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Abstract
Segmenting nuclei in histopathological images presents challenges due to variable sizes 
and overlapping regions, compounded by inter-class heterogeneity in shape and func-
tion. To overcome these, we proposed a robust deep learning architecture integrated with 
a novel edge detection technique based on local standard deviation. This method effi-
ciently identifies nuclei edges, even at Multiscale levels, by exploiting the relationship 
between local standard deviation and image features. Our CNN architecture consists of 
stable residual, bottleneck, and attention decoding blocks, enabling effective extraction 
of high-level semantics and precise image localization. Evaluation on H&E stained liver 
disease histopathological images and a multi-organ database showcases the effectiveness 
of our approach, comparable to modern deep neural networks. Three performance indi-
cators are computed to statistically assess segmentation efficacy, consistently demonstrat-
ing the superiority of our method over others. For multi-organ dataset segmentation using 
proposed methods attains the Jaccard index (89.99%), Precision (91.5%), Recall (91.1%), 
F1-measure (91.27%), and Accuracy (95.42%). Similarly for liver dataset attains Jaccard 
index (65.72%), Precision (88.74%), Recall (89.53%), F1-measure (90.12%), and Accuracy 
(94.85%). By addressing the limitations of previous unsupervised methods, our approach 
offers a robust solution for nuclei segmentation across diverse datasets. The significance of 
our work lies in its potential to enhance automated nuclei recognition in medical diagnosis 
and research, facilitating more accurate analysis of histopathological images and ultimately 
contributing to improved patient care and understanding of disease pathology.

Keywords Nucleus segmentation · Liver cancer · Deep learning neural network · 
Histopathological images · Edge detection

1 Introduction

Tumour which begins in the cells of the liver is known as liver cancer. The liver is a 
football-sized gland situated in the right upper quadrant of the belly, below the esopha-
gus, and over the abdomen. The liver contains blood vessels that flow throughout the body 
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continually, turning nutrition including medications received from the digestive system 
into ready-to-use molecules. Other key activities of the liver include eliminating poisons 
as well as other chemical organic waste from the blood as well as preparing it for excre-
tion. The liver is especially susceptible to cancer cells migrating through the bloodstream 
since all of the blood throughout the body should flow through it [1]. The liver could grow 
various types of cancers. Hepatocellular carcinoma is by far the most common type of liver 
cancer which, starts in the main type of liver cell(hepatocyte). Certain kinds of liver cancer 
were significantly less prevalent, including intrahepatic cholangiocarcinoma and hepato-
blastoma. Primary liver cancer, which starts in the liver, also a tumor that begins some-
where else in the body as well as moves to the liver, could damage the liver. Primary liver 
cancer was already linked to several cancer-causing agents, particularly herbicides includ-
ing chemicals like vinyl chloride as well as arsenic. Smoking, particularly when paired 
with alcohol addiction, raises your risk. Aflatoxins, cancer-causing chemicals produced by 
a species of plant mold, also were linked to the outbreak [2].

The typical liver cancers are secondary or metastasis says they start somewhere else in 
the body. Since the liver is thought up of a variety of cell types, it could develop a variety 
of tumors. Many are benign (noncancerous), while others might be cancerous and could 
have the possibility to expand to other parts of the body (metastasize). Possible factors and 
treatments are used for these tumors. The growth of malignancy in the liver is much more 
frequent than cancer, which develops in the liver cells. Metastatic cancer, instead of liver 
cancer, is cancer that starts in some other part of the body, including the intestine, lungs, 
or breast, and afterward grows to the liver [3]. Metastatic colon cancer, for example, is 
cancer that forms in the intestine and develops in the liver. Liver cancer develops whenever 
the DNA of liver cells transforms (mutates). The substance that gives directions to every 
chemical reaction in the system is DNA. Variations in such directives might be the cause 
of gene mutations. As a result, cells might grow out of proportion and subsequently form a 
tumor, which is a collection of cancerous cells. In certain circumstances, including chronic 
hepatitis diseases, the causation of liver cancer is recognized. Moreover, liver cancer could 
happen in persons who have no chronic illnesses, and the etiology is still unidentified. 
Because of its substantial morbidity and mortality, liver cancer is a primary cause of the 
disease fatalities [4]. Early identification and accurate liver cancer diagnosis could signifi-
cantly lower mortality and improve survival rates.

Several treatment options including individual conditions are available depending on 
the level of cancerization. As a result, determining the level of cancerization is important. 
Ultrasonography, nuclear magnetic resonance imaging, as well as pathological biopsies 
analysis, are some of the procedures used to diagnose liver cancer. Pathological test assess-
ment is one of them, and it could get the most reliable information about liver cancer. The 
nuclear diameter, nucleocytoplasmic ratio, nuclear irregularities, hyperchromatism, and 
anisonucleosis, as well as the nuclear texture, are all being used by pathologists to diag-
nose liver biopsies as well as classify the cancerization into five classes (ranging from 0 
to 4) based on six parameters [5]. On the other hand, because it is qualitative as well as 
non-quantitative, the interpretations of unusual cases provided by pathologists are almost 
always different. As a consequence of this, it would have been advantageous to have an 
automatic rating solution that provides pathologists with a diagnosis standard. The cover-
age of tests can be improved by using automated testing since the automated execution 
of test cases is far faster than the manual execution of test cases, and it requires signifi-
cantly fewer resources to execute when compared to manual testing. The nuclei segmenta-
tion using biopsy pictures is the most significant aspect of the automated rating method. 
The effectiveness of the computerized grading scale would be influenced by the segmented 
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images. Cancer identification could be aided by imaging technologies that include com-
puted tomography, magnetic resonance imaging, and ultrasound; nonetheless, histopathol-
ogy image analysis (HIA) is the gold standard for oncology diagnoses [6]. Cancer is now 
a big public health issue. It is the second major cause of death in the US. The major cause 
of this phenomenon is lifestyle factors including tobacco addiction, lack of exercise, and 
overconsumption of unhealthy foods and processed food, so on. Recent advances in science 
and technology have paved the road for early cancer identification and treatment. However, 
there are numerous hurdles in developing an automatic technique for detecting cancer cells.

