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Abstract
Gait recognition is a biometric approach used to identify people based on their walking pat-
terns at long distances and low resolutions.Most advanced gait recognitionmethods based on
silhouettes employ the focal convolution module. However, experiments have demonstrated
that the horizontal segmentation method used in this module causes information loss at the
feature map demarcation line. In this paper, we propose an adaptive feature fusion block
(AFFB) for feature extraction that utilizes comprehensive global features to compensate for
the lost local features, significantly reducing feature loss caused by local convolution. Addi-
tionally, we introduce a feature expansion module (FEM) to enrich the temporal information
of gait features and adaptively balance the body detail information extracted by the model
with the overall body information . We evaluated our model on CASIA-B and OU-MVLP
datasets and compared it to other gait models using RANK-1 accuracy. The experimental
results show that our model can represent gait features better than other models and achieved
high accuracy in gait recognition across perspectives and various walking conditions.The
source code will be available on https://github.com/Lentia/AdaptiveGait.

Keywords CNN · Gait recognition · Adaptive feature fusion · Feature expansion ·
Cross-view

1 Introduction

Gait recognition is an individualized recognition method that identifies a person’s distinctive
walking pattern. It distinguishes itself from other biometric techniques, such as face, iris, or
fingerprint recognition by allowing for contactless, long-range, and low-resolution recogni-
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tion. Given that gait recognition does not require the active cooperation of the subject, it has
broad potential in crime prevention, forensic identification, and social security.

Various methods have been developed since gait recognition was introduced, and many
have achieved good performance. However, there some issues with existing methods still
exist, considering that recognition accuracy is considerably impacted by a person’s clothes,
carrying situation, viewpoint, and other factors. For example, Fig. 1 illustrates the gait sil-
houettes of a pedestrian wearing a backpack or coat. These factors can have a substantial
effect on the accuracy of gait recognition.

Many deep-learning-based gait recognition methods have been generated in recent years
due to better performance in terms of accuracy and sophistication compared to traditional
methods, and some of these methods extract global or local features from gait silhouettes. For
example, Chao et al. [2] used 2D CNN to extract global gait features in gait sequences. Fan et
al. [3] proposed focal convolution to extract features for different parts of the human body. Lin
et al. [13] proposed a Global and Local Feature Extractor (GLFE) to extract both global and
local information from gait silhouettes. Global features predominantly contain more spatial
and temporal gait information, and local features focus more on the spatial and temporal
information of different parts of the body. Both global and local information contributes
significantly to the effectiveness of gait recognition. Hence, the adequate extraction of both
gait features is a crucial aspect of gait recognition.

However, most existing methods rely on a horizontal splitting of the feature map in the
process of local information extraction. This leads to the gait features of various parts of the
body being concentrated into horizontally divided regions and "chunking" of features. The
feature maps at the boundaries of the chunked regions and the connections between different
parts of the body often appear significantly weakened or may even disappear, which can
greatly affect the gait feature representation.

This paper proposes an adaptive feature fusion block (AFFB) that can incorporate global
features and compensate for the absent parts in local features. Through such a method, the
extracted information can be supplemented adaptively, leading to a more comprehensive gait
representation. Furthermore, given that feature map chunking results in weaker connections
between body parts, it may hinder the extraction of the temporal information of the gait as a
whole. To avoid focusing on local gait information in the feature extraction component, we
will design and utilize a feature expansion module (FEM) at the end of the feature extraction
process. FEMuses a conventional 3D convolutional block to retain more spatial and temporal
gait information and amplifies the gait features in the channel dimension to obtain a more
comprehensive representation. Finally, the expanded features are mapped to the feature space
by adaptive horizontal pooling, with the addition of a fully connected layer of the final gait
features.

Fig. 1 Gait silhouettes from the CASIA-B [31] dataset. The first row shows the gait silhouette in the backpack
state, and the second row shows the gait silhouette in the coat-wearing state. It can be observed that the gait
contours of pedestrians in the backpack and coat-wearing states appear to change significantly, which affects
the extraction of gait features
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The primary components of this work can be summarized as follows:

• We proposed a novel adaptive feature fusion method for gait feature extraction, which
can effectively balance the ratio of global and local features and render the extracted gait
features more comprehensively.

