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Abstract
Deepfake detection aims to mitigate the threat of manipulated content by identifying and
exposing forgeries. However, previous methods primarily tend to perform poorly when con-
fronted with cross-dataset scenarios. To address the above issue, we propose an innovative
hybrid network called the Frequency-based Local and Global (FLAG) network to explore
local and global information with the help of frequency-domain cues for better generalization
capability. In consideration of the fact that forged faces often exhibit flaws in the frequency
domain, we design a Frequency-based Attention Enhancement Module (FAEM) to enhance
the aggregation of CNN and Vision Transformer (ViT). In this design, local features from
CNNare attentively enhanced by selected frequency coefficients in FAEM, facilitating gener-
alizable global features learning by theViTmodule. The effectiveness of the proposedmethod
is validated via numerous experiments and the generalization performance is improved under
cross-dataset scenarios. Especially, the proposed method have obtained an AUC of 99.26%
and an ACC of 96.56% using intra-dataset experimental results on FaceForensics++ (C23).

Keywords Multimedia forensics · Deepfake detection · Hybrid network ·
Vision transformer · Channel attention

1 Introduction

Deepfakes, which refer to manipulated videos by deep neural networks [1, 2], have led to
a crisis of social trust and posed a significant threat to social stability [3, 4]. In response
to the growing concerns surrounding deepfakes, extensive efforts have been undertaken to
distinguish deepfake content from unaltered videos [5–9]. Most existing Deepfake detec-
tion methods [10–12] employ Convolutional Neural Networks (CNNs) to extract local
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information. However, relying solely on local information can make the model more sus-
ceptible to being influenced by specific dataset features, resulting in limited generalization
performance [13, 14]. Meanwhile, the Vision Transformer (ViT) [15, 16], with its self-
attentionmechanism, demonstrates strong capabilities in capturing global information. Some
researches [7, 17] employ the ViT model for Deepfake detection due to the ability. But ViT
always overlook local details that are crucial for Deepfake detection. Due to the highly com-
plementary nature of local and global features, it is essential to integrate the strengths of both
CNN and ViT. This enables effective capture of local features while also considering global
features, leading to improved overall performance [6, 18]. However, a mere straightforward
fusion of model frameworks might result in the algorithm being more tailored to the training
data, thus lacking ideal generalization when confronted with unseen datasets. To address this
issue, our proposed hybrid network, Frequency-based Local and Global (FLAG) network,
which aims to effectively combine CNN and ViT models to achieve improved detection
performance not only on the in-dataset but also on unseen datasets.

To enhance the aggregation of CNN and ViT, we propose a Frequency-based Attention
Enhancement Module (FAEM), which is specifically designed to improve the model’s gen-
eralization performance. During the process of face manipulation via deep neural networks,
the imperfect generative models introduce visual artifacts in the spatial domain. Several
detection methods have been proposed [10, 11] to identify the forged videos based on the
visual artifacts in the spatial domain, and significant achievements have been made through
the analysis of specific indicators, such as visual color discrepancies [12] and inconsistent
head poses [19]. However, these spatial domain algorithms [10, 19, 20] demonstrate fragility
when the visual quality of manipulated faces is degraded after common post-image process-
ing attacks (i.e., compression and blur) [21]. To deal with the highly realistic manipulated
images, frequency-domain clues have been utilized as generalized features to expose forged
videos, by directly utilize frequency domain coefficients as clues or employ them as spatial
attention weights for spatial features [22–26]. We argue that simply feeding the network with
frequency features makes the network highly reliant on the details, which may disappear dur-
ing the compression or other process, resulting in a drop in performance. Thus, we propose
using channel attention instead of spatial attention to emphasize the discriminability among
the channels. Compared to spatial attention, channel attention provides the ability to extract
correlations and assess the importance between different channels of feature maps [27, 28].