Fluorescent markers [e.g., 4′,6′-diamidino-2-phenylindole (DAPI)] or histochemical 
staining can be used to stain the nucleus of cells (e.g., hematoxylin). It’s critical in such 
systems to be able to adequately recognize the appropriate number of neurons as well as 
define these with the highest efficiency and lowest manual work. It’s also important to 
modify sophisticated algorithms quickly to samples of various tissues taken under various 
imaging settings. Although when nuclear shapes and sizes were perfectly partitioned, there 
remains inherent diversity. Nuclei in pathological specimens might have unusual forms and 
diameters. Another type of segmentation mistake is varying chromatin texture—highly pat-
terned nuclei seem to be more difficult to segment, particularly whenever they are tightly 
crowded. Throughout this field, separating densely crowded cell nuclei has long been a 
concern. Because there are so many nuclei in the area (particularly in whole-slide photos), 
approaches that are both technically manageable and efficient are required. Finally, addi-
tional mistakes are caused by imaging distortion within the background areas, particularly 
because of the fluorescence data, as well as the existence of spectrum un-mixing errors 
in processing multi-spectral images. The technique of finding a series of image features, 
typically one per nucleus of the cell and closer to its center, which is frequently termed as 
“markers” or “seeds,” might be the most crucial part of nuclear segmentation techniques. 
The following methods employ these sites to define the geographic range of every nucleus 
of the cell. Indeed, the precision and consistency of the first seed points are important to 
segmentation performance [7].

The pathologist assistant’s job is to assess the tissue’s cell arrangements. As a result, 
this type of assessment is wholly subjective, with several variables and errors. It could be 
handled with the help of a computer-assisted automatic detection technique utilizing his-
topathological images. Because the automated diagnosis of cancer offers enhanced cancer 
treatment, it has piqued the interest of academics in previous times [8]. Histopathological 
pictures are widely utilized in a variety of potential treatments, including medical diagno-
sis, cancer malignancy assessment, and therapy efficacy predictions because they provide 
detailed information about cellular morphology as well as tissue structure. Unfortunately, 
a pathologist’s subjective examination of histological pictures takes patience and therefore 
is imprecise. The goal of a digital histopathology image study is to examine histopatho-
logical pictures automatically, which can significantly enhance diagnostic repeatability and 
objectivity. The duty of dissecting each nucleus in histological photographs is an especially 
important one. However, there are still some difficulties in segmenting overlapping, or 
touching nuclei, and there is also a restricted ability to apply the method to diverse types of 
tissues and epithelial tissue [9]. It would appear that highly patterned nuclei are more dif-
ficult to segment, particularly when there is a dense concentration of them. Because there 
are so many nuclei in the vicinity, there has long been a concern over the difficulty of 
separating densely crowded cell nuclei. As a result, automated cancer in the liver of HIA 
is required to increase the effectiveness and precision of diagnostics. Computer-aided auto-
matic image assessment of liver cancer has become possible due to better advancements in 
pattern classification as well as visual analytical techniques. Computer-aided approaches 
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are easier, faster, and more impartial than manual processes [10]; additionally, they could 
be implemented by specifying a collection of useful texture features and classification tech-
niques. The latest automated approaches, nevertheless, have had some drawbacks. Devel-
oping feature extraction, for starters, involves specialist knowledge, which would be biased 
and time-consuming. Secondly, categorization effectiveness is overly reliant on the features 
picked. Lastly, when the database varies, the feature extraction cannot be continuously 
improved.

Robust unsupervised edge detection methodology is suggested for the nucleus segmen-
tation of liver cancer H&E colored histopathological images. Variations in lighting, color, 
shading, and textures can produce an edge, which can be used to determine the width, 
height, direction, and surfacing aspects of a digital image. These qualities can be deter-
mined by using the edge. The digital analysis of the image helps in the selection of edge 
points by deleting data that is not necessary for the analysis. Image processing, computer 
vision, and machine vision are all examples of applications that make use of edge detection 
for image segmentation and data extraction. Noise can muddle the identification of refined 
modifications, which is dependent upon the pixel’s threshold of modification that identifies 
an edge. Detecting these boundaries is challenging and consumes more time, particularly 
whenever an image is distorted by noise. In the core fields of image processing, including 
feature detection and feature extraction, edge detection is a basic and important tool. The 
finding of boundaries that represent the limits and split the representation of the image 
from other regions or objects in a digital image is known as edge detection. When edge 
detection is performed, the edge that is being looked for is detected based on the bright-
ness variations that occur inside the image pixels. It is a collection of processes for finding 
the points in an image where clearly and unambiguously a rise in brightness happens. This 
can be accomplished by looking at the image and comparing it to itself. To put it another 
way, ED is used to locate points in a digital image where there are abrupt changes in the 
level of brightness, often known as discontinuities. Edges are defined as points in an image 
where the brightness of the surrounding pixels varies dramatically. The sequence of actions 
is required to extract picture-related information such as image sharpening, augmentation, 
and object positioning. Input a color image initially. Filtration has been used to eliminate as 
much noise as possible while preserving the true edges of the object. To enhance the effec-
tiveness of edges, use differentiating. The edge intensity threshold is being used to elimi-
nate excessive edge pixels and keep the rest of the pixels contained. Some applications 
will require subpixel resolution to identify the distance of an edge and the space among 
pixels. After the edge exposure, get the images. Figure 1 shows the Flow diagram of edge 
detection.

In digital photos, the gradient-based method is also known as a mask. The digitized 
mask is used to compute differential approximation in either the horizontal or vertical 
direction of the image. Several edge detectors work well throughout uncorrupted photos, 
but they are extremely susceptible to distortion and therefore won’t work well on images 
that are blurry or won’t have “sharp” edges. Pre-filtering an image before doing edge detec-
tion is often beneficial for such purposes. When images are distorted by excessive amounts 
of distortion, smoothing filters are generally utilized as pre-filters. A median filter, for 
example, could be used to eliminate impulses. Such filters, on the other hand, incline to 
diminish gradients of the edge. Although linear sharpeners could improve edge gradients, 
but are still incapable of generating step edges and therefore are highly sensitive to inter-
ference and outliers. Furthermore, they frequently create significant ringing, which might 
result in false edges. The usage of certain edges with nonlinear are improving filters as pre-
filters for gradient-based segmentation techniques. It is demonstrated that using nonlinear 
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sharpeners could greatly boost the effectiveness of gradient-based edge detectors. Those 
filters share some characteristics that make them useful in this situation. It could, for exam-
ple, transform fuzzy edges into excellent step edges while also suppressing noise. Further-
more, there is no ringing at the margins with these filters. As a result, false alarms are 
reduced, and gradients are broad and focused. It results in inherently narrower edge out-
lines and decreased threshold sensitivities. Following prefiltering, smooth edges that might 
go undetected were recognized. The suggested edge detection method is not as prone to 
noise as existing gradient-based edge detection techniques. A calculation method is also 
provided to demonstrate that the suggested edge detection approach produces less noise 
than traditional gradient-based edge detection methods.

