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Abstract
Few shot classification is the task of classifying unseen classes having only a few samples
of each of these unseen classes. A traditional approach of using the transfer learning on
the unseen data tends to overfit the problem and thus causing challenges in generalization.
We present face recognition using few shots by using metric based approach that consists
of multiple stages of model training. In the first stage, the foundational model is trained
using a general face recognition dataset like DigiFace-1m, which serves as a foundation. In
the second stage, a metric learning loss, such as triplet loss, is applied to further refine and
optimize the features learned by the model. This two-stage approach enhances the effec-
tiveness of the model for real-time face recognition with limited data samples. The study
takes a deeper dive and provides a detailed comparative analysis of different triplet mining
strategies for face recognition based on triplet loss learning. These methodologies primarily
utilize convolutional neural networks (CNNs) trained with triplet loss and compare different
triplet selection techniques, including hard triplets, semi-hard triplets, and offline triplets.
Standard datasets like DigiFace-1m, Labeled Faces in Wild (LFW), CelebA, and VGGFace2
are employed for experiments, but the selection of training classes differs between the two
stages. This ensures that although the same dataset is used for training, the two networks
are trained on different identities. The acid test comes in the form of real-time performance
evaluation where support sets composed of a mere two samples each from a pool of 50
unseen classes take center stage. These support sets, along with query sets, are meticulously
crafted from previously unexplored datasets. The results are nothing short of remarkable,
with reported accuracy surpassing the 70% threshold a resounding triumph in the realm of
few-shot learning, promising exciting possibilities for real-world applications.
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1 Introduction

Differentiating between objects with multiple features is one of themost complex tasks. Even
the human eye is sometimes challenged to correctly differentiate between different objects
solely by comparing certain features of the objects. Face recognition is a highly intricate
task that poses significant challenges due to the structural and facial similarities between
individuals. This complexity makes it difficult for computer programs to accurately evaluate
and distinguish between faces.

Face recognition using AI models has been the subject of numerous studies and exper-
iments. However, despite significant progress, face recognition remains a challenging task
due to the structural similarity of facial features. Although facial representations differ across
individuals, they often appear closer together in the latent space. Consequently, features or
embeddings extracted from trained CNN models for face recognition may exhibit similarity.
To overcome this issue and enable CNN models to effectively distinguish between different
faces and generalize well, training on a large volume of data is essential. To address the
limitation of requiring a high volume of data per identity, the concept of triplet loss-based
modeling was introduced. While many studies and experiments have explored the use of the
Triplet Loss Function for Face Recognition, there is a lack of comprehensive presentations
on the experimental results of different combinations of triplet mining strategies.

Numerous research has been published and several methods and techniques have been
proposed and published related to this task. Training a face recognition CNN model is
resource-intensive and demands a large amount of data to achieve optimal results. Reliance on
high volumes of data underscores the importance of having robust computational resources
to meet computational demands. To effectively handle the high volume of data, it is cru-
cial to incorporate a diverse range of feature-rich datasets. This includes masked images,
occluded faces, low-resolution images, and more. By introducing such variety, CNN models
can capture and learn the subtle differences present in the data, ultimately leading to a com-
prehensive and distinct representation in the latent space. Manual process of data annotation
is an expensive job and can cause high technical debt. Thus, obtaining accurately labeled
datasets for face recognition can be challenging due to the requirements of high volume and
variety of data.

In order to circumvent the problem of data sufficiency for model training, meta-learning
usingmetric-based learningmethodology is used to perform face recognition using few shots.
The metric-based loss called Triplet Loss is used on face verification and recognition tasks
using a Siamese Network. We used offline and online triplet mining strategies along with the
Triplet Loss function by selecting hard and semi-hard triplets.Another factor introducedwhile
selecting hard and semi-hard triplets is selection of negative samples during triplet creation.
Weused randomor best-fit negative sample strategy and performedmodel training using these
combinations. Selection of a triplet must be such that the model learns image embeddings in
such a manner that the distance between the anchor and positive image embeddings is closer
than the anchor and negative image embedding [1]. Similarity between these embeddings is
measured using the cosine similarity metric, while distance is computed using the Euclidean
distance. Thesemetrics provide valuable insights into the proximity and relationship between
the embeddings, enabling effective comparison and analysis. This work also describes how
selection of hyperparameters may influence the outcome.