In this paper, we propose a hybrid network that combines CNN and ViT, connected by
FAEM to improve generalization. FAEM is a frequency-based attention enhancementmodule
based on several representative frequency coefficients. More specifically, we select four
Discrete Cosine Transform (DCT) coefficients as clues for constructing the channel attention
mechanism, which combines Alternating Current (AC) and Direct Current (DC) coefficients.
These coefficients provide improved stability and are less susceptible to quality distortion
after potential image attacks [29]. Essentially, the amalgamation of AC andDC coefficients is
employed to acquire frequency-domain channel attention, subsequently employed to augment
the featureweight ofmid-level features [10]. To provide a clearer understanding of FAEMand
its impact on challenging manipulated faces, we present Gradient-weighted Class Activation
Mapping (Grad-CAM) [30] visualizations of the module’s effects on Fig. 1 for Deepfakes
(DF) [21] and NeuralTextures (NT) [31]. As shown in Fig. 1, our proposed FAEM can
effectively focus on manipulated regions, especially in subtle manipulation parts (e.g., face
and mouth) of the DF and NT.

The contributions of this paper are summarized as follows.

123



Multimedia Tools and Applications

DF

NT

(a) (b) (c) (d)

Fig. 1 Grad-CAM [30] visualization of FAEM on two kinds of challenging manipulated faces including
DF [21] and NT [31]. (a) and (c) columns reflect features without FAEM, (b) and (d) columns reflect features
with FAEM

(1) We propose a novel Deepfake detection network, Frequency-based Local and Global
(FLAG) network, which integrates the CNN and ViT through FAEM-enhanced local
features to improve generalization performance.

(2) We design a novel Frequency-based Attention Enhancement Module (FAEM) that
strengthens the correlations among feature channels and enhances the generalization
of method via several frequency coefficients, in particular, three representative AC coef-
ficients and a DC coefficient.

(3) Experimental results demonstrate that the proposed method obtains significant and
robustness performance on the in-dataset and effectiveness generalization capability on
the cross-datasets. Additionally, the proposed method exhibits strong robustness against
various image attacks.

2 Related work

2.1 Deepfake detection

Early methods in the field of forgery detection, such as [32–35], rely on intrinsic statistics
or hand-crafted features to model spatial manipulation patterns. Matern et al. [12] propose a
method for detecting deepfake videos by leveraging artifacts present in the images, specif-
ically focusing on characteristics such as eye color [8], missing details in the eye and teeth
areas. However, with the rapid advancements in deep learning, several studies have focused
on developing detectors which based on deep learning that can differentiate manipulated
images from real ones by extracting spatial features.

In recent times, there has been a surge in the development of deep learning-based detection
methods, which have consistently delivered impressive results. Some Deepfake detection
methods based on deep learning with spatial features are proposed. Afchar et al. [10] present
a method that utilizes MesoNet for capturing mesoscopic features in the context of deepfake
detection. Rössler et al. [11] propose a Deepfake detection method based on XceptionNet,
achieving satisfactory results on the FF++ dataset. Li et al. [36] propose a novel spatial image
representation called Face-X-ray. Face-X-ray is trained using a self-supervised algorithm
on a large dataset consisting of mixed images synthesized from real images. The Face-X-
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ray approach can achieve high detection performance in high-quality videos and provide
interpretable boundaries for face-swapping. However, it may suffer from a performance
drop when encountering low-resolution images. Similarly, Zhao et al. [37] propose a multi-
attention detectionmodel to capture subtle forgery traces from spatial features. These spatial-
based methods [11, 36–38], however, are fragile when the quality of a manipulated face is
degraded by image processingmethods. To counter theweakness against quality degradation,
our method not only learns spatial artifacts but also builds channel-enhanced attention based
on frequency domain coefficients.

In addition, Frank et al. [39] observe that forged images generated by Generative Adver-
sarial Networks (GAN) [2] show particular artifacts in the frequency domain in the essential
up-sampling operation, and it has been demonstrated that frequency features possess robust
model generalization capabilities for the detection of unseen deepfakes. F3-Net, as described
in [24], takes images into the frequency domain and employs two modules to capture global
and local frequency cues, respectively. SPSL [40] combines spatial image features and phase
spectrum information to effectively capture the up-sampling artifacts commonly found in
face forgery images. Kohli et al. [22] convert RGB images into the DCT domain for Deep-
fake detection. Chen et al. [26] introduce an attention module that is designed for multi-scale
feature fusion, aiming to integrate RGB and frequency domain information across various
network levels. Luo et al. [25] employ a method that models the correlation and interac-
tion between high-frequency modality and regular modality for detection purposes. In this
paper, by considering the benefits of channel attention and the significance of frequency
domain information in Deepfake detection tasks, we design a channel attention module that
specifically focuses on leveraging frequency domain information.