Histopathology image processing, as an integral aspect of digital pathology, is becom-
ing increasingly significant in cancer diagnosis, as it could provide direct as well as trust-
worthy information to prove the rating and form of cancer. The goal of nuclei segrega-
tion is to acquire precise information about every nucleus in addition to comparing the 
number of nuclei. Regarding nuclei identification, the shape of every nucleus is produced 
rather than only the positioning of its central points. As a result, it could precisely remove 

Fig. 1  Flow diagram of edge 
detection
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every nucleus from the images for additional investigation. Segmentation of the nucleus in 
histopathological images was studied for over a decade. To achieve reliable segmentation 
of photos of various categories, a wide range of interventions were presented. Most clas-
sic nuclei segmentation techniques may be broken down into two steps: first, recognizing 
the nuclei, and then obtaining the contours of every nucleus. The region of nuclei or the 
seed of every nucleus should be generated by the detection step. DL-based procedures have 
grown in recent years in image segmentation owing to their high effectiveness throughout 
several computer vision applications. These have had a substantial impact on all aspects of 
image processing and computer vision, including object categorization, identification, and 
segmentation.

This study introduces an automated edge detection method that operates independently 
of algorithm variables, followed by thresholding to create binary images. The proposed 
CNN architecture focuses on robust residual block and attention techniques for nuclei seg-
mentation, effectively extracting deep features while eliminating unnecessary elements. 
Addressing the challenge of nuclei segmentation in histopathological images due to stain-
ing variations and diverse visual properties of cell types, the study leverages deep learning 
techniques with significant success. Overall, the main contributions lie in the development 
of an automated edge detection method, a CNN architecture tailored for nuclei segmenta-
tion, and the application of deep learning to address challenging segmentation problems in 
biological contexts.

The paper is divided into six sections. In Section 2, existing nuclei segmentation tech-
niques are briefly discussed. The problem statement is discussed in Section 3. Section 4 
covers the entire edge detection process, including the threshold operator as well as the 
CNN network segmentation algorithm. Section  5 contains the results and comments, as 
well as tables and graphs. Finally, the paper is concluded in Section 6.

2  Related works

According to the use of diverse staining, scanning, overlapped, clustered nuclei, as well 
as the confusing boundaries among adjacent cell nuclei, previous nuclei segmentation 
approaches have only yielded poor effectiveness using multi-center and multi-organ 
whole-slide images (WSIs). Researchers have developed a stain-aware nucleus segmen-
tation idea of multi WSIs that is based on deep learning to address these problems. 
They present an effective method that utilizes stain clustering to pick several differ-
ent staining patterns, in contrast to earlier research that normalized WSIs by using a 
single stain pattern obtained from the database. The rise in digital pathology has been 
accompanied by an increase in interest in automated nuclei segmentation in hematox-
ylin and eosin (H&E) stained histology images. Despite this significance, automated 
nuclei segmentation is still difficult to achieve because different types of nuclei have a 
variety of distinct appearances. This heterogeneity might result in the nuclei having a 
varying intensity of hematoxylin, which frequently harms the success of the approaches 
that are now being used. Different deep learning networks use another staining pattern, 
and afterward, the segmented masking of the specific models was combined using a 
Choquet integral-based aggregation algorithm. The experimental results reveal that the 
improved technique outperforms state-of-the-art nucleolus segmentation methodologies 
with aggregated Jaccard index (AJI) and F1scores of 73.23% and 89.32%, respectively, 
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whereas accomplishing a lesser set of variables with a difficult multi-center multi-organ 
WSIs data frame. However, the strategy does not allow for the introduction of stain nor-
malization techniques into the deep learning model and the use of multiple hierarchical 
procedures to merge the distinct nuclei segmentation models [11].

The gold standard in tumor prediction and diagnosis is histopathological tissue 
examination. Whole slide imaging (WSI), or the screening and digitizing including 
whole histological images, is increasingly have been used in pathology labs all over 
the world. Depending on WSI data, trained histopathologists may accurately diagnose 
biopsy samples. Because of the complexity of WSIs as well as the growing quantity 
of probable cancer cases, interpreting these images takes time. Automatic tumor tis-
sue division improves the accuracy, efficiency, and reproducibility of investigations. 
Deep learning-based algorithms have recently shown cutting-edge performance in 
a wide range of image analysis applications, along with the interpretation of digi-
tized slides. To resolve these concerns, researchers present a generic deep learning-
based system for histopathological tissue analysis. The approach is essentially a set of 
separate techniques in the preprocessing training inference pipeline that, when com-
bined, enhance the analysis’ effectiveness and generalization. Among the methodolo-
gies that are discussed are an aggregate segmentation strategy, a split of the WSI into 
fewer local patches despite the resolution of classification mismatches, quick reason-
ing approaches, and an efficient, patch-based probability estimation framework. The 
most significant drawback of the patch-based segmentation technique for WSI images 
was the fact that the smaller patch sizes were unable to take into account the broader 
context of the surrounding area. Using training images for which the label maps are 
already established, a patch database is constructed. Similar patches from the data-
base are obtained and compared with each patch in the testing picture. After that, the 
labels that correspond to these individual patches are concatenated to generate an ini-
tial segmentation map for the test instance [12].