Our research distinguishes itself by diverging from conventional methods that heavily rely
on extensive datasets and deep networks for achieving broad generalization. Recognizing
the limitations of this approach, we conducted experiments in scenarios marked by limited
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data availability. Our study intentionally employs substantially fewer samples per class yet
manages to achieve noteworthy levels of generalization. Also, we introduce a novel element
to our methodology - the integration of a few-shot learning strategy. This approach not only
addresses the challenges associated with limited data scenarios but also significantly reduces
the dependency on high computational resources. Consequently, our research stands out
for its efficiency in model training with higher number of classes and a significantly lower
number of samples, offering a practical and resource-conscious alternative that contributes
to the advancement of the field.

A pre-trained CNN is used as a transfer learning model to further train the Triplet Loss
model using the Siamese network and gradients are updated. The pre-trained CNN is modi-
fied, and custom convolutional and dense layers are added to perform the model training. We
ensured that datasets were preprocessed, images were cropped, faces extracted and aligned
before the training. As part of preprocessing activity, we used an image size of 112x112
and the alpha channel from the synthetic dataset (DigiFace-1m) was removed to remove
transparency and reduce the number of image channels to 3.

Post-model training, results were evaluated on the standard real and synthetic datasets
such as LFW, CelebA, VGGFace2 and DigiFace-1m. Results are evaluated using ‘Model
Testing’ and ‘Real time’ evaluation. The evaluation is performed using few shot samples
from support set and query set. These results are presented in Section 4.

To the best of our understanding, the studies that use Siamese network using triplet loss
do not provide a comprehensive analysis on different triplet mining strategies under few
shot settings. These studies [1–6] either utilize triplet loss directly or provide a task specific
version [7] of triplet loss. Contributions of the study are:

1. In-depth examination of triplet loss employing various triplet mining strategies for para-
metric few-shot learning.

2. Model training and evaluation strategydesignedwithin the constraints of a limited dataset,
particularly in the realm of few-shot learning.

3. The study conducts experiments on samples from classes for 1-shot, 2-shots and 5-shots
that are not seen during training and validation process. This adds a distinctive dimension
to the study.

4. Design of two-stage training approach that improves the effectiveness of the model
and provides insights into handling limited data scenarios in face recognition. Provides
insights into the factors influencing performance of CNN models for face recognition.

5. Experimental results obtained from these carefully designed methodologies will con-
tribute to advancing the field and addressing the challenges associated with face
recognition tasks.

The organization of the paper is as follows. In Section 1, we introduce the study of triplet
loss-based face recognition and present the motivation behind our study. Section 2 provides a
comprehensive review of literature and existing work related to usage of triplet loss and face
recognition. Section 3 coversmethodology adopted to accomplish different tasks related to the
study. Section 4 discusses and summarizes performance evaluation results of the experiments
conducted related to the study. Finally, Section 5 provides conclusions and future work.

2 Literature survey

Early stages of face recognition can be traced back to various research texts [8, 9]. At that
time, much of the focus was onmanually designing and crafting features for face recognition.
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However, in recent years, there has been a shift towards making machines more intelligent
[10]. Researchers are now aiming to offload the responsibility of solving the aforementioned
complex task to automated systems.

Over time, these initial research efforts evolved, leading to advancements in face detection
and facial feature extraction techniques. Appearance-based methods such as fisherfaces [11],
as well as feature-based approaches, were proposed to handle larger datasets consisting
of facial images. Multiple approaches based on Support Vector Machines (SVM) [12–14],
Principal Component Analysis (PCA) [11], and Hidden Markov Model (HMM) [15, 16]
were also introduced to tackle face recognition tasks. Machine learning based approaches
have been used by using the subspace discriminant ensemble-based approach [17]. A hybrid
approach to recognize faces is also used by using Viola Jones, PCA and applying PCA on
detected features. Viola Jones is still being used to detect a face and PCA is used along
with it to detect different parts of the face such as face, left eye, right, nose and mouth
[18]. Features are extracted from the detected parts of these faces and the face is recognized
by applying PCA. These techniques served as fundamental building blocks for subsequent
research conducted in controlled environments and with limited datasets.

