problem that 
recurrent neural networks experience. The LSTM controls whether to keep, forget, or 
ignore data points using a series of “gates,” each with its own RNN based on a probabilis-
tic model. Using the ReLu function as an activation function and training the LSTM model 
with the total number of trainable parameters: 10,451.

Table 6  SARIMAX results Parameter name Value

Ljung-Box (L1) (Q) 0.01
Prob(Q) 0.93
Heteroskedasticity 12.34
Prob (H) (two-sided) 0.00
Jarque-Bera (JB) 2993.30
Prob (JB) 0.00
Skew 2.85
Kurtosis 19.18

Table 7  Metrics representing 
the predictive power of the 
SARIMAX model

Metric Value

RMSE 0.317
MAE 0.243
MAPE 0.361
MASE 0.989
R2 Score -0.312

Fig. 6  Results of the rolling mean and the data house overall for the SARIMAX mode
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 To provide a visual representation of the LSTM Univariate model’s working, we have 
added a architectural diagram (Fig.  7) and flow chart (Fig.  8) depicting the step-by-step 
process for the LSTM Univariate model’s predictions. This flow chart outlines the key 
stages involved, from data preprocessing to the LSTM model training and prediction. Addi-
tionally, it showcases how the LSTM model’s performance is evaluated by comparing its 
predictions to the actual values in the test dataset, using various evaluation metrics such as 
RMSE, MAE, MAPE, MASE, and R2 score. This flow chart is a valuable tool to illustrate 
the LSTM model’s methodology and contribution to our time series forecasting analysis.

Figure 9 represents the LSTM Univariate model’s prediction. Forecasting time series is 
the process of estimating a time series’ future value using historical data. Numerous time 
series problems can be resolved by looking forward to one step. Multi-step time series fore-
casting simulates the distribution of a signal’s future values over a forecast horizon. This 
approach forecasts multiple output values simultaneously, a forecasting technique used to 
forecast the future path of a gradually rising sine wave. Additionally, many of these vari-
ables depend on one another, complicating statistical modelling. Table  8 represents the 
results for LSTM.

A univariate forecast model simplifies this complexity to a single factor. Other 
dimensions are taken into consideration. While a multivariate model can account for 

Fig. 7  Architecture for LSTM 
[32]

Fig. 8   Flowchart for LSTM working
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only a portion of the influencing factors, it can still account for multiple factors concur-
rently. Figure 10 represents the LSTM Multivariate model’s prediction. To obtain more 
comprehensive information on LSTM, it is recommended to refer to the paper [33].

4.7  Practical insights and applications

The obtained results showcase the LSTM Multivariate model’s predictive power and 
offer valuable practical insights for energy optimization techniques and load manage-
ment in smart homes. The following points highlight the key practical implications:

Fig. 9  Results of the LSTM Univariate model’s prediction

Table 8  Metrics representing the 
predictive power of the LSTM 
model

Metric LSTM univariate LSTM multivariate

RMSE 0.262 0.164
MAE 0.174 0.120
MAPE 0.306 0.179
MASE 0.989 0.546
R2 Score 0.112 0.639

Fig. 10  Results of the LSTM Multivariate model’s prediction
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1. Optimal Energy Consumption Patterns: The LSTM Multivariate model, by demonstrat-
ing superior predictive capabilities, provides a foundation for identifying optimal energy 
consumption patterns. Insights derived from the model can guide the development of 
energy-efficient strategies within smart homes.

2. Resource Allocation Strategies: Leveraging the predictive accuracy of the model, 
resource allocation strategies can be refined. This includes better management of energy 
storage systems, scheduling of home appliances, and efficient use of electric vehicles, 
contributing to overall load management.

3. Real-time Decision Support: The continuous and reliable predictions offered by the 
LSTM Multivariate model empower homeowners with real-time decision support. This 
aids in making informed choices regarding energy consumption, contributing to both 
cost savings and environmental sustainability.

4. Adaptability to Various Smart Home Infrastructures: The model’s adaptability allows 
extrapolation of results to similar infrastructures such as offices, schools, and colleges. 
This extends the practical applicability beyond smart homes, enabling a broader imple-
mentation scope.

4.8  Results summary

Table  9 summarizes the results for the models as discussed in this paper. The predic-
tion models can be applied to data sets of other environmental conditions to check the 
responses.

5  Conclusion and future scope

The lower values of MAE, MASE, and RMSE imply higher accuracy of a regres-
sion model. However, a higher R2 score value is considered desirable. Both RMSE and 
R-squared measure how well a linear regression model fits a given dataset. RMSE indicates 
how accurately a regression model can predict the absolute value of a response variable, 
whereas R-squared indicates how well the predictor variables can explain the variation in 
the response variable.

Table 9 shows that the LSTM Multivariate model has demonstrated its potential as an 
effective predictive model, achieving the highest predictive power of all tested models. 
This research has shown that the LSTM Multivariate model could be a valuable tool for 

Table 9  Summary results for the predictive models

Metric Model

Baseline ARIMA SARIMAX LSTM Univariate  LSTM Multivariate

RMSE 0.304 0.263 0.317 0.262 0.164
MAE 0.194 0.174 0.243 0.174 0.120
MAPE 0.233 0.226 0.361 0.306 0.179
MASE 0.790 0.710 0.989 0.989 0.546
R2 Score -0.203 0.095 -0.312 0.112 0.639
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researchers and practitioners in carrying out predictions related to the energy consumption 
of smart homes. The results can further be used for various energy optimization techniques 
and load management. Based on the results obtained, we aim to implement technologies 
like Integration with Technologies (e.g., Blockchain, Cloud Computing), Anomaly detec-
tion, and Application to Different Environmental Conditions. Integrating technologies like 
blockchain and cloud computing aims to improve data security and continuous prediction 
reliability. Blockchain ensures secure and tamper-resistant data storage, while cloud com-
puting provides a scalable and accessible platform for data collection.

Anomaly detection entails the identification and management of atypical or erroneous 
data. To tackle this issue, we suggest incorporating a mechanism that can effectively iden-
tify and eliminate anomalous data points during the training phase of the model. Moreo-
ver, employing a technique of initially training models on varied datasets and subsequently 
refining them to suit particular environmental circumstances could augment their ability 
to adapt. The process of adapting prediction models to different environmental conditions 
requires the identification of common characteristics, the implementation of reliable data 
preprocessing techniques, and the integration of domain-specific expertise. Transfer learn-
ing strategies and a design for resilience to environmental variability are crucial. Validation 
protocols should encompass diverse datasets while also considering ethical considerations.
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