The contribution of this analysis was to create quantitative feature-based models using 
histopathological images to identify hepatocellular carcinoma (HCC) from neighbor-
ing healthy cells as well as estimate HCC patients’ prognosis following surgical removal. 
The features have been extracted from hematoxylin and eosin (H&E)-stained whole-slide 
images of HCC patients from The Cancer Genome Atlas as well as tissue microarray pic-
tures from West China Hospital, in a completely automated pipeline utilizing computa-
tional methods to evaluate the quantification characteristics of histopathological slides of 
HCC patients. The collected characteristics have been utilized to build predictive methods 
that categorize tissue slides but also apply machine-learning techniques for predicting indi-
vidual prognostic value. Every histopathology slide yielded a total of 1733 quantifiable 
image characteristics. In both the test and objective evaluation sets, the diagnostic clas-
sifier based on 31 characteristics was able to effectively discriminate HCC from neigh-
boring normal tissues (AUC 0.886). As per their allocated risk ratings, the random-forest 
prognosis models with 46 characteristics were able to completely identify patients within 
every set into longer- or shorter-term survival categories. Furthermore, the prognosis algo-
rithm researchers developed had an equivalent predictive accuracy of individuals’ mortal-
ity at various periods following surgery as TNM staging methods. These results suggested 
that image-based machine-learning systems could aid doctors in HCC diagnosis and post-
hepatectomy prognosis predictions. Such highly dimensional datasets, on the other hand, 
necessitate professional examination or specialized systems and technology, which makes 
it difficult for doctors to use these procedures in everyday practice [13].
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Long-term and recurrent liver damage causes hepatocellular carcinoma (HCC), a 
kind of primary liver cancer. The radical curative treatment of choice is usually surgi-
cal resection. Since initial HCC recurrent following resection is linked to poor over-
all mortality, predicting recurrence of the following resection is essential in medi-
cal care. However, the pathologic hallmarks of HCC recurrence in the initial stages 
are still to be determined. Relying on digitized pathologic pictures of hematoxylin 
and eosin-stained samples and machine learning using a support vector machine, 
researchers sought to forecast the rapid recurrence of HCC after resection (SVM). 
The study comprised 158 HCC individuals who met the Milan criteria and had surgi-
cal removal. The patients were categorized into three groups. The SVM-based pre-
diction approach correctly differentiated the three groups by 89.9% (80/89). Group 
I was accurately guessed in all instances, whereas Group II was accurately predicted 
through one case and Group III was correctly predicted in eight cases. Digital histo-
pathology and machine learning might be designed to estimate HCC relapse follow-
ing surgical removal with good accuracy, and a better understanding of recurrence. 
Normal blood tests and diagnostic testing are now employed for follow-up monitoring 
following HCC resection in the majority of cases; nevertheless, any use of diagnostic 
imaging combined with computer vision provides potential as a technique for accu-
rate postoperative follow-up monitoring [14].

In current history, hepatocellular carcinoma (HCC), the much more frequent kind 
of common malignant liver cancer, has emerged as the main cause of cancer fatalities. 
For tumor loading evaluation surgical planning, including postoperative evaluation 
and automatic segmentation of HCC lesions was crucial. Because the morphology of 
HCC lesions differs so much from patient to patient, detection and segmentation are 
time-consuming as well as an error-prone process. As a result, there is a great demand 
for a completely automated and dependable HCC segmentation solution. In this paper, 
researchers describe a unique hybrid neural network for efficient HCC recognition of 
hematoxylin and eosin (H&E)-stained whole slide pictures using multi-task training 
and ensemble learning methods (WSIs). To begin, three task-specific branchings are 
combined to expand the feature space, allowing the systems to learn additional basic 
characteristics and reducing the danger of overfitting. Secondly, to achieve feature 
aggregation, a supervised learning technique is used, during which selected kernel 
modules (SKMs) and spatially and channel-wise squeeze-and-excitation components 
(scSEMs) are used to capture characteristics from various regions and dimensions. 
On three publically accessible databases, the suggested technique exhibits state-of-
the-art performance, with segmentation accuracy and reliability of 0.797, 0.923, and 
0.765 in the PAIP, CRAG, & UHCMC&CWRU datasets, accordingly, demonstrating 
its efficacy in tackling the HCC segmentation challenge. However, this study would 
not look into whether a unified framework, using approaches like levels of learning 
and domain adaptability, could not achieve the same level of accuracy as the ensem-
ble method [15].

A novel deep learning architecture named LiverNet is proposed for multi-class clas-
sification of HCC histopathology images, focusing on different sub-types of liver HCC 
tumors. The dataset comprises both a novel KMC dataset and the publicly available 
TCGA-LIHC dataset. By integrating convolutional block attention modules (CBAM) and 
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atrous spatial pyramid pooling (ASPP) blocks, LiverNet effectively captures multi-scale 
features in H&E-stained liver histopathology data. Results demonstrate that LiverNet out-
performs existing architectures in terms of classification quality and computational effi-
ciency, achieving significant improvements in precision, recall, F1-score, intersection over 
union (IoU), and accuracy. LiverNet exhibits superior performance across all metrics, 
showcasing an approximate improvement in accuracy and F1-score on both the KMC and 
TCGA-LIHC datasets [16].

For advancing digital pathology applications such as cell phenotype determination, can-
cer grading, and prognosis an AI-based nuclear segmentation method is introduced for seg-
menting nuclei in histopathological images. This technique utilizes a new nuclear segmen-
tation network enhanced with residual skip connections to address the challenges posed 
by diverse nuclei types and morphologies. Experiments were conducted on two datasets: 
The Cancer Genome Atlas (TCGA) and Triple-Negative Breast Cancer (TNBC). The result 
indicates that the proposed technique achieves superior performance compared to existing 
methods, with an aggregated JI (67.94) and dice coefficient (80.84) on the TCGA dataset, 
and a JI (73.32), dice coefficient (84.41), precision (83.52), recall(83.06), and F1-measure 
(83.29) on the TNBC dataset [17].

A novel approach for the early detection and diagnosis of oral cancer aimed to address 
the significant global health burden posed by this disease. Leveraging the mouth’s excep-
tional sensory capabilities, the study utilizes deep neural networks, particularly automated 
systems, to identify intricate disease patterns. Transfer learning techniques are applied to 
enhance performance in target categories, with a focus on achieving optimal learning rates 
through comparative analyses. The study conducts a categorization analysis of reference 
results and presents detailed findings. Preliminary results indicate the effectiveness of deep 
learning in tackling this challenging problem, with the Inception-V3 algorithm demonstrat-
ing superior accuracy compared to the existing methods [18].

With the widespread availability of mobile devices and affordable sensors, data is lever-
aged to enhance diagnostic capabilities. With heart disease being a leading global cause 
of mortality and disability, the study focuses on improving cardiac prediction using sensor 
data. Additionally, the study aims to develop an algorithmic model for sentiment classifi-
cation using EEG signals, recognizing the impact of emotions on various aspects of life. 
Furthermore, the investigation delves into forecasting neuromuscular disease classification 
methods in clinical and biological settings. The study’s framework explores potential deep 
learning applications across these domains to advance diagnostic capabilities and improve 
healthcare outcomes [19].