Advancement of technologies in the current era is enabling identity authentication and
authorization using face verification. This has enabled a face recognition system to be a
generalized source of authentication. To achieve this, it is important that data is normalized,
segmented and good quality features [19] are generated. Structural and facial similarity
between different faces adds to the complexity of the face recognition task and research is
being done to extract texture features [20] from eyes, nose, mouth and face. Face recognition
generalizes well in control situations such as similarity matching only using the frontal view.
However, there are scenarios where there is a pose instead of a frontal view. In that case the
frontal view is calculated from the pose-view [21] angle before performing the face similarity.
Current age of deep learning has enabled Face Recognition [22] tasks to be progressed at a
level of fair maturity. This has been made possible by high computing systems, availability of
datasets and evolution of new techniques, technology and algorithms. One such algorithmic
technique uses triplet loss [1, 23] and different triplet mining [24] strategies to find the
similarity [25] between faces. This is a novel technique that enables CNN to produce face
embeddings that represent similar embeddings closer in the latent space and the different
face embeddings have a larger distance between them. The technique is primarily used in
Siamese [26, 27] network-based modelling. This approach has been used to conduct similar
experiments to perform face recognition [28] where the face images are occludedwith amask
[29–33]. The triplet-based model using a Siamese network has been used in unsupervised
learning to generate more accurate pseudo labels [34] for person re-identification tasks [35].
It has been observed that for partial matching and to counter occlusion, an evolved version
of the triplet loss function [29] can be used to further improve the performance [36, 37] of
the model on the standard datasets. The triplet loss-based approach has been extended to
relatively new concepts of Few-shot learning [30] whereby only a limited set of datasets is
required to achieve significantly good performance on the given face recognition task. This
significantly reduces the requirement of having a high volume of training datasets. The use
of triplet loss in our experiments has proven to be effective in reducing the requirements for
a large number of samples [38] per class. This approach mimics the behaviour of few-shot
learning methods, as highlighted in a recent study by Holkar et al. [26]

The conventional methodologies in the field often rely on extensive datasets and employ
deep neural networks to achieve broad generalization. However, this conventional approach
faces a notable limitation due to its dependency on large datasets. It is this limitation that
serves as a primarymotivation for our study, prompting us to explore and conduct experiments
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in scenarios characterized by limited data availability. In contrast to the common practice
of employing numerous samples per class, our study specifically investigates the efficacy of
utilizing significantly fewer samples per class. The objective is to demonstrate that even with
restricted data, it is possible to achieve substantial generalization.

In addition to addressing the challenges associated with limited data scenarios, our study
also leverages a few-shot learning strategy. This innovative approach aims to minimize the
reliance on extensive computational resources traditionally required for model training. By
adopting a few-shot learning strategy,we effectively reduce the computational burden, leading
to a notable reduction in the overall model training time. This not only contributes to resource
efficiency but also underscores the practicality and applicability of the proposedmethodology
in scenarios where computational resources are constrained.

3 Methodology

The system pipeline consists of multiple stages. Each stage corresponds to a specific task.
In stage-1, the base network is trained and in stage-2 triplet loss network is trained by using
the base network from stage-1. The stage-1 task is intended to develop a model that is used
for features extraction. To achieve this, the widely adopted dataset DigiFace-1m is chosen.
The data is augmented offline, and the model is trained thereafter. VGG16 is used as a base
network for transfer learning. As shown in the computation graph in Fig. 2, the weights
corresponding to block-5 of VGG16 and the fully connected layers are updated during the
training process. Further details related to base network selection, dataset selection criterion
and model training are presented in the subsequent sections respectively.

3.1 Base network trainingmethodology ( Stage -1)

3.1.1 Base network selection criterion

The pre-trained VGG16 model is selected based on the following considerations:

1. Simple architecture - The architecture of VGG16 is straightforward and easy to under-
stand, consisting of stacked convolutional layers and dense layers.

2. Pre-trained - VGG16 has been pre-trained on the large-scale image dataset ‘ImageNet’.
This enables the network to learn generic features from large-scale datasets.

3. Performance on medium-sized dataset - VGG16 performs well on medium dataset. It
does not perform well like other recent models like Resnet50, Inception, etc. However,
our objective of training on a medium sized dataset is fulfilled by VGG16.

4. Shorter training time - Because of shorter training time than other standard networks,
VGG16 is the ideal selection for the experiments.