• We designed a feature expansion module which enhances the temporal and spatial
information of gait features, expands the extracted body detail information and over-
all information, and enhances the expressiveness of the features.

• Our network was tested on two commonly used gait datasets (CASIA-B [31], OU-MVLP
[21]), and the experimental results demonstrate the effectiveness of our method and its
competitiveness with existing advanced gait recognition methods.

The rest of this paper is structured as follows: Firstly, related works are summarized in
Section 2. In Section 3, we describe the key modules of our network and in Section 4, we
present the details of the comparative and ablation experiments. In Section 5, we discuss the
experimental results and future work.

2 Related work

2.1 Gait recognition

Two gait recognition methods have been proposed to address the challenges posed by
cross-view and various walking conditions, namely the model-based approach and the
appearance-based approach. Template-based methods [10, 12, 23] usually model the basic
structure of human posture through the use of gait images and use the parameters of the
human model as features for recognition. For example, Liao et al. [12] proposed PoseGait,
which uses convolutional neural networks to estimate the 3D poses of pedestrians from viable
gait images, and extracts effective features of the gait from the 3D poses of pedestrians. Li et
al. [10] proposed a model-based, end-to-end gait recognition method that uses a multi-person
linear (SMPL) model with skin for human modeling. Teepe et al. [23] proposed GaitGraph
for obtaining accurate human poses, combining skeleton poses with a graph convolutional
network (GCN) to estimate human skeleton poses from RGB images. Template-based meth-
ods have better robustness due to their direct modeling of human body structure, and they
are less affected by covariates such as inter-view variations. However, model-based methods
are computationally intensive and the accuracy of the generated human models significantly
impacts the accuracy of the final recognition.

Many appearance-based methods have been proposed since these are less computation-
ally intensive and easier to train and use than template-based methods. Shiraga et al. [20]
aggregated gait silhouettes into a gait energy image (GEI) and used a 2D convolutional
network to extract gait features from it, Xu et al. [26] also used the GEI method for gait
recognition and proposed a pairwise spatial transformer network (PSTN) to reduce the fea-
ture mis-alignment caused by view differences, thus improving the recognition performance;
however, a large amount of fine-grained spatial information was lost in the GEI aggregation
process. To address this issue, Chao et al. [2] proposed GaitSet, which treats the gait silhou-
ette as an unordered set and extracts gait features from the gait silhouette using a 2D CNN.
Fan et al. [3] proposed GaitPart, which divides the feature map horizontally to extract spatial
and temporal features separately from different parts of the body in the gait silhouette using
the focal convolution module (FConv). Hou et al. [5] proposed the Gait Lateral Network
(GLN) to enhance gait representation using the inherent feature pyramid in deep convolu-
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tional neural networks. Qin et al. [18] noticed the problem of horizontal partitioning of feature
maps and strengthened the connections between each block by analyzing the relationships
between different parts of the gait feature map. However, they did not extract the temporal
information well. Lin et al. [13] proposed Global and Local Feature Extractor (GLFE) by
exploiting the superiority of 3D-CNN in dealing with sequential problems and combining
the idea of FConv, achieving significant improvements in recognition performance. However,
this method ignored the proportional relationship between global and local information in the
feature extraction process. Huang et al. [6] proposed the Spatial-Temporal Dual-Attention
(STDA) unit by combining the idea of 3D convolutions with spatial-temporal decoupling, in
order to better utilize the temporal and spatial information of gait. Chai et al. [1] proposed
LagrangeGait, which combines motion extraction and viewpoint embedding, and achieves
excellent detection results.

From the analysis of appearance-based methods, it can be seen that extracting complete
gait features is a vital part of gait recognition. In this paper, we propose an adaptive feature
fusion block (AFFB) to adaptively compensate for the loss of local features and improve the
gait features extracted. Furthermore, we design a feature expansion module (FEM) to further
enhance the temporal and spatial features of gait, thus obtaining a more comprehensive gait
feature representation.