A novel spatial-channel attention-based modified U-Net architecture with ResNet 
blocks to address nuclei segmentation challenges in histology images under variable 
conditions. It aims to simultaneously handle issues like poor staining quality, stain 
variability, tissue variability, and morphological variability common in clinical set-
tings. Leveraging both channel and spatial features, the method provides solutions for 
staining and morphological variability. Utilizing three benchmark datasets, the pro-
posed model demonstrates superior segmentation performance compared to existing 
methods. It also exhibits generalization across 20 cancer sites, surpassing previous 
literature. Moreover, the model’s simplicity makes it more accessible for practical 
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implementation. Its impact extends to improving nuclei segmentation, classification, 
and cancer grading in histology analysis [20].

3  Problem statement

In histological image analysis, nuclei segmentation is a basic but difficult issue. One of 
the major issues is the presence of overlapping regions that make it more complicated 
to segment single nuclei. Segmentation of various-sized, contacting nuclei is another 
important problem during nuclei segmentation. Furthermore, automated nuclei iden-
tification is complicated by nucleus size and shape diversity among classes. Two key 
challenges in effectively segmenting and evaluating histopathology images are color 
variability in the images with varied nucleus architecture. Numerous machine learn-
ing algorithms depend significantly on hand-crafted features that are limited by manual 
thresholding. Deep learning techniques, on the other hand, were lately been applied to 
challenging segmentation problems in biology with significant performance. The nuclei 
areas inside the liver cancer Hematoxylin and Eosin (H&E) stained histopathologi-
cal pictures are segmented using an unsupervised edge detection technique utilizing a 
thresholding operator with the CNN approach suggested in this paper. The method can 
recover nuclei edges quickly, even at multiscale, because local standard deviation values 
are connected with picture edge information. A thresholding procedure is used to turn 
the edge-detected images into binary images. Three blocks are included in the CNN 
architecture. The suggested deep-learning architecture outperformed other nuclei seg-
mentation approaches while applying to nuclei segmentation challenges.

4  Proposed methodology

Sample images are imported. Image pre-processing is a method for enhancing the qual-
ity of an image. After being captured, the images were enhanced and pre-processed. 
The fundamental purpose of edge detection is to eliminate the images’ irrelevant noise. 
Furthermore, using the three blocks of CNN architecture, the necessary features of the 
images are retrieved, as well as the nuclei to identify liver cancer. Figure 2 depicts the 
segmentation procedure.

4.1  Dataset

Pathologists reportedly acquired a database of 80 H&E stained histopathological pho-
tographs for a specific organ, the liver. Initially, tissue collecting, fixing, implantation, 
subdividing, and coloring are performed on histopathological slides. Following that, an 
Olympus scanning visualizes every one of the colored images at the similar 40 micro-
scopic zooms, and those are then turned into digital photos and transferred to a system. 
Each image is 8.31 MB in size and 1920 × 1440 pixels in size. The optimal image for 
cancer diagnosis, as per the pathologists, is a 40 microscopic zoom. Adobe Photoshop 
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2019 was used to generate a series of ground certainties for stained H&E liver cancer 
histopathological pictures. However these processes are manually done, and the ground 
certainties are generated using an automated selection feature found in Photoshop 
2019. As per the visualization, operator error is quite low with this strategy. Experts 
have identified the nuclei (or pathologists). The nuclei looked blue in H&E stained his-
topathological pictures in the majority of instances. It is to explain that such ground 
implications were created solely to compare them to the ultimate segmented image as 
well as to measure the quality metrics. The Kumar dataset, created by Dr.Amit Sethi’s 
group at the Indian Institute of Technology, Guwahati, is another freely available multi-
organ database. Every image within that collection is made up of 1000 × 1000 patches 

Fig. 2  Nuclei Segmentation 
Process
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recovered from a single Whole Slide Imaging (WSI). The collection also includes cells 
with 7 distinct organisms: the stomach, the bladder, the breast, the prostate, the colorec-
tal, the kidney, and the liver. There are 30 of these photos in the collection. All informa-
tion has a broad statistical feature set because it was not developed from a unicellular 
organism or obtained from a specific organ.

4.2  Pre‑processing

4.2.1  Extraction of tissue

Since the majority of WSI areas have the background and hence are useless in our research, 
the areas having liver tissue must be removed ahead of time. The colored image is first 
transformed into the HSV color system (HSV). The ideal threshold for every channel is 
then calculated using the threshold operator. Even though the weighted K-means approach 
is frequently used as a clustering algorithm, Thresholding is more computationally effi-
cient. Lastly, the tissue regions were created by combining the filters of channels H and S.

4.2.2  Normalizing color

In HIA, color normalization is a critical step. Several parameters, including tissue section 
fixing, embedding, trimming, and dyeing techniques, affect the appearances of liver tissue 
slides colored with H&E. The two H&E coloring tissue samples differed significantly as a 
result of these circumstances. Even though these disparities only limit pathologists’ assess-
ment of the image in portion, they have a major impact on automatic feature processing 

Table 1  Various normalization 
approaches

Techniques F-measure Precision Recall

StainGAN 1 1 1
HEA 0.99 1 0.99

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

StainGAN HEA

Various Normaliza�on Techniques

F-measure

Precision

Recall

Fig. 3  Performance Metrics of Various Normalization Techniques
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algorithms’ effectiveness. For relocating the colored picture channels to the left, a histo-
gram equalization technique (HEA) is performed and afterward the pixels to [0-255]. The 
StainGAN approach is an advanced image-normalizing technique. Table 1; Fig. 3 contain 
the results. It is discovered that using advanced color normalizing algorithms is beneficial 
but not especially substantial in this case. As a result, HEA is used as the color-normaliz-
ing approach in the research to identify and concentrate on the fusing of patch-level infor-
mation as well as the selecting of feature representation.

4.2.3  Extracting patch

However, a CNN is competent in picture segmentation on its own, utilizing a neural net-
work to classify histopathology images with more than 100,000 pixels is unfeasible. Never-
theless, reducing the histopathological images to a suitable size for a CNN would result in 
a loss of detail [21]. The histological liver cancer images are tiled into patches with some 
of these concerns in mind and then adjusted to (114*114) pixels. A background that has 
patches in areas of more than 40% is deleted as well.