System pipeline and methodology adopted for training and validating the base network is
displayed in Fig. 1

3.1.2 Dataset selection

For selecting the datasets for model training and testing, evaluation is done on state-of-art
datasets. Criterion for dataset selection is mentioned in Table 1. The criterion is:

1. Active - The dataset must be active for current research.
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Fig. 1 Overview of system pipeline and methodology for training and testing

2. Class Sufficiency - The dataset must have enough classes having enough samples on
which training can be done.

3. Sample sufficiency per class - One common method to increase the size of the dataset
is by augmenting the data. Embeddings of an augmented image closely resemble those
of the original image. When working with limited data, it is preferable to use a dataset
that naturally incorporates variations in the samples. This allows the network to generate
more accurate results without relying heavily on data augmentation. Based on these
considerations, we opted for a dataset that contains a minimum of 50 samples per class
(without augmentation) for training the base network.

4. Balanced - To avoid biases and fair distribution, we ensured that each class must be
represented equally.
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Table 1 Dataset selection criterion

Criterion
Dataset Active Class sufficiency Samples sufficiency per class Balanced

DigiFace-1m Yes Yes Yes Yes

MSCeleb-1m No Yes Yes Yes

CelebA Yes Yes No Yes

LFW Yes Yes Yes No

Based on the criterion mentioned in Table 1, DigiFace-1m dataset is selected for model
training and testing. Details of the DigiFace-1m dataset are presented in Table 2

3.1.3 Dataset preprocessing - base network

Because of the inherent complexity of the facial features, the model is trained on the frontal
view of the face. However, some images are pose-variant and do not present a frontal view.
As part of the data preprocessing, the dataset is iterated and face alignment, extraction and
resizing are performed on every sample. Sample(s) on which automatic alignment or extrac-
tion could not be performed is discarded from model training and testing. Face alignment
is performed using the OpenCV library. MTCNN is used to perform face extraction and the
image is resized to 112x112 pixel with a reduction of alpha channel.

3.1.4 Model training, validation and testing

VGG16 is used for face recognition tasks by transfer learning and only training its last
convolution layer and subsequent dense layers. Input to the model is an RGB image having
width and height as 112 pixel and number of channels as 3. DigiFace-1m dataset has an alpha
channel that was removed as part of the preprocessing. The model computational graph is
presented in Fig. 2. The optimizedmodel training configuration and parameters are presented
in Table 3

Our objective was to train the model minimally on Face Recognition tasks and achieve
sufficient accuracy of around 80%, so that model could minimally detect the face and be used
for extracting the embeddings by the downstream network.

3.2 Triplet loss network trainingmethodology (stage -2)

Triplet loss network uses the feature extraction network trained in stage-1 of network pipeline.
The softmax layer of the feature extraction network is removed, and the features are extracted
using the last dense layer of 128 dimensions. This model is fine-tuned by attaching a convo-
lutional layer and the couple of fully connected layers that are normalized and the triplet loss

Table 2 Selected dataset for base network (Stage -1)

Dataset Type Total #Classes Selected #Classes Selected
classes name

Selected #Samples
per class

DigiFace-1m Synthetic 10k 200 0 − 199 72
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Fig. 2 VGG16 computation graph - face recognition task

function is applied thereafter. As part of the training process, the size of mini batch plays a
critical role in determining the optimal triplet for that particular batch. Hence, it is suggested
to have maximum representations of different classes in the mini batch. During the training
process, the triplets are mined, and training is performed. The loss is updated based on the
distance between the anchor, positive and negative samples mined for each class in the mini
batch. The methodology adopted for training the triplet loss network is displayed in Fig. 1

3.2.1 Training and validation dataset selection

All the experiments have been conducted on standard datasets namely DigiFace-1m, CelebA
and LFW. DigiFace-1m is a large dataset with 10k identities and 72 image samples per class.
LFW and CelebA datasets have multiple identities but a limited number of samples per class.
The selection of the dataset for training the model is based on the criterion mentioned in
Table 1. The base model is trained on the DigiFace-1m dataset, specifically on 200 classes
as indicated in Table 2. For training the triplet loss network, we also utilize the DigiFace-1m
dataset, but with different classes and samples. By selecting different classes and samples, we
ensure that the training data for the triplet loss network is distinct from the data used to train
the base network. Further details about the dataset are mentioned in Table 4. The “Selected
Classes” column in the table indicates that the class names range from 2000 to 2049.