2.2 Adaptive feature fusion

Adaptive feature fusion is an effective method for feature combination. In networks, using
only a single feature is insufficient to express the complexity of a problem, since the output
features of different layers contain specific feature information. For example, the shallow
features of convolutional neural networks tend to have abundant geometric details, while
the deeper features concentrate more on abstract semantic information. As such, adaptive
feature fusion has been extensively employed in computer vision tasks, such as semantic
segmentation [14, 19], target detection [7, 8], vehicle detection [24], multi-view learning
[27–29] and other applications [11, 16, 17, 30]. Numerous methods exist for feature fusion,
including feature summation and stitching, and element-wise multiplication. Based on these
methods, multiple adaptive feature fusion strategies have been proposed.

Liu et al. [15] proposed Path Aggregation Network (PANet), which utilizes a feature
pyramid network to fuse different feature hierarchies effectively. Subsequently, Zhao et al.
[32] proposed m2det, which uses a multi-level feature pyramid network to further improve
detection accuracy. Ghiasi et al. [4] proposed a novel feature pyramid network structure
(NAS-FPN), which enables feature fusion at multiple scales. Moreover, Tan et al. [22] pro-
posed a Weighted Bi-directional Feature Pyramid Network (BiFPN) to integrate features of
different scales using trainable weights. Xu et al. [28] achieved dynamic and adaptive multi-
modal fusion at the evidence level, synthesizing information from multiple views to make
reliable predictions. [27] and [29] explored multi-modal learning methods to guarantee the
consistency and complementarity properties in the multi- frequency data, providing valuable
insights for related work on adaptive feature fusion.

Unlike the above methods, we do not propose fusing the features of different layers in this
paper, as the gait silhouette is a set of binary images containing limited information. Fusing
the shallow features with the deep features may introduce some negative information, thus
making gait recognition less effective.

For the same-layer features of gait recognition, the global features capture overall, coarse-
grained, and temporal information, while the local features focus on local, fine-grained, and
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spatial information. Therefore, in the process of extracting gait features, attention should
be paid to the proportion of global features and local features, so that gait features can be
expressed comprehensively and sufficiently.

3 Methods

In this section, we will first outline the construction of the proposed method. Then, we will
describe the model’s key components, including the AFFB and the FEM. Finally, the details
of training and testing will be presented.

3.1 Overview

Our model is depicted in Fig. 2. It consists of four modules, i.e., Local Temporal Aggrega-
tor (LTA), Adaptive Feature Extractor, Feature Expansion Module (FEM), and Horizontal
Pyramid Pooling (HPP). First, a gait sequence is inputted into the model, and the shallow
features of the sequence are extracted using 3D convolution. The extracted shallow features
are compressed in the temporal dimension using Local Temporal Aggregation to maximize
the retention of temporal information. Next, the global and local features are synthesized
with AFFB to extract more comprehensive gait features. The gait features obtained by the
adaptive feature extractor are then fed into the FEM to balance the body detail information
captured by the model with the body information. Finally, the gait features are mapped using
HPP, and themodel is trainedwith Triplet Loss andCross-Entropy Loss. Among these, AFFB
and FEM are the key techniques of this study, and will be further discussed in the following
sections. Meanwhile, the same methods as [13] are adopted for LTA and HPP.

3.2 Adaptive feature fusion block (AFFB)

Wedesigned an adaptive feature extractor based on the adaptive feature fusion block (AFFB).
The feature extractor comprises twoCNNblocks and amaximumpooling layerwith a specific
structure of AFFB-Max Pooling-AFFB, which can extract temporal and spatial information
from gait sequences after temporal aggregation. In related research on gait recognition, Gait-
Set [2] is a typical model for extracting global gait features using 2D-CNN. In contrast,

3D conv
Adaptive Feature

Extractor
Feature Extend

Module

Local Feature Expander

Feature Extend Module

LTA HPP
Triplet Loss

Cross Entropy
Loss

FC & BN

FC

Adaptive Feature
Fusion Block

Adaptive Feature
Fusion Block

Max
Pooling

Adaptive Feature Extractor

Global Feature ExpanderB×C×S×H×W B×2C×S×2H×W

Concat

×w

Fig. 2 Framework of the adaptive feature fusion gait recognition network. B × C × S × H × W represents
the dimension of the feature map. B is the batch size, C is the number of channels, S is the length of the
feature map sequence, and (H, W) is the size of the feature map. W in the feature extend module is a trainable
parameter
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GaitPart [3] uses its proposed FConv to extract local information, showing that local features
are essential in the gait recognition process. GaitGL [13] combines the ideas of [2] and [3],
considering the use of global and local information, and using 3D-CNN for better temporal
information extraction from gait sequences. Although GaitGL is aware of the problem of
"chunking" of the feature map due to horizontal segmentation, simply adding global features
to local features is still insufficient to compensate for the problems caused by chunking.
In this paper, we propose AFFB to extract gait features that can make the global and local
features of gait balance adaptive, thus compensating for the missing parts in the chunked
features. The concrete implementation of AFFB is shown in Fig. 3.