2.2 Vision transformer

The Transformer has found extensive application in natural language processing (NLP)
tasks [41, 42], obtaining impressive performance by effectively modeling long-range depen-
dencies. The ViT [15], as a variant of the Transformer, has been successfully adapted for
various computer vision tasks such as object recognition [43, 44], scene classification [45],
and face recognition [46]. By dividing an image into a sequence of image patches and leverag-
ing its built-in attention mechanism, ViT excels at capturing global information, thus offering
notable advantages in capturing global features.

For Deepfake detection tasks, a number of detection algorithms based on ViT have been
proposed, yielding remarkable performance outcomes. In reference [17], high-level convo-
lutional features are extracted using a CNNmodel. These extracted features are then directly
input into ViT for classification purposes. In [18], two CNNmodels are used to extract feature
maps of different sizes. These feature maps are then inputted into a ViT network, which gen-
erates two predicted values. The final prediction is obtained by summing these two values.
Wang et al. [14] propose a Transformer-based framework that selects more valuable blocks
for Deepfake detection by designing the attention module. M2TR [7] designs multi-scale
Transformer blocks and frequency-domain features to detect local forgery clues. HFI-Net [6]
devises a network structure that combines CNN and ViT, utilizing mid-to-high-frequency
information for Deepfake detection. To account for both local and global information in the
feature maps, we propose a joint network architecture that incorporates the enhanced local
and global features, promoting better model convergence [47].
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3 Method

3.1 The proposed frequency-based local and global network

CNN captures local features effectively, leading to superior detection performance in the
same manipulation method. However, its limited receptive field hampers its performance on
unseen datasets. On the other hand, ViT extracts global features butmay overlook subtle clues
crucial for Deepfake detection. The combination of local and global features exhibits strong
complementarity. We can achieve this by splicing the CNN and ViT networks, significantly
improving detection performance on the intra-dataset. However, the simple network splicing
approach may be more suitable for the training dataset, limiting its generalization. To address
this, we propose a new hybrid network, FLAG network, which utilizes FAEM to aggregate
the CNN and ViT models. In this network, local features extracted from CNN are enhanced
by FAEM, facilitating generalizable global features learning by the ViT. The FLAG network
enables better complementarity between local and global features, resulting in improved
detection performance not only on the intra-dataset but also on unseen datasets.

The proposed FLAG network is illustrated in Fig. 2. In this hybrid network, we employ
convolutional networks to extract local features from the input image X ∈ R3×W×H , result-
ing in middle level network features Xm ∈ RC×M×N of the CNN architecture. FAEM, which
utilizes selected robust andgeneralizable frequency coefficients, is used to enhance themanip-
ulated information within these local features. Afterwards, the enhanced local feature maps
Xm

f re ∈ RC×M×N are flattened and their channel size is adjusted using 1 × 1 convolu-
tion to meet the requirements of the ViT’s transformer module. Class tokens and position
embeddings are added, and the number of transformer blocks is modified accordingly. The
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Fig. 2 The overall framework of our proposed method. The extracted middle level features Xm are enhanced
with feature weights by the FAEM module, and then enhanced features Xm

f re input into the ViT module to
obtain global information. ⊕ and ⊗ denote element-wise sum and channel-wise product
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modified features are then fed into the transformer blocks andMLP (Multi-Layer Perceptron)
to extract global features for classification. This approach facilitates faster convergence to
some extent [47]. As a result, this designed network enables the extraction of both local and
global features.

3.2 Frequency-based attention enhancementmodule

Previous algorithms [25, 26, 40] have shown better generalization by incorporating fre-
quency domain information. However, in these approaches, frequency domain features are
often directly extracted and combined with spatial domain features to detect tampering clues.
Additionally, they can also be used as spatial attention mechanisms for spatial domain fea-
tures. In [28], researchers propose a channel attention mechanism based on the frequency
domain. They improve the global average pooling method from the perspective of the fre-
quency domain to introducemore channel information and improve themodel’s performance.
However, selecting toomany coefficients causes overfitting and decreases generalization per-
formance in Deepfake detection. To address this issue, we consider reducing the number of
coefficients and using only relatively robust ones to construct the channel attention module
for Deepfake detection. By considering the characteristics of exploring frequency domain
coefficients, we select four DCT coefficients, including the DC coefficient and three AC
coefficients, to construct FAEM. This aims to improve the generalization and robustness of
the detection model.