3.2.2 Dataset preprocessing - triplet loss network

This section outlines the preprocessing techniques applied to the selected datasets, includ-
ing image resizing, face extraction, face alignment, and normalization. Precursor for face

Table 3 Optimized model training parameters for base network

Base model Learning rate Optimizer Batch size Total #Classes Selected #Samples
per class

VGG16 0.001 SGD 32 200 72
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Table 4 Selected dataset - triplet loss network (stage 2)

Dataset Type #Classes in
dataset

Selected #Classes Selected classes Selected #Samples
per class

DigiFace-1m Synthetic 10k 50 2000 to 2049 63

recognition is face detection task. To enable a CNN model to perform well on face detection
tasks, face extraction is done using MTCNN and face alignment using OpenCV as part of
the preprocessing. The images in DigiFace-1m dataset are of size 112x112 and 4 channels.
After preprocessing, we resized the images to 112x112 and 3 channels and removed the alpha
channel.

3.2.3 Hyperparameters selection

Choosing appropriate hyperparameters significantly influences the training results of CNN
models for face recognition. This section discusses the process of selecting hyperparameters,
such as learning rate, batch size, and margin values, and the considerations involved in their
determination. Rationale behind the chosen hyperparameters is provided, ensuring a robust
training process. For achieving good results from the model training and faster convergence,
we emphasize the need of selecting a batch size that must have a sufficient representation of
samples from each class for a decent triplet mining strategy. We chose to have a batch size
of 1024 so as to have sufficient representation of each class in a mini batch.

3.2.4 Triplets mining strategies and network training

This section presents an in-depth exploration of various triplet mining strategies employed
in face recognition tasks. Different techniques, such as Hard Triplets, Semi-Hard Triplets,
and offline triplets, are examined for advantages and challenges. We provide insights into
selecting suitable triplets to train theCNNmodels effectively. Triplets are formed by selecting
an anchor (A) and a positive (P) sample from the same class and a negative (N) sample from
any other class. There are primarily two ways of selecting a triplet, i.e., Hard triplets and
semi hard triplets [1]. Triplets are selected such that the network learns that the Euclidean
distance between the anchor and positive pair is less than the anchor and negative pair by a
margin. This process of network training [1] is presented in Fig. 4

Schematic of our network design is represented in Fig. 3. Different sizes of shapes in
the mini batch specify unequal distribution of samples per class. Deep learning architecture
block specifies that transfer learning is performed on VGG16, and some custom layers have
been added as well. These layers include a 1x1 filter-based convolution layer and a couple
of fully connected layers. The output is L2 normalized to provide the normalized 128-dim
embeddings.

3.2.5 Triplet loss objective

The objective of the triplet loss function (f) represented in (1) is to establish that the
embeddings of anchor and positive samples are represented closely in the latent space. And
embeddings of anchor and negative (N) samples must be at distance greater than the anchor
and positive sample distance. Thus, the objective is to minimize the distance between the
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Fig. 3 Triplet loss - network training

anchor and the positive and maximize the distance between the anchor and negative. The
triplet loss function is represented as (1). The function f(x)i produces the embeddings of a
sample ‘x’ that belongs to ith class.

LA,P,N = max(|| f (A) − f (P)||2 − || f (A) − f (N )||2 + α, 0) (1)

For a mini batch of size ‘M’, the loss per batch is represented as (2):

LA,P,N =
∑

max(|| f (A) − f (P)||2 − || f (A) − f (N )||2 + α, 0)

M
(2)

3.2.6 Hard triplets

A negative image sample (N) is selected such that the Euclidean distance between anchor
(A) and negative is less than the Euclidean distance between anchor and positive (P) samples
embeddings. Equation (3) represents distance (d) of hard triplets.

d||A, N || < d||A, P|| (3)

3.2.7 Semi-hard triplets

A negative sample image is selected such that the Euclidean distance between anchor image
andnegative image embedding is less than theEuclideandistance between anchor andpositive
image embedding by a margin. Equation (4) represents the distance (d) in case of semi-hard
triplets by a margin of α.

d||A, P|| < d||A, N || < d||A, P|| + α (4)

3.2.8 Determining the number of triplets

With reference to (3) and (4), it is sufficient to select one best triplet per class per mini batch.
This can be achieved by selecting the best anchor positive and anchor negative pairs. We
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created all possible anchor positive combinations [1] of the triplets for a mini batch. Thus, if
a class has ‘n’ samples then there are

(n
2

)
possible triplets for that class. This ensures to have

sufficient representations of samples per class in a mini batch.