First, AFFB contains two 3D convolution blocks: a global feature extraction block, and a
local feature extraction block. As shown in Fig. 3, we use a 3D convolution to extract global
information from the gait sequence in the global feature extraction block. In the local feature
extraction block, a 3D convolution is applied to different parts of the feature map using the
idea of horizontal segmentation. The 3D convolutions in the local feature extraction block
share the same weights. We multiply the global features using a trainable weight "wAFFB"
and then add them to the local features using the residual structure. This method allows the
model to autonomously find the best fusion weight of global and local features during the
training process to achieve the complement of missing features. The final formed features
will also be more detailed in terms of temporal and spatial information.

The gait features for each frame are calculated as follows: assume that the input of AFFB
is Xwhole ∈ R

Cin×S×H×W , where Cin is the number of input channels of AFFB, S is the
length of the feature map sequence, and (H, W) is the size of each frame of the feature map.
In order to facilitate the expression of the local feature extraction module, we horizontally
divide each frame of the input feature map level into n parts, remember X part = {Xi

part | i =
1, 2, ...n} ∈ R

Cin×S× H
n ×W . The 3D convolution of global feature extractor is denoted as

f 3×3×3
global (·), and the 3D convolution of local feature extractor is denoted as f 3×3×3

local (·). Then,

AFFB: Adaptive Feature Fusion Block
(Taking n = 4 as an example)

Split into 4 
parts in the H 

dimension

C×S×H/4×W

C×S×H/4×W

C×S×H/4×W

C×S×H/4×W

×w

Share the same kernel

Local Feature Extraction Block

Global Feature Extraction Block

Conv3d

Conv3d

Conv3d

Conv3d

Conv3d

concat

concat

Feature Map

C×S×H×W
Loss of features 

at splices

Fig. 3 The illustration of AFFB, with C× S×H×Was the dimensions of the feature maps. The local feature
extraction block uses the idea of focal convolution [3]. Here is an example of dividing the feature map into
four blocks horizontally, with each convolution kernel sharing the same parameters. We use a 3D convolution
as a global feature extraction block. W is a trainable parameter
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the global feature and local feature extracted by AFFB can be expressed as:

Yglobal = f 3×3×3
global (Xwhole) ∈ R

Cout×S×H×W , (1)

Ylocal = cat

⎧
⎪⎪⎨

⎪⎪⎩

f 3×3×3
local (X1

part )

f 3×3×3
local (X2

part )

...

f 3×3×3
local (Xn

part )

⎫
⎪⎪⎬

⎪⎪⎭

∈ R
Cout×S×H×W , (2)

where Cout is the number of output channels of AFFB.
Based on the above expressions for global and local features, the output of AFFB can be

expressed as:
YAFFB = wAFFB · Yglobal + Ylocal ∈ R

Cout×S×H×W , (3)

where wAFFB is a trainable parameter.
The specific parameters of AFFB in the model are shown in Table 1.

3.3 Feature expansionmodule (FEM)

The feature extending module (FEM) aims to extend the original gait features into more
scales, allowing more comprehensive gait information to be captured in the feature space.
Its specific architecture is shown in Fig. 4. The gait features obtained by ordinary three-
dimensional convolution includemore temporal and spatial gait information, which is lacking
in the focal convolution layer. After extracting the gait features, FEM splices the output of the

Table 1 The specific
configurations of the proposed
method under two different
datasets