4.3  Feature extraction

4.3.1  Edge detection with threshold operator

Gradients, or the finite luminance differences among the two pixels, were calculated in 
edge detection algorithms. That is why such approaches calculate a certain amount of gra-
dients including modest intensity changes (due to noise). As a result, every gradient-based 
edge detection method is thought to be prone to noise. Edge identification in the suggested 
method is done by determining the local standard deviation value in a’s*s’ window over 
every pixel. Because it relies on the idea of standard deviation rather than the calculation 
of gradients, the method that was proposed is less susceptible to being affected by noise. 
gradient-based edge detector that can detect edges at varying length scales and is less sus-
ceptible to noise in the input image than detectors that have been employed in the past.

Algorithm for edge detection

Step 1- The first stage in edge detection is to analyze simply this space info of a color 
input image because it largely includes foreground data (nuclei), that may be found 
across the database. Furthermore, as described in the preceding sub-section, the stains 
are immediately divided in this space.
Step 2- A non-linear filtering is employed for the space picture, which seems to be 
the inverse logarithmic (1 log2) of a digital Gaussian filter in a 3*3 frame. The filter 
decreases distortion in liver cancer histopathological images to a considerable extent.
Step 3- The user needs to enter a value (r) that corresponds to the microscopic zoom 
(10, 20, or 40) of both the associated image. ‘r’ is then multiplied by 0.15 and then 
placed in the variable ‘p’. Thus p = 6 in the case of 40 images as well as 3 in the instance 
of 20 images.
Step 4- The filtering grey scale image is then convolved with such a 3*3 mask, the 
coefficients of which would be dynamic instead of static. First, the standard deviation 
of ‘p*p’ pixels is calculated around the first pixel of an image and then the similar vari-
able through every 9 locations of a 3*3 mask. Following that, the window coefficient is 
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increased by the appropriate pixel intensities (in which the 3*3 mask is inserted), and 
those values are summarized in a variable ‘sum,’ substituting the first-pixel intensity 
with ‘sum,’ as indicated in Algorithm 1. Afterward, when, this 3*3 window (mask) is 
moved from one pixel to the other side of the image, a similar technique for allocating 
intensity distribution to every pixel in the image is repeated. The entire frame is con-
volutional with that 3*3 mask in this fashion, using the sliding window approach; the 
Python code is supplied in Algorithm 1.

Algorithm 1  Edge Detection

1. image=igread (‘normalization of color image’)
2. s,r,t= ab2.splits(image)
3. NLK=0.5*[1/log 2 (GK(3,3))]
4. image2=NLK(image)
5. r=20 or 40
6. size=img.shapes
7. con_image=n.0(size)
8. For a in range (size[0]-12)

For c in range (size-12)
add=0
p=r*0.15
SD=n.SD((img[a:a+p),c:c+p)]))

9. For x in range (3):
For y in range (3):

add=add+(img[a+x,c+y]*(SD)]))
con-image[a,c]=add

10. ret con-image
11. image2=ED(image1)
12. image2=(A(image1))
13. image2=256-img2
14. k. igshow(image2,con_mp=’G’)
15. k. show()

4.3.2  Thresholding operator

An automated and non-parametric thresholding method is utilized which might also ideally 
pick the specified threshold in an image, maximizing inter-class variation in a bi-modal 
distribution. Equation 1 represents the weighted intra-class variation.

E
1
(H) and E

2
(H) are the frequency of groups E

1
 and E

2
 , correspondingly, whilst H is the 

threshold value. The threshold was chosen as the best threshold value H to minimize �2(H) 
in Eq. (1). It is explained that the entire logical derivation is in detail. Numerous investiga-
tions have found that the thresholding method is efficient as well as commonly utilized for 
nuclei segmentation. In required to the conversion of edge-detected (greyscale) images to 
binary images, Otsu’s thresholding method is used.

(1)�
2(H) = E

1
(H)�2

1
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(H)�2
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4.3.3  Segmentation using three blocks of CNN

The difficulties encountered while automated segmentation of the nucleus of H&E stained 
images was mostly related to the uneven appearances of various types of cells and tissues, 
and the nucleus overlapped in immediate contact. Because a simple algorithm might not 
tackle this problem with effective results, deep neural networks are recommended. Along 
with its better-segmented images as well as fewer parameters; the suggested CNN for 
the segmentation as well as identification of nuclear pictures was principally influenced 
through the encoder-decoder paradigm of UNet [22]. A resilient residual block with a 
grouping of convolution layers in the encoder is used. Standard convolution layers, includ-
ing depth-wise as well as point-wise, separated convolutions, have been employed in 
the grouped convolutions to improve confidence in high-level conceptual aspects of his-
topathological images as well as decrease the process parameters. Batch normalization 
as well as a rectified linear unit (ReLU) activation function were utilized in all of these 
convolution operations. After that, every residual block was down-sampled using a 2 × 2 
max pooling procedure using phase 2. Because each following stage’s characteristics are 
half the size of the preceding stages, the procedure aids in rapidly extending the receptive 
field. A four-step robust residual block for feature extraction is employed, and after every 
down-sampling phase, the quantity of feature channels is multiplied. The bottleneck block 
of three 3 × 3 convolutions preceded the last down-sampled step. The block verified that 
the feature representations were compacted by the networks to obtain the greatest fitting 
in the available area and the least losses throughout learning [23]. The attention decoder 
block, which included attention gating, consolidated the retrieved characteristics, following 
a transposition convolution to rebuild the images in their initial dimensions. The funda-
mental goal of the concentration gating would have been to inhibit feature actions in all 
irrelevant background areas. The varieties of different channels were reduced in half after 
the fourth stage of feature fusion. A 1 × 1 convolution has been utilized for mapping fea-
tures of vectors to the required amount of categories in the final layer.

4.3.4  Block of residual

The residual block retrieved the high-level latent semantic mappings from histopathologi-
cal images. The block, shown in Fig. 4, consists of a collection of convolution layers also 
the depth-wise as well as point-wise separated convolution layers. I denote the feature map-
pings. 3 × 3 filter kernels having step 1 were utilized throughout all convolutional as well as 
depth-wise convolution layers. 1 × 1 filter kernels having step 1 were utilized in the point-
wise convolution layer. As shown in Fig.  3, the depth-wise and point-wise convolutions 
have been conducted in the separated blocks. Batch normalization, as well as a rectified 
linear unit, is being used in every convolution (ReLU). To improve the channel’s capability 
as well as segmentation outcomes, the residual connections combined the features that are 
inputted with the features produced by the convolution layers [24]. The residual framework 
retrieved images’ tiny, good features that are essential in histopathological imaging, since 
losing just a minor feature might result in nuclei loss, resulting in bad identification. To 
improve processing performance and reduce the complexity of the algorithm while com-
promising the quality of the extracted features, different convolution versions had to be 
chosen. The feature channel capacity was gradually expanded by a factor of two using four 
such blocks and is evaluated as follows Eq. 2:
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Here A
1
 signifies the input features, Amn indicates the features learned following the con-

volution layer at the Xth stage and Yth layer, Rk∗kSk∗kTk∗k indicates standard convolution 
and also depth-wise and point-wise differentiable convolution layers, including both, with k 
depicting the number of filter kernels, and signifies feature concatenation.