3.2.9 Approaches adopted for negative sample selection

The selection of negative samples is a crucial factor that significantly impacts the convergence
of triplet loss. In our study, we conducted experiments using two primary strategies for
selecting the negative sample either by selecting a random negative sample or by selecting
the best negative sample. The approach to select a random negative and best negative sample
is presented below.

• Selecting a random negative

1. There are ‘c’ classes and each class has ‘s’ number of samples.
2. ‘S’ denotes the total number of samples from (c-1) classes.
3. Then, a negative sample is selected at random from the set of ‘S’ for each anchor and

positive pair.

Algorithm 1 is used for selecting a random negative sample from a mini batch for gen-
erating a triplet.

Let S = {s1, s2, s3, s4, s5...(c − 1 ∗ s)}
n ∈ S where ‘n’ represents random negative sample

Algorithm 1 Find a random negative embedding.
1: Input:Euclideandistance between anchor (A) embedding andnegative (N) embedding.AnchorEmbedding

(anchorembedding) and the class labels (classes)
2: Output: Random negative embedding as (negativeembedding)
3: initialize negativeembedding ⇐ −1
4: intialize f oundnegative ← f alse
5: for i = 1 to classes do
6: clazz ← randomize(classes)
7: for i = 1 to clazz do
8: sample ← clazz
9: andist ← euclidean_distance(anchorembedding, sample)
10: if andist < anDist then
11: negativeembedding ← sample
12: f oundnegative ← true
13: break
14: end if
15: if f oundnegative = true then
16: break
17: end if
18: end for
19: end for

• Selecting Best Negative

1. This approach requires determination of a negative sample by iterating through all
the classes in a mini batch and finding the negative sample image that is closest to
the anchor image as presented in (5).
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argminn ||A − N || (5)

Algorithm2 is used for selecting the best negative sample fromamini batch for generating
a triplet.

Algorithm 2 Find best_negative_embedding(anDist, anchorembedding, classes).
Input: Distance between anchor and negative embedding, anchor embedding, labels
Output: Best negative embedding
initialize negativeembedding ⇐ −1
initialize minDist ⇐ −1
for i = 1 to classes do

clazz ← i
for i = 1 to len(clazz) do

sample ← clazz
andist ← euclidean_distance(anchorembedding, sample)
if minDist < andistandandist < anDist then

minDist ← anDist State negativeembedding ← sample
end if

end for
end for

3.2.10 Testing strategies

This section describes testing strategies used while evaluating the performance of the triplet
loss model. The testing strategies are divided into two categories ‘model testing’ and ‘real
time testing’. These categories are decided based on the number of samples per class, that
are to be compared using cosine similarity for evaluating model performance. Data sampling
and splitting strategies are presented in Table 5.

3.2.11 Similarity score estimation

As shown in the network design in Fig. 4, the output of the network is the extracted features
or embeddings. Cosine similarity is used as the distance measure for testing and evaluation

Table 5 Testing strategies - data sampling

Strategy Data category Data sample Description

Model Testing Training-Test Split Training set (63 samples per
class) Testing set (7
samples per class)

Training data is seen by
model during training and
testing data is not seen
during the model training

Model Testing Support-Query Split Support set (63 samples per
class) Query set (7 samples
per class)

Support set and Query Set
are not seen during the
model training

Real Time Support-Query Split Support set (2 samples per
class) Testing set (1 sample
per class)

Support set and Query Set
are not seen during the
model training
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Fig. 4 Network transformation - triplet learning

of our experiments on face recognition datasets on completely unseen dataset.

cosine similarity = A · B
‖A‖ · ‖B‖ (6)

In (6) A and B represents “training and testing” or “support and query” samples embed-
dings.

3.2.12 Hardware specifications

This section captures hardware resources used during the model training along with training
times of different models. The hardware resources details are mentioned in Table 6.