DCT is awidely used signal processing technique that converts spatial domain information
into a frequency domain representation. For a two-dimensional vector x2d ∈ RM×N , the
formula of 2D DCT is as follows:

Bi, j
m,n = cos

(
πm

M

(
i + 1

2

))
cos

(
πn

N

(
j + 1

2

))
, (1)

F2d
m,n =

M−1∑
i=0

N−1∑
j=0

x2di, j B
i, j
m,n, (2)

where Bi, j
m,n is the transformation basis function of DCT, M and N represent the length and

width of the featuremap, i and j represent the position of the featuremap (i = 0, 1..., M, j =
0, 1, ...N ), m and n represent the position of the DCT coefficients (m = 0, 1..., M, n =
0, 1, ..., N ), and F2d

m,n is the DCT coefficient.
Specifically, the DC coefficient primarily represents the primary energy of the entire fea-

ture map, while the three adjacent AC coefficients represent the horizontal, vertical, and
diagonal energy information of the feature map, respectively. These selected 4 DCT coeffi-
cients provide stability to the features and are less susceptible to loss in compression. These
coefficients are used to construct a frequency-based attention enhancement module, aiming
to improve the generalization performance of the detection model. The selected four coeffi-
cients represent a significant portion of the energy information in the features. This approach
shows better robustness against image attacks like JPEG compression or Gaussian blur com-
pared to using all low-frequency information or other frequency domain information. The
effectiveness of this approach is validated through experimental analysis, as presented in
Tables 4 and 5.

To provide a clearer understanding, Fig. 3 illustrates the construction of the FAEM using
selection coefficients. Meanwhile, Fig. 3 depicts the process of utilizing FAEM to enhance
local features. We divide the number of channels of the mid-level network features Xm ∈
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Fig. 3 Proposed Frequency-based Attention Enhance Module (FAEM). � and ⊗ denote element-wise multi-
plication and channel-wise product

RC×M×N into 4 parts according to the selected 4 frequency domain bases, denoted as Xk ∈
RC ′×M×N , k ∈ {0, 1, 2, 3}, C ′ = C/4. The features of each part correspond to a specific
frequency domain base.

For each part, the frequency domain-based attention can be expressed as:

Fk =
M−1∑
i=0

N−1∑
j=0

Xk:,i, j B
mk ,nk
i, j , (3)

where (mk, nk) are the frequency component 2D indices corresponding to Xk , Fk ∈ RC ′
is

the C
′
dimensional vector. Then the frequency-domain attention features of these 4 parts are

aggregated together by cat() function,

Fre = cat
([
F0, F1, F2, F3]) , (4)

where Fre ∈ Rc is the C dimensional vector. Then, we employ a fully connected (FC) and
a sigmoid function σ to obtain attentive weights:

Watt = σ (FC (Fre)) , (5)

To mitigate the problem of redundant data resulting from directly applying DCT to RGB
information, we adopt an alternative approach. Instead of applying DCT to the RGB data
directly, we perform it on the network’s middle-level features, denoted as Xm . These middle-
level features possess better resistance to interference compared to shallow features and
contain more detailed information than high-level features [10]. According to the character-
istics ofmiddle-level features, by utilizing Xm , we can preserve crucial tampering clues while
minimizing the inclusion of redundant information that may affect recognition. Additionally,
we enhance the middle-level features by applying frequency-based attentive weights derived
from the AC and DC coefficients,

Xm
f re = Watt ⊗ Xm, (6)
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where Xm
f re denotes the enhanced features by frequency-based attentive weights, ⊗ denotes

a channel-wise multiplication. This process highlights the tampering clues within the feature
maps, making them more prominent and improving the overall detection capability.