Layer In_C Out_C Kernal w N-part

CASIA-B

Conv3d 1 32 (3, 3, 3) - -

LTA 32 32 (3, 1, 1) - -

AFFB 32 64 (3, 3, 3) 11 4

Max Pooling - - (1, 2, 2) - -

AFFB 64 128 (3, 3, 3) 11 8

FEM 128 256 (3, 3, 3) 6 16

OU-MVLP

Conv3d 1 32 (3, 3, 3) - -

Conv3d 32 32 (3, 3, 3) - -

LTA 32 32 (3, 1, 1) - -

AFFB 32 64 (3, 3, 3) 3 4

AFFB 64 64 (3, 3, 3) 3 4

Max Pooling - - (1, 2, 2) - -

AFFB 64 128 (3, 3, 3) 3 4

AFFB 128 128 (3, 3, 3) 3 4

AFFB 128 256 (3, 3, 3) 3 4

FEM 256 512 (3, 3, 3) 2 4

w stands for wAFFB in AFFB, and wFEM in FEM
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FEM: Feature Expansion Module
(Taking n = 4 as an example)

Share the same kernel
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Conv3d

Local Feature Expander
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concatHorizontal 
Split 

concat
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Fig. 4 The illustration of FEM. Local feature expander: we use a similar structure as AFFB, where the results
of the two convolutional parts are concatenated in the height dimension as the local features. Global feature
expander consists of two independent 3D convolutions, the same as local feature expander, and the result
of the convolution is concatenated in the height dimension as the global feature. The output of local feature
expander and global feature expander are concatenated in the channel dimension

focal convolution layer with the output of the common convolution layer, thereby enriching
the final gait features and making them more representative.

The structure of the FEM is shown in Fig. 4. The FEM consists of two parts, the first
is a local feature expander, and the second is a global feature expander. The global feature
expander uses two parallel 3D convolutions to process the input, and the processed results are
stitched on the H dimension. Finally, the output of the global feature expander is multiplied
by the trainable weight wFEM and stitched to the output of the local feature expander in the
channel dimension to form the gait features. Assume that the output of the adaptive feature
extractor is Vwhole ∈ Cin × S × H × W , where Cin is the number of input channels to the
FEM, S is the length of the feature map sequence, and (H, W) is the size of each frame
of the feature map. Similar to the analysis of the local feature extraction block in AFFB in
Section 3.2, we divide each frame of the input feature map level into n parts, denoted as

Vpart = {V i
part | i = 1, 2, ...n} ∈ R

Cin×S× H
n ×W . We set the 3D convolution in the local

feature expander as f 3×3×3
LE1 (·) and f 3×3×3

LE2 (·), and the 3D convolution in the global feature
expander as f 3×3×3

GE1 (·) and f 3×3×3
GE2 (·), then the output of the global feature expander can be

expressed as:

YGE = cat

{
f 3×3×3
GE1 (Vwhole)

f 3×3×3
GE2 (Vwhole)

}

∈ R
Cout×S×2H×W , (4)

and the output of local feature expander can be expressed as:

YLE1 = cat

⎧
⎪⎪⎨

⎪⎪⎩

f 3×3×3
LE1 (V 1

part )

f 3×3×3
LE1 (V 2

part )

...

f 3×3×3
LE1 (V n

part )

⎫
⎪⎪⎬

⎪⎪⎭

∈ R
Cout×S×H×W , (5)

YLE2 = f 3×3×3
LE2 (Vwhole) ∈ R

Cout×S×H×W , (6)

YLE = cat

{
YLE1
YLE2

}

∈ R
Cout×S×2H×W , (7)
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where Cout is the number of output channels of the 3D convolution.
Based on the above expressions for global feature expander and local feature expander,

the output of FEM can be expressed as:

YFEM = cat

{
wFEM · YGE

YLE

}

∈ R
2Cout×S×2H×W . (8)

The output of the FEM is operated by GeM [13] and fully connected layers to obtain the
final gait features. The specific parameters of FEM in the model are shown in Table 1.

3.4 Optimization

To optimize AdaptiveGait, the objective composed of triplet loss and cross-entropy loss.
The triplet loss enhances the model’s ability to distinguish between different individuals’
gait features by minimizing intra-class differences and maximizing inter-class differences.
Meanwhile, the cross-entropy loss optimizes classification accuracy, ensuring that the model
accurately labels each gait pattern. The loss function is represented as follows:

L = Ltri + Lce. (9)

4 Experiments

We used two publicly available gait databases for performance testing of the model: CASIA-
B [31] and OU-MVLP [21]. In this section, the specific conditions of the two databases are
introduced and comparedwith other advanced gait recognitionmethods. Finally, based on the
dataset CASIA-B, a detailed ablation study of the model is conducted to verify the function
of the proposed module.