4 Discussions and results

This section comprehensively lists and describes the performance evaluation results of the
base network and the triplet loss network. Results of triplet loss-based CNN are governed
by underlying pre-trained model that is used as a base network. It also represents the com-
pilation of results for experiments that are conducted with different triplet mining strategies.
Influence of hyperparameters on the results is described in Section 3.2.3. Triplet loss network
performance evaluation results are also presented on real time strategy with limited samples
on unseen data

Table 6 Hardware specifications GPU specifications CPU specifications

Tesla V100-PCIE Intel (R) Xeon (R) Gold 5218 CPU@
2.30 GHZ

Number of GPU Cards -2 CPU Cores - 64

Memory 32 GB Per card Memory 1TB
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4.1 Model training hours

The study specifies ‘BaseNetwork’ that acts as the embeddingnetwork as oneCNNmodel and
the ‘Triplet Loss’ model with different triplet mining strategies as another CNNmodel. Both
models trained on same hardware specified in Table 7 reflect the training time taken by ‘Base
Network’and ‘Triplet Loss’ CNN models. Higher training times for triplet loss networks are
attributed to the non-vectorized implementation of the triplet selection algorithms.

4.2 Results

This section provides quantitative results related to base network and triplet loss network
from Section 3

4.2.1 Base network

The model is trained on the DigiFace-1m dataset as specified in Table 2. The dataset per-
centage split used for training, validation and testing is 80-10-10%. The model is trained
using transfer learning from VGG16 pre-trained model on the task of face recognition. As
shown in Fig. 2, transfer learning was applied from the last convolution block of VGG16
network by unfreezing its last layer and adding custom fully connected layers. The input is
classified using softmax. The model is run for 500 epochs. Training and validation graphs
clearly suggest that convergence is achieved around the 90-100th epoch. 200 classes and
72 samples for each class are chosen for model training. A standard split of 80-10-10 is
used for training, validation, and testing respectively. The performance evaluation results are
mentioned in Table 8. The intermediate results are listed in the form of confusion matrix
for the intermediate model that is used as a feature extractor. Since the model is trained on
200 classes and corresponding confusion matrix will be challenging to represent, we have
presented the complete confusion matrix in Fig A1 of appendix. Here, we are presenting
confusion matrix Fig. 5 for randomly selected 10 classes. Accuracy and Loss graphs are
presented in Figs. 6 and 7 respectively.

4.2.2 Triplet loss network - quantitative results

The triplets’ losses for different triplet mining strategies are shown in Fig. 8. It is clear that
the selection of the best negative sample in both hard triplets and semi-hard triplets mining
strategy converges faster than the randomly selected negative sample approach.

We report the quantitative evaluation results in Tables 11 and 10 for different triplet
mining strategies presented in Section 3. The most optimized hyperparameters are presented
in Table 9.

Table 7 Model training hours Model Training time

Base network 1 hour, 40 minutes

Semi-hard triplets and random negative 35 hours

Semi-hard triplets and the best Negative 55 hours

Hard triplets and random Negative 33 hours

Hard triplets and the best negative 56 hours

123



Multimedia Tools and Applications

Fig. 5 Confusion matrix for base network for randomly selected 10 classes

As per experimental results mentioned in Table 11 using ‘model testing’ based perfor-
mance evaluation strategy, it is evident that semi-hard triplet selection with the randomly
selected negative sample yields best results on both seen and unseen data. Selection of a base
network that provides optimal embeddings of an image plays a significant role in triplet loss
basemodel. In case of ‘real time’ testing strategy, a new dataset VGGFace2 is utilized to eval-
uate performance of model using limited datasets. In this performance evaluation strategy,
classes in query set and support set are same, but samples are different. Only 2 samples per

Fig. 6 Base network - training and validation accuracy
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Fig. 7 Base network - training and validation loss

Table 8 Base network - performance evaluation results

Training loss Training Acc Validation loss Validation Acc Testing loss Testing Acc

0.00364 99.67% 0.00323 89.74% 0.00431 88.76%

Fig. 8 Triplet losses for different triplet mining strategies
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Table 9 Optimized
hyperparameters for triplet loss
network

Batch size Optimizer Learning rate Margin

1024 SGD 0.001 0.2

class are selected in support set for different testing executions. Query set has only one image
per class. Performance evaluation results are presented in Table 10. Similarity matches in
‘real time’ test strategy between samples of different classes are presented in Fig. 9. This sug-
gests that triplet loss-based training is particularly useful in constrained environments where
number of samples is limited or few. Selection of the ‘margin’ variable and the ‘batch size’
play a significant role while model training. An optimally chosen batch size must be such that
significant samples per class are present in each mini batch. Performance results for experi-
ments related to offline triplet mining are inconclusive and are mentioned as ‘inconclusive’
in Table 11.