4 Experiment

4.1 Dataset and settings

Datasets To verify the effectiveness and generalization of our proposedmethod, we conduct
experiments on the FaceForensics++ (FF++) dataset [11], the Celeb-DF (V2) dataset [48]
and the DeepFake Detection Challenge (DFDC) dataset [49]. The FF++ dataset comprises
three versions: the original version (raw), the lightly compressed version (C23), and the
heavily compressed version (C40). Each compressed version consists of 1000 real videos
and corresponding fake videos generated using four common manipulation methods, includ-
ing Deepfakes (DF) [21], Face2Face (F2F) [50], FaceSwap (FS) [51], and NeuralTextures
(NT) [31]. Based on reference [11], we use 720 training videos, 140 validation videos,
and 140 testing videos for every 1000 videos. For training, we select 32 frames for each
video, while for validation and testing, we use 100 frames for each video. The Celeb-DF
(V2) dataset [48] comprises 890 real videos and 5639 high-quality fake videos. The DFDC
dataset [49] includes more than 20000 real videos and more than 100000 fake videos. In this
paper, we employ the Celeb-DF (V2) dataset and DFDC dataset for cross-dataset testing.

Implementation details We utilize MTCNN [52] to detect and save the face image size as
224 × 224. To extract features, we utilize the EfficientNet-b4 model [53], which has been
pretrained on the ImageNet dataset [54], specifically up to layer 5. The middle-level features
extracted are subsequently input into the FAEM to acquire enhanced features. Then the
enhanced features are fed into the ViT [15] network for classification. We employ AdamW
with parameters (0.9, 0.999) as the optimizer. The initial learning rate is to 0.0001 and aweight
decay of 1e-5. Training is conducted with a batch size of 14, while testing is performed with
a batch size of 4. The total training epoch number is 20. As for data augmentation, we only
apply random horizontal flip. And we utilize the cross-entropy loss function for the final
binary classification.

We implement the framework and conduct experiments using the open-source PyTorch
library on a single NVIDIA 2080Ti GPU. The proposedmodel has a computational complex-
ity of 33.59 GMAC (GigaMultiply-Accumulates) and consists of 103.48million parameters.
During the testing phase, our algorithm achieves a detection speed of approximately 119
images per second with a batch size of 4.

Evaluationmetrics We use Accuracy (ACC) and Area Under the Receiver Operating Char-
acteristic Curve (AUC) for validation. Since our method is essentially image-based, we
default to evaluating the model with image-level evaluation following [6, 11].

4.2 Comparison with other methods

In this subsection, we conduct comparative experiments with recent state-of-the-art (SOTA)
methods to evaluate their performance in various scenarios. More specifically, MseoNet [10],
Xception [11], MaDD [37], MTD-Net [20], and CFFs [55] leverage spatial features for deep-
fake detection. On the other hand, SPSL [40], M2TR [7], and HFI-Net [6] focus on utilizing

123



Multimedia Tools and Applications

Table 1 Intra-dataset evaluation results (AUC (%) and ACC (%) ) on FF++ dataset

Methods C40 C23
AUC ACC AUC ACC

MseoNet [10] − 70.47 − 83.10

Xception [11] 81.76 80.32 94.86 92.39

SPSL [40] 82.82 81.57 95.32 91.50

M2TR [7] 87.15 83.89 96.75 91.86

HFI-Net [6] 88.40 85.69 97.07 91.87

CFFs [55] 90.35 − 97.63 −
Proposed 89.94 (-0.41) 86.59 (+0.90) 99.26 (+1.63) 96.56 (+4.69)

Note that the results for comparisons are from [6]

frequency features to enhance the generalization ability of deepfake detection models. We
perform intra-dataset performance tests on FF++ (C23) and FF++ (C40). Cross-dataset eval-
uations are then conducted using Celeb-DF (V2) and DFDC. Cross-manipulation evaluation
in constructed on FF++(23). The best results are shown in bold.

Intra-dataset evaluation The FF++ dataset is commonly used for evaluating deepfake
detection methods. We conduct training and testing using the FF++ (C23) and FF++ (C40)
settings, respectively. The results presented in Table 1 demonstrate that our method achieves
competitive performance compared to previous approaches. In detail, the proposed method
works better for the C23 subset, wheremore frequency details are stored compared to the C40
subset. Specifically, in the C23 subset, our method achieves an ACC of 96.56% and an AUC
score of 99.26%, surpassing the second-best ACC performer, CFFs [55], by a notable gain of
1.63% in ACC. Additionally, our proposed method outperforms HFI-Net [6] by a substantial
margin, achieving a gain of 4.69% in ACC and 2.19% in AUC. As for the highly compressed
C40 subset, our proposedmethod gains anAUCof 89.94%,which lags CFFs [55] by amargin
of 0.41% in AUC. However, in comparison to the HFI-Net [6] method, which also utilizes
frequency domain features, our proposed method outperforms HFI-Net [6] by a margin of
0.9% in ACC and 1.54% in AUC.