4.1 Datasets

CASIA-B The CASIA-B [31] dataset is the most commonly used cross-view gait database in
gait recognition. It contains 124 subjects, each corresponding to ten gait sequences, of which
six groups are tested under normal walking conditions, numbered by NM#01-NM#06. Two
groups are tested under conditions of carrying a bag, numbered by BG#01-BG#02. The last
two groups are sampled under conditions of wearing a coat, numbered by CL#01-CL#02.
Each gait sequence contains 11 different sampling angles (ranging from 0◦ to 180◦, with a
sampling interval of 18◦). In the training phase, we use 74 subjects to train the model based
on the LT [25] experimental setup, and the remaining 50 subjects are used for testing. In the
testing phase, the sequences NM#01-NM#04 are taken as the gallery set, and the sequences
NM#05-NM#06, CL#01-CL#02 and BG#01-BG#02 are treated as the probe set to evaluate
our model performance.

OU-MVLP The OU-MVLP [21] dataset is one of the most extensive public gait datasets.
The dataset contains gait video sequences of 10307 subjects aged 2-87 years. Each subject
corresponds to two sets of sequences, numbered by Seq#00 and Seq#01. Each sequence
contains 14 different sampling angles (0◦-90◦ and 180◦-270◦, with a sampling interval of
15◦). Since the OU-MVLP dataset contains more subjects, it can better evaluate the model’s
generalization potential. In the training phase, this paper uses 5,153 subjects as training data
based on the experimental setup in [2], and the remaining 5,154 subjects are used for testing.
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During the testing phase, seq#01 is used as the gallery set, and seq#00 is taken as the probe
set to evaluate the model’s performance.

4.2 Implementation details

Weused themethodmentioned in [2] to preprocess theCASIA-B andOUMVLPdatasets, and
obtained a gait silhouette sequence normalized to 64×44. Next, we inputted the preprocessed
gait silhouette sequence into the network for training. The specific training parameters of the
network are shown in Table 1.We used Adam as the optimizer [9] and set the hyperparameter
in triplet loss to 0.2. The batch sizes were set to (8, 8) and (16, 8) in the datasets CASIA-B
and OUMVLP, respectively. For the CASIA-B dataset, Adam’s weight attenuation was set
to 5e-4. The learning rate was initially set to 1e-4 and reset to 1e-5 after an iteration of 70K
rounds. We used an NVIDIA 4090 GPU training model and iterated 80K rounds. During the
training of OUMVLP, the parameters wAFFB and wFEM in (3) and (8) were set to 11 and 6.
For the OUMVLP dataset, the weight attenuation of Adam was initially set to 0 and reset to
5e-4 after 200K rounds, and the learning rate was initially set to 1e-4 and reset to 1e-5 and
5e-6 after 150K and 200K rounds. We used two NVIDIA 4090 GPU training models and
iterated 270K rounds. During the training of OUMVLP, the parameters wAFFB and wFEM

in (3) and (8) were set to 3 and 2.

4.3 Comparison with typical methods

Evaluation on CASIA-B [31] To demonstrate the effectiveness of the proposed method,
we compared it with more typical models in the field of gait recognition. These include
GaitSet [2], which is based on global features; GaitPart [3], which focuses mainly on local
features; and GaitGL [13], which combines global and local features. Other methods include
GLN [5], ESNet [6], and LagrangeGait [1]. The rank-1 accuracy of our method on CASIA-
B for different walking patterns is shown in Table 2. Our method achieves a significant
improvement under different walking conditions. The accuracies of our method in NM, BG
and CL conditions are 97.8%, 95.1% and 86.0%, respectively. Compared with the baseline
GaitGL, it is 0.4%, 0.6%, and 2.4% higher in each index, respectively. And compared to
other typical gait recognition models, we obtained leading accuracy in all three different gait
conditions. In addition, the average rank-1 accuracy of our method on CASIA-B is 93.0%.
In contrast, the average rank-1 accuracy of LagrangeGait was 92.4%. The average accuracy
of our method has surpassed the advanced gait recognition method LagrangeGait.