4.3.5  Block of bottleneck

As shown in Fig. 5, the last down-sampled phases were preceded by a bottleneck block 
consisting of three 3 × 3 convolution operations. The block enabled the attention decoder 
block to quickly eliminate unwanted parts from the backgrounds by recording huge global 
information on the position including histopathological images. Because it lowered the 
number of features, the blocks were accountable for the least amount of training loss. Com-
putational costs declined significantly since the number of operations required dropped due 
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to the input tensor’s decreased characteristics. The procedure could be expressed math-
ematically as Eq. 3:

Qk∗k means conventional convolution, batch normalization, and ReLU, in which k 
describes the amount of filter kernels. AXY indicates the outcome features from the residual 
block, AXn indicates the features only after convolution operation.

4.3.6  Block of attention decoder

Coarse extracted features, as expected, acquired contextual information as well as the 
positioning of foreground items. However, because of the wide range of shapes and 
appearances of cells and nuclei in histopathological images, false-positive assumptions 
were made. Attention gates (AGs) are employed to increase accuracy since they have 
several parameters as well as produce better outcomes than other strategies. To exclude 
task-irrelevant characteristics, the semantic attributes of the residual block as well as the 
coarse feature mappings out from the bottleneck block have been merged. The goal of 
the attention technique was to give weight to the input pattern, emphasizing important 
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features and minimizing background noise. The skip connections were supplied as 1st 
Feature, and the coarse attribute obtained from the bottleneck block was provided as 
2nd Feature (gating signal). The skipped connections were an essential component in 
the process of transferring feature information to the bottom layer. This was done to 
prevent the loss of gradient information that would have been caused by bypassing cer-
tain middle levels. The link provided representations of less significant features, some 
of which found their way into the attention mechanism over time. Through examination 
of the kernel weight distribution, we can identify it. There is a gradient that is dimin-
ishing if the weights are consistently falling closer and closer to zero. The accuracy of 
the procedure was increased by reducing the amount of vanishing gradient. Between 
the gating signal and skipping connections, further, 3 × 3 padded convolutional lay-
ers are employed to create finer coarse maps capable of identifying key input images 
as depicted in Fig. 6. Rather than downsampling the skip connections, it is chosen to 
increase limited feature maps by upsampling the gating signal, which comprises sig-
nificant features transmitted through the bottleneck block. The sigmoid’s skip charac-
teristics, as well as vector coefficients, are subsequently combined with a multiplier to 
eliminate unnecessary background patches and then sent across a 1 × 1 convolution layer 
to change the filtering dimensions as well as add depth without massively increasing 
variables and calculations. Such steps could be expressed mathematically as Eq. 4:

Here, I1 represents feature inputs 1 and I
2
 indicates feature inputs 2, �

1
 represents an 

element-wise nonlinear function, �
2
 a2 denotes the sigmoid function used for normaliz-

ing, and Qk∗k stands for standard convolution, wherebyk is the number of filter kernels, 

(4)
AY = �

2

(
Q

3∗3

{
�
1
(R(Q

3∗3

{
Q

1∗1

{
I
2

}}
+
{
Q

1∗1

{
I
1

}}
)

AN = Q
1∗1{AY + I

1
}

}

Fig. 6  Block of Attention Decoder



Multimedia Tools and Applications 

1 3

AY stands for sigmoid operation attributes having pixels in the range [0,1], AN stands for 
convolution operation features, and is for multiplication.

From every pixel-wise feature space, wherein 0,1, the attention coefficients in the 
attention gate have been calculated. Such coefficients in lowered features output from 
task-irrelevant feature information, allowing for the identification of important image 
regions. The outcome of the attention gate was features adjusted by the coefficients, 
which reduced the unnecessary areas.

Figure 7 depicts the overall process of nuclei segmentation. In comparison to certain 
other reference nuclei segmentation algorithms for histopathological images, the suggested 
CNN model produces better outcomes with fewer variables [25].

Fig. 7  Flowchart of the proposed segmentation process
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4.3.7  Evaluation metrics

The image quality variables F- score (F1), Precision (Pre), Accuracy (A), Recall, and Jac-
card indexes (JI) have been used to examine the simulation performance of benchmark 
deep-learning algorithms for segmenting nucleus of different histopathological image data-
sets. The proportions of pixels were overlapped between segmented results and the ground 
certainties were measured for both quality metrics. Such image variables were expressed in 
mathematical Eqs. 5–8:

Here TP, TN, and FN are True Positive, True Negative, and False Negative.

5  Result and discussions

A distinctive non-linear filter is being used in the study, which would be inverted loga-
rithms (1 log2) of a 3*3 digital Gaussian filter. Because it’s a non-linear filter that provides 
higher weight to the center regions which is the only filtering that allows us to properly 
localize including two of the spatial and frequency domains concurrently, the Gaussian fil-
ter has become an obvious option for reducing distortion for above a decade. Furthermore, 
by introducing more nonlinearity (that is, adopting the inverse of logarithmic base 2), the 
nonlinear filter significantly reduces noise in histopathological images. Moreover, the level 
of noise in the image processed by the suggested edge detection approach is substantially 
lower than that of other traditional gradient-based methods. Every state-of-the-art CNN 
design employed very similar hyper-parameters during the training stage. All of the algo-
rithms were extensively examined, and the measurement results shown in Tables 2 and 3 
are the arithmetic averages following the execution of every model three times for both 
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databases. For the dataset, all of the existing test images are used to achieve proper assess-
ment. The test photos have been used to analyze the metrics findings for both databases. 
Figure 8 shows the comparison chart of existing and proposed methods of the liver dataset.