Cross-dataset evaluation In the cross-dataset evaluation, our model is trained on the FF++
(C23) dataset and tested on the Celeb-DF (V2) andDFDCdatasets using theAUCmetric. The
experimental results, compared with SOTA methods, are presented in Table 2. Notably, our

Table 2 Cross-dataset evaluation
(AUC (%) ) from FF++ (C23) to
Celeb-DF (V2) and DFDC
datasets

Methods Train set Test set
Celeb-DF (V2) DFDC

Xception [11] FF++ (C23) 65.30 72.20

M2TR [7] FF++ (C23) 65.17 −
SPSL [40] FF++ (C23) 72.39 −
MaDD [37] FF++ (C23) 67.44 −
MTD-Net [20] FF++ (C23) 70.12 −
HFI-Net [6] FF++ (C23) 83.28 73.65

CFFs [55] FF++ (C23) 74.20 72.09

Proposed FF++ (C23) 78.84 (-4.44) 75.64 (+1.99)
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proposed approach demonstrates superior generalization on the DFDC dataset, achieving a
1.99% improvement inAUCcompared toHFI-Net [6]. ForCeleb-DF (V2), ourmethod attains
an AUC of 78.84%, surpassing CFFs [55] by a margin of 4.64%. It is worth mentioning that
HFI-Net [6] attains the highest performance in Celeb-DF (V2) evaluation by incorporating a
global-local interaction module at each stage, effectively suppressing certain features in the
training dataset and enhancing generalization across diverse datasets. However, our method
outperforms HFI in terms of intra-dataset performance, as indicated in Table 1.

Cross-manipulation evaluation To demonstrate the generalization of our method across
different manipulation methods, we conducted this experiment on the FF++ (C23) dataset.
Following the standard protocols in [5], we train amodel on threemanipulationmethods from
the FF++ dataset and test it on the remaining manipulation method. During training, we use
datasets that include three manipulation methods as the training and validation sets, while the
remaining manipulation method is exclusively included in the test set. For instance, GID-DF
(23) means training on the other three manipulated methods of FF++ (C23) and testing on
Deepfakes class, as well as GID-F2F (23). The evaluation metrics used in this study are
video level AUC and ACC. Based on references [5, 24], we utilize the average score of a
sequence of frames to generate the video-level prediction. The comparative experimental
results presented in Table 3 are obtained from [5].

First of all, our method excels in the GID-F2F scenario, achieving a remarkable perfor-
mance with an ACC of 66.31% and an AUC of 86.50%. This surpasses the second-best ACC
performer, LTW [5], by a notable margin, exhibiting a gain of 0.71% in accuracy and 5.3%
in AUC. In the case of GID-DF, LTW [5] has a slightly higher AUC by 0.24% compared
to our method, although our method achieves a higher ACC by 2.34% than LTW [5]. The
advantage of GID-DF is still comparable to SOTA on average.

4.3 Ablation study

Effectiveness of different components To verify the effectiveness of the proposed mod-
ules, we conduct several ablation studies. Starting with the pure EfficientNet-b4 model as
the baseline, we gradually add the proposed modules. ‘EfficientNet-b4+Vit_block’ refers to
the utilization of the EfficientNet-b4 model with ViT block, excluding the attention mod-
ule. ‘EfficientNet-b4+FAEM’ represents the use of the EfficientNet-b4 model with FAEM.
Thesemodels are trained on the FF++ (C23) and tested on the FF++ (C40) andCeleb-DF (V2)
datasets. As the number of proposed modules increases, the proposed model gradually gains

Table 3 Cross-manipulation evaluation results (AUC (%) and ACC (%) ) on FF++ (C23) dataset