Evaluation on OU-MVLP [21] To demonstrate the generalizability of the proposed
method,we compared theOU-MVLPwith some typicalmodels in thefield of gait recognition.
Since OU-MVLP contains more subjects and perspectives, it is an excellent test for the
model’s generalizability. The Rank-1 accuracies on OU-MVLP are shown in Table 3. Our
method achieves the optimum in the 45◦, 180◦, and 240◦ perspectives, and the accuracy of our
model is 89.9%, which is very close to the 90.0% result of the LagrangeGait [1]. The reason
for this phenomenon is that the LagrangeGait uses additional motion extraction branches and
visual embedding branches along with gait feature extraction, which is more expensive to
train compared to our model. Compared to the baseline GaitGL, the average accuracy of our
model improves by 0.2%, demonstrating the better generalization of our model.
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Table 4 Ablation experiments
performed on AFFB and FEM
under the CASIA-B
dataset.(Rank-1, %)

Configurations NM BG CL Mean

Baseline(GaitGL) 97.4 94.5 83.6 91.8

+AFFB 97.5 94.5 84.5 92.1

+FEM 97.5 94.9 84.8 92.4

+AFFB+FEM 97.8 95.1 86.0 93.0

The bolded data in the table represent the optimal results under the
respective experimental conditions, facilitating readers to quickly grasp
the key points

4.4 Ablation study

Analysis of AFFB and FEM We conducted ablation experiments on the modules to verify
the effectiveness of AFFB and FEM in gait feature extraction and the necessity of adaptivity.
Since CAISA-B [31] contains more walking conditions to validate the modules in different
situations, we conducted ablation experiments on this dataset.

The results of the ablation experiments are shown in Table 4. With GaitGL [13] selected
as Baseline and with AFFB alone, NM increased by 0.1%, CL increased by 0.9%, BG did
not change, and the average accuracy improved by 0.3%. The results show that AFFB has
superior extraction ability for gait features. In addition, with FEM alone, results showed a
0.1% rise inNM, a 0.4% rise inBG, a 1.2% rise inCL, and a 0.6% increase in average accuracy
over GaitGL. This demonstrates the crucial role of the FEM in the adequate representation
of gait features. Using the two together, we concluded with a 0.4% increase in NM, a 0.6%
increase in BG, a 2.4% increase in CL, and a 1.2% increase in average accuracy. This is a
significant improvement on the advanced model, and demonstrates the effectiveness of our
proposed method.

Analysis of different feature extractorsWe conducted ablation experiments using four
feature extractors, 3D convolution, FConv [3], GLFE [13] and AFFB, to verify that AFFB
can extract the complete gait features better compared to other methods. We conducted the
experiments on CASIA-B [31] with GaitGL [13] as the baseline. The results are shown in
Table 5. It can be seen that it makes sense to extract the AFFB module compared to other
feature extraction methods. AFFB adaptively balances global features with local features and
achieves better results on NM, BG, and CL compared to other feature extractors.

Analysis of FEM structure We further analyzed the structure of FEM. The specific
results are shown in Table 6. The LFE and GFE in the table represent the Local Feature
Expander and Global Feature Expander of FEM, respectively. The results show that the
recognition accuracy is low when experiments are conducted using only LFE and GFE. This

Table 5 Ablation experiments
using 3D convolution, FConv,
GLFE, and AFFB for feature
extraction under the CASIA-B
dataset.(Rank-1, %)

Configurations NM BG CL Mean

Baseline + 3D Conv 96.9 93.9 83.5 91.4

+ FConv 96.6 93.4 82.5 90.8

+ GLFE 97.4 94.5 83.6 91.8

+ AFFB 97.5 94.5 84.5 92.1

The bolded data in the table represent the optimal results under the
respective experimental conditions, facilitating readers to quickly grasp
the key points
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Table 6 Ablation experiments for the components of FEM using the CASIA-B dataset