Tables 2 and 3 show the performance metrics for every model. These performance cri-
teria were evaluated by inferring algorithms after training. Having a higher F score and a 

Table 2  Evaluation metric of segmentation on the liver dataset

Methods Jaccard indexes Precision Recall F1-measure Accuracy

FCN 52.80 75.54 70.43 72.15 85.43
UNet 50.44 74.43 68.52 70.81 89.52
FCDenseNet 53.42 76.41 73.63 75.57 90.21
SegNet 57.77 79.55 83.43 81.87 91.35
UNet++ 52.74 73.42 76.42 75.19 90.42
Proposed CNN 65.72 88.74 89.53 90.12 94.85
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Fig. 8  Evaluation metric chart of segmentation on the liver dataset

Table 3  Evaluation metric of segmentation on multi-organ dataset

Methods Jaccard indexes Precision (%) Recall  (%) F1-measure  (%) Accuracy  (%)

FCN 72.24 65.52 65.95 65.74 69.42
UNet 70.88 62.75 61.43 62.08 70.9
FCDenseNet 73.53 88.78 88.93 88.83 90.23
SegNet 77.36 89.1 89.2 89.24 91.49
UNet++ 80.25 89.68 90.39 90.13 92.58
Proposed CNN 89.99 91.5 91.1 91.27 95.42
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higher IOU (JI) score for both databases, the tables demonstrate that the proposed CNN 
architecture surpasses current models. In comparison to the current model, the suggested 
model produced more than a 1% increase in Table  3, while it provided roughly a 3% 
increase in Table 2, the liver dataset.

Figure  9 presents the evaluation metrics for nuclei segmentation on the liver dataset, 
comparing different methods. Precision values range from 73.42% (UNet++) to 88.74% 
(Proposed CNN), indicating the proportion of true positive predictions among all positive 
predictions. Recall varies from 68.52% (UNet) to 89.53% (Proposed CNN), representing 
the proportion of true positives correctly identified. Accuracy spans from 85.43% (FCN) 
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Fig. 9  Comparative analysis of segmentation on liver dataset
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Fig. 10  Evaluation metric chart of segmentation on multi-organ dataset
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to 94.85% (Proposed CNN), reflecting the overall correctness of the segmentation method. 
Among the methods, Proposed CNN demonstrates superior performance across all metrics, 
with precision, recall, and accuracy values of 88.74%, 89.53%, and 94.85%, respectively. 
SegNet follows closely with precision, recall, and accuracy values of 79.55%, 83.43%, and 
91.35%, respectively. FCDenseNet also performs well with precision, recall, and accu-
racy values of 76.41%, 73.63%, and 90.21%, respectively. UNet and UNet + + show lower 
performance compared to the other methods, indicating the effectiveness of the proposed 
CNN architecture in nuclei segmentation on the liver dataset.

Figure  10 shows the comparison chart of existing and proposed methods of multi-
organ datasets. Nuclei segmentation in histopathological images is an important step in 
accurately identifying then treating cancer. DNN plays a significant part in such activ-
ity, and they perform admirably. Because nuclei are the building components of tissues, 
their correct detection predicts future medical consequences. Convolution neural net-
working is the most ideal for segmenting the nucleus from histopathological images, 
according to recent advancements in medical imaging, because it produces better per-
formance in terms of accuracy and also is quicker than several other methods. The issue 
of segmenting nuclei is addressed in the study by employing extensive attentiveness 
processes that help emphasize the salient sections of features.

Figure 11 displays the evaluation metrics for nuclei segmentation on the multi-organ 
dataset, showcasing various methods’ performance. Precision values range from 62.75% 
(UNet) to 91.5% (Proposed CNN), representing the proportion of true positive predic-
tions among all positive predictions. Recall varies from 61.43% (UNet) to 91.1% (Pro-
posed CNN), indicating the proportion of true positives correctly identified. Accuracy 
spans from 69.42% (FCN) to 95.42% (Proposed CNN), reflecting the overall correctness 
of the segmentation method. Among the methods, Proposed CNN demonstrates superior 
performance across all metrics, with precision, recall, and accuracy values of 91.5%, 
91.1%, and 95.42%, respectively. SegNet follows closely with precision, recall, and 
accuracy values of 89.1%, 89.2%, and 91.49%, respectively. FCDenseNet also performs 
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Fig. 11  Analysis of precision, recall, and accuracy metrics of existing and proposed systems based on the 
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well with precision, recall, and accuracy values of 88.78%, 88.93%, and 90.23%, 
respectively. UNet and UNet + + show comparatively lower performance compared to 
the other methods, emphasizing the effectiveness of the proposed CNN architecture in 
nuclei segmentation on the multi-organ dataset.

A nuclei segmentation approach that is based on determining local standard deviation 
as suggested in this study paper for stained H&E liver cancer histopathological images. 
The suggested edge detection approach, like other current edge detection methods, 
wasn’t susceptible to distortion since it used the concept of standard deviation instead 
of calculating gradients. Furthermore, it was demonstrated that the suggested segmenta-
tion approaches overcome all of the drawbacks of prior unsupervised techniques.

6  Conclusion

In conclusion, our proposed system addresses the critical task of nuclei segmentation in 
histopathological images, particularly focusing on stained H&E liver disease images. By 
integrating a novel edge detection technique based on local standard deviation and leverag-
ing a robust CNN architecture, we achieved significant advancements in automated nuclei 
segmentation. The proposed method demonstrated promising results on multi-organ with 
impressive metrics such as Jaccard index (89.99%), Precision (91.5%), Recall (91.1%), 
F1-measure (91.27%), and Accuracy (95.42%). and liver datasets attain the Jaccard index 
(65.72%), Precision (88.74%), Recall (89.53%), F1-measure (90.12%), and Accuracy 
(94.85%). However, despite the success of our approach, there are limitations to consider. 
One limitation is the reliance on stained H&E images, which may not cover the full spec-
trum of histopathological variations. Additionally, the proposed method may require fur-
ther refinement to handle more complex scenarios such as overlapping nuclei or rare cell 
types. Future research could explore the integration of additional imaging modalities or 
advanced deep-learning techniques to enhance segmentation accuracy and robustness. 
Moreover, extending the evaluation to include diverse datasets from various organs and 
pathologies would provide a more comprehensive understanding of the proposed method’s 
generalizability. Overall, while our study presents a significant advancement in nuclei seg-
mentation, there remains ample opportunity for further refinement and exploration in this 
important area of computer-aided diagnostics for cancer classification and prognosis.
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