Methods GID-DF (C23) GID-F2F (C23)
AUC ACC AUC ACC

EfficientNet [53] 91.11 82.40 80.10 63.32

Forensic [56] − 72.01 − 64.50

Multi-task [57] − 70.30 − 58.74

MLDG [58] 91.82 84.21 77.10 63.46

LTW [5] 92.70 85.60 80.20 65.60

Proposed 95.04 (+2.34) 85.36 (-0.24) 86.50 (+5.3) 66.31 (+0.71)

The evaluation metrics are video-level AUC and ACC. GID-DF (C23) means training on three manipulation
methods of FF++ (C23) and testing on Deepfakes class. GID-F2F (C23) means test on Face2Face class
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Fig. 4 Ablation results for different components

enhanced expressive capabilities, leading to improved discriminative performance. Figure 4
demonstrates that the hybrid model structure combining CNN and ViT provides more con-
fident information for decision-making compared to the pure EfficientNet-b4 model. The
proposed enhanced module, utilizing frequency domain information, also improves the gen-
eralization capability of the model. Simultaneously, the proposed network structure, which
takes into account both local and global features, has significantly improved the performance
compared to the original pure EfficientNet-b4 model. The AUC scores indicate that the
proposed algorithm improves intra-dataset performance and generalization across diverse
datasets.

Effectiveness of different frequency components To verify the effectiveness of the
selected frequency coefficients in our work, ablation studies are made by comparing differ-
ent choices of frequency coefficients. The results are listed in Table 4, in which ‘FLAG_mh’
indicates that the FAEMmodule is constructed usingmid-frequency and high-frequency coef-
ficients and ‘FLAG_low’ uses low-frequency coefficients to construct the FAEM module.
Overall, the proposed method obtains the best performance in both scenarios: the in-domain
test (train on FF++ 40 and test on FF++C40), compression robustness test (train on FF++C23
and test on FF++ C40) and the cross-dataset test (train on FF++ C23 and test on Celeb-DF).
More specifically,we see that using low-frequency coefficients showsbetter performance than
using high and middle frequencies, with at least a 0.81% improvement. This improvement is
further raised by focusing on four low-frequency coefficients considered in our work.

Table 4 Ablation study on different frequency components via training on FF++ (C23) and C40 respectively

Methods Train set Test set Train set Test set
Celeb-DF (AUC) C40 (AUC) C40 (AUC) C40 (ACC)

FLAG_mh C23 73.54 78.43 C40 87.73 85.63

FLAG_low C23 76.31 79.33 C40 89.42 86.44

Proposed C23 78.84 80.40 C40 89.94 86.59
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In the real-world situations, images are often affected by image attack, which can result
in a reduction in image quality. All these processing will cause a distortion that decreases the
generalization performance. In other words, high-frequency features tend to be lost during
image processing, further exacerbating the issue. To verify the effectiveness of coefficient
selection in the face of image attack, we conduct a robustness test on the channel attention
enhancement model constructed using different coefficients. First, we train the model on the
C23 training set without image attack, and then we test it on the C23 test set after applying
different image attacks [59]. We use various types of image attacks, including: (1) JPEG
compression with JPEG quality factors with JPEG quality factors of 50, 30, and 20; (2)
filter windows of sizes 7 × 7, 5 × 5, and 3 × 3 for Gaussian Blur; (3) Color Saturation with
saturation levels of 0.1, 0.2, and 0.3; (4) Block-wise with a size of 8× 8 and varying numbers
of occluded blocks: 80, 64, and 48; (5) Color contrast with contrast ratios of 0.6, 0.725, and
0.85. Table 5 presents the different image attacks, their corresponding parameters, and the
tested AUC results. Additionally, Fig. 5 provides visual examples illustrating the effects
of different image processing techniques and their corresponding levels. Each column of
images, from top to bottom, corresponds to different parameter level attacks as listed in
Table 5. When facing a JPEG compression attack with a compression factor of 20, the
proposed enhancement module, built based on four frequency domain coefficients, improves
the AUC by 2% compared to FLAG_low. In the case of Gaussian blur with a filter window
size of 7 × 7, the proposed enhancement module achieves an AUC of 88.05%. Furthermore,
when confronted with a color contrast attack featuring a contrast ratio of 0.6, the proposed
module shows an AUC improvement of 0.56% compared to the FLAG_low.