Method Fusion NM BG CL Mean

Analysis of LFE and GFE

LFE - 97.3 94.6 84.1 92.0

GFE 97.3 94.6 84.8 92.2

Analysis of fusion methods

LFE+GFE cat in H 97.4 94.5 84.3 92.1

cat in C 97.8 95.1 86.0 93.0

"cat in H" denotes "concatenate in the height dimension of feature maps", while "cat in C" indicates "concate-
nate in the channel dimension of feature maps".(Rank-1, %)
The bolded data in the table represent the optimal results under the respective experimental conditions, facil-
itating readers to quickly grasp the key points

is because the information extracted by LFE and GFE is relatively singular: LFE is more
advantageous in extracting fine-grained features due to the horizontal division of the feature
maps, while GFE can better preserve the complete spatio-temporal features using 3D CNN.
For the feature fusion problem of LFE and GFE, we tested two methods: concatenate in
height dimension and concatenate in channel dimension.The results demonstrate that the
highest recognition accuracy is achieved when concatenating in the channel dimension. This
can be attributed to the increase in the number of neurons in the subsequent fully connected
layer after concatenation in the channel dimension. This expansion of gait features along the
channel dimension allows for a more effective representation of gait to be learned.

4.5 Complexity analysis

We performed a complexity analysis of our model as shown in Table 7. We conducted
separate experiments on the CASIA-B dataset using the same settings on the same device
for our model and GaitGL [13] models. Since LagrangeGait [1] does not currently have a
standardized code, no comparison was made with it. From the results, it can be seen that
our model has a higher number of parameters compared to GaitGL[13]. This indicates that
our model is more powerful in terms of representation capability, but it also means that it
requires more computational resources during training and inference. As can be seen from
the table, on the CASIA-B dataset, our model has an inference speed of 165.07it/s, while
GaitGL [13] has an inference speed of 238.62it/s. Despite exhibiting slightly slower inference
speed compared to GaitGL [13], our model maintains an acceptable rate, aligning well with
the inference speed standards prevalent in the domain of gait recognition.

Table 7 Complexity results for
GaitGL and our method
(AdaptiveGait) under CASIA-B

Model Parameters Count Inference Speed

GaitGL 3.10M 238.62it/s

Ours 7.73M 165.07it/s

The results for both models were obtained by computing under two
NVIDIA GeForce RTX 4090
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Conv3d

FConv

GLFE

AFFB

Fig. 5 Visualization of the gait feature maps extracted using the different methods. The first row shows the
feature maps extracted by common 3D convolution. The second row shows the feature maps extracted using
the 3D convolution of the FConv [3] idea. The third row shows the feature map extracted by the GLFE in
GaitGL [13]. The fourth row shows the feature map extracted by AFFB

4.6 Visualization

Figure 5 shows the gait feature maps under different feature extraction methods. The first
row shows the gait feature map extracted by normal convolution. It can be seen that the
normal feature map information is more comprehensive, but insufficient attention is given to
the body details, and some information is very fuzzy. The second row shows the gait feature
map extracted using the FConv [3] idea, and it can be seen that the feature map appears to be
significantly chunked. Although detailed information of different parts of the body is more
effectively extracted, the connection between these parts is weakened, and the features at the
dividing line of different parts are lost. The third row shows the gait feature map extracted
from GaitGL [13]. Although the fusion of global and local features has been considered,
chunking is still apparent, and the gait features are not fully expressed. The last row shows
the features extracted using the adaptive feature extractor. It can be seen that the features
at the dividing line are significantly supplemented, and the features of each body part are
enhanced. Finally, a more complete gait feature extraction is obtained.

5 Conclusion

This paper proposes the application of an adaptive feature fusion block for gait recognition,
and existing methods of gait feature extraction were shown to be improved using an adaptive
feature fusion technique. Using visualization methods, we successfully compensated for
feature map loss due to horizontal segmentation during local feature extraction. In addition,
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we also propose a feature expansion module to strengthen the connection of body parts
in the feature map by introducing more global information, while enriching the temporal
information in the feature space. We demonstrate the method’s feasibility on two datasets
commonly used for gait recognition. Our proposed method can extract complete gait features
more effectively, and we hope to provide some ideas for additional gait recognition work in
the future. Our concept is also adaptable to pedestrian re-recognition and other recognition
fields.
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