4.2.3 Comparative analysis

This section describes the comparative analysis between different studies. Table 12 displays
the comparisons between different techniques that have primarily used triplet loss and few
shot learnings in their experiments. Our experiments are performed in multiple few shot
configurations, provide detailed analysis of triplet mining techniques, and tested on unseen
classes.

The SOTAmodels like FaceNet [1] and DeepFace [40] are designed to learn from various
variations, such as changes in illumination and pose, to produce high-quality embeddings.
Achieving this involves leveraging deep network architectures and training on extensive
datasets comprising thousands of identities and millions of samples. It is crucial to note that
our study does not seek to draw comparisons with these state-of-the-art models, which often
employ proprietary datasets and intricate network architectures. Instead, our investigation
is centered around a more constrained dataset and a less complex network architecture. In
contrast to many existing studies that utilize a few-shot learning methodology, our approach
differs in terms of both dataset size, mining and network depth. Unlike studies that often
involve training and testing for classes either ≤20 or ≥1000 and high number of samples
per class, our experiments cover 50 classes with very few numbers of samples. Moreover,
our study introduces variations in the number of samples per class (one, two, or five), and
these classes remain unseen during the training and validation phases. While many studies
commonly employ Siamese Networks [21, 26] with contrastive loss and some studies use
quadruped loss [39], our research delves into the intricacies of different triplet mining strate-
gies. Our particular focus is on parametric few-shot learning, with an emphasis on testing for
classes that were not part of the training or validation process. This distinct approach allows
for a more comprehensive examination of the model’s generalization capabilities on unseen
classes, given the limitations of our dataset.

Table 10 Performance evaluation results

Dataset #Classes Support Set-#Samples
per class

Query Set-#Sample
per class

Test Acc% Response time

VGGFace2 50 2 1 70% 100 ms

VGGFace2 100 2 1 68% 110 ms

VGGFace2 200 2 1 62% 100 ms
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Fig. 9 Similarity - samples from support and query sets

5 Conclusions and future work

In this paper, we have presented a comprehensive analysis of methodologies for face recog-
nition using few shots via the metric based learning. The performance is evaluated on unseen
dataset and we observed an accuracy of over 70% in both real time and ‘model testing’ mode
for each of the 50 unseen classeswith a processing time of about 100milliseconds. . The study
compares performance of various triplet selection techniques and demonstrates effectiveness

Table 11 Triplet loss network -performance evaluation results (model testing)

Method Results - evaluation test strategy
Trained dataset Unseen dataset Test accuracy-train-

test split dataset
Test accuracy-support
query split dataset

Semi-hard triplets
and random negative

DigiFace-1m CelebA 85.6% 69.23%

DigiFace-1m DigiFace-1m 85.6% 72.23%

DigiFace-1m LFW 85.6% 70.23%

Semi-hard Triplets
and Best Negative

DigiFace-1m CelebA 81.23% 67.37%

DigiFace-1m DigiFace-1m 81.23% 70%

DigiFace-1m LFW 85.6% 68.76%

Hard triplets and
random negative

DigiFace-1m CelebA 79.37% 66.57%

DigiFace-1m DigiFace-1m 79.37% 68.35%

DigiFace-1m LFW 79.37% 67.35%

Hard triplets and
best negative

DigiFace-1m CelebA 75.32% 62.37%

DigiFace-1m DigiFace-1m 75.32% 67.37%

DigiFace-1m LFW 75.32% 66.23%

Offline triplets DigiFace-1m CelebA Inconclusive Inconclusive

DigiFace-1m DigiFace-1m Inconclusive Inconclusive

DigiFace-1m LFW Inconclusive Inconclusive
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of triplet Loss in training a CNN for face recognition tasks. Our results show that two-stage
training approach, incorporating a pre-trained VGG16 as base feature extraction network,
yields promising results in limited dataset scenario using few shot learning. The study also
highlights the impact of hyperparameters and data sampling on performance.

While this study provides valuable insights into face recognition with limited data using
few shots, there are several directions for future research. Different few shots learning tech-
niques can be used with cross domain datasets to further improve the training methodology
and training times. Overall, this study lays the foundation for further advancements in face
recognition with limited data, and future research can build upon these findings to address
the challenges and explore new possibilities in this field.

Appendix A: Extended data

The Figure displays confusion matrix for intermediate results from Stage-1 training and
testing. The confusion matrix for 200 classes is hard to interpret and hence provided in this
section.

Fig. 10 Confusion matrix for base network with 200 classes
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