Furthermore, we restrict the selection to four coefficients at different positions, as shown
in Fig. 6. Figure 6 illustrates the specific selection of locations for the coefficients in the
experiment, where (a) represents the four coefficients selected by the proposed method, (b)
represents the fourmiddle-frequency coefficients selected, (c) represents another fourmiddle-
frequency coefficients selected, and (d) represents the selection of the four high-frequency

Table 5 AUC results of C23 after
image processing operation of
different types and degrees

Processing Parameters FLAG_mh FLAG_low Proposed

JPEG 50 91.03 91.54 91.78

30 82.10 84.57 85.21

20 73.47 77.26 79.26

Gaussian blur 7 87.59 87.04 88.05

5 95.58 95.28 96.30

3 98.96 98.91 99.08

Color saturation 0.1 97.77 98.14 98.46

0.2 97.93 98.28 98.50

0.3 98.19 98.50 98.65

Block-wise 80 77.03 85.77 86.31

64 83.72 89.14 89.53

48 90.41 92.75 92.67

Color contrast 0.6 98.39 98.29 98.85

0.725 98.95 98.95 99.18

0.85 99.18 99.17 99.31
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JPEG Gaussian Blur Color Saturation Block-wise Color Constrast

Fig. 5 Image visualization on the levels of severity for five image processing operations. We utilize three
severity levels for five distortion types in the robust testing

(a) Proposed (b) Middle_Fre1 (c) Middle_Fre2 (d) High_Fre1

Fig. 6 Four coefficients are chosen at various positions. The picked locations are highlighted in green

Table 6 Ablation study of four
coefficients are chosen at various
positions

Methods Train set Test set
Celeb-DF (V2) DFDC

Middle_Fre1 FF++ (C23) 77.52 72.68

Middle_Fre2 FF++ (C23) 75.27 76.45

High_Fre FF++ (C23) 75.86 74.91

Proposed FF++ (C23) 78.84 75.64

The AUC (%) results of Celeb-DF (V2) and DFDC datasets are shown
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DF F2F FS NT

Fig. 7 The visualization experiment of proposed methond through Grad-CAM [30]. The shown images
includes DF [21], F2F [50], FS [51] and NT [31], corresponding to each column. And each column includes
RGB images and corresponding Grad-CAM [30]

coefficients in the lower right corner. The results are shown inTable 6 for the cross-dataset test.
The proposed selection shows the best performance in Celeb-DF (V2) dataset. Regarding the
suboptimal performance on the DFDC dataset, it is likely due to the dataset primarily com-
prising excellent quality forged videos. In such cases, the four frequency domain coefficients
represented by Middle_Fre2 may be more effective in detecting and capturing tampering
information. More importantly, this study supports our motivation to use four frequency
coefficients to design channel attention instead of a random sampling strategy.

4.4 Visualization experiments

To further understand the effectiveness of our proposed method, we provide visualizations
of our method through Grad-CAM [30] on different tampering methods in Fig. 7. Two
tampering methods, DF [21] and FS [51], are employed for face swapping by replacing the
target facewith the source face. F2F [50] andNT [31] are facial reenactment technologies that
specifically manipulate facial expressions and lip movements. In Fig. 7, we observe that our
method focuses on the face regions in the DF [21] and FS [51] columns, while in the F2F [50]
and NT [31] columns, our method focuses on manipulation regions such as the nose and
mouth. These visualizations demonstrate that our proposed method captures discriminative
and reasonable features, especially for NT where only the mouth part is manipulated.

5 Conclusion

This paper introduces the Frequency-based Local and Global (FLAG) network architecture,
which effectively explores both local and global information by leveraging frequency-
domain cues. By combining the strengths of CNN and ViT, the framework effectively
captures tampering information at both local and global scales. Additionally, we propose
a frequency-based attention enhancement module that carefully considers the characteris-
tics of frequency domain coefficients. This module effectively integrates the CNN and ViT,
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resulting in improved generalization performance of the model. Experimental results on pub-
lic datasets demonstrate the satisfactory performance of our proposed method. Furthermore,
we hope that the FLAG framework can serve as inspiration for researchers to further explore
the potential of frequency domain coefficients in the field of Deepfake detection.
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