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Abstract
In recent years, the demand for automatic crowd behavior analysis has surged, driven by 
the need to ensure public safety and minimize casualties during events of public and reli-
gious significance. However, effectively analyzing the nonlinearities present in real-world 
crowd images and videos remains a challenge. To address this, research proposes a novel 
approach leveraging deep learning (DL) architectures for the segmentation and classifica-
tion of human crowd behavior. Our method begins by collecting input from surveillance 
videos capturing crowd activity, which is then processed to remove noise and extract the 
crowd scene. Subsequently, we employ an expectation–maximization-based ZFNet archi-
tecture for accurate video segmentation. The segmented video is then classified using trans-
fer exponential Conjugate Gradient Neural Networks, enhancing the precision of crowd 
behavior characterization. Our method has been proven effective in experimental analysis 
on many human crowd datasets, with significant results of average mean precision (MAP) 
of 59%, the mean square error (MSE) of 61%, accuracy in the training of 95%, validation 
precision of 95%, and selectivity of 88%. The potential of DL-based methods to advance 
crowd behavior analysis for improved privacy and security is highlighted by this study.

Keywords  Human crowd · Behavior analysis · ZFNet architecture · Conjugate gradient · 
Expectation–maximization

1  Introduction

The behaviours or actions of a group of people who have assembled for a brief time 
while paying attention to a specific item or event. A common component of many human 
endeavors is crowdedness. Every day, many pedestrians are handled in transport hubs, 
tall buildings, stadiums, and other public places. Effective crowd control is crucial for 
maintaining safety in these situations and determining one’s quality of life. Fires, crowd 
violence, or the ecstasy of a few crowd members are only a few examples of crowd 
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tragedies, in which people are seriously injured or killed as a result of being crushed or 
trampled. Such incidents can and have happened during rock concerts, religious services, 
and athletic events [1]. During the admission, occupation, and evacuation of something 
like a public event facility, serious injury and disease can occur. Because there are so 
many cameras available now that make it easy to record and save video, video surveillance 
of individuals is an often used technology. The majority of these tools rely on a user to 
review the material that has been stored and interpret its content. Given this restriction, 
it is vital to offer video surveillance systems that enable automatic behaviour recognition 
[2]. Computer vision techniques can be used to implement these kinds of systems because 
they make it possible to recognize unsupervised patterns of human activity, such as 
gestures, movements, and other activities. Numerous studies are being done right now 
on human behaviour analysis, like [3], which have helped to identify different forms of 
human behaviour in video clips. Taking into account their range in time from seconds to 
hours, these behaviours have been ranked from the most basic to the most sophisticated. 
When taking into account these Closed Circuit Television (CCTV) cameras and other 
installation systems, automated crowd research plays a significant part in crowd analysis 
and visual surveillance recordings [4]. Designing public areas, visual surveillance systems, 
and intelligently managed physical environments is so important. These kinds of systems 
will have many useful uses, such as crowd flow monitoring, accident management, 
and coordinating evacuation plans necessary in the unfortunate case of a sudden and 
uncontrolled fire or the presence of riots in urban areas in particular [5]. Researchers 
have looked into the situation of acquiring motion data at a higher level in the research 
paperwork. This indicates that the motion information does not account for specific moving 
or stationary objects. As a result, these techniques frequently require a variety of features, 
such as multi-resolution histograms, spatiotemporal cuboids, appearance or motion 
descriptors, and spatiotemporal cubes [6].

The contribution of this research is as follows: This research presents a novel approach 
to human crowd behaviour analysis by integrating segmentation and classification through 
deep learning architectures. Unlike existing methods, our proposed technique utilizes 
an expectation–maximization-based ZFNet architecture for video scene segmentation, 
enabling more accurate delineation of crowd dynamics. Additionally, we introduce transfer 
exponential conjugate gradient neural networks for classification, enhancing the precision 
of crowd behaviour characterization. By seamlessly integrating these two components, 
our method offers a comprehensive and effective solution for understanding complex 
crowd behaviours in surveillance videos. This novel methodology advances the latest 
developments in human crowd analysis by improving classification performance as well as 
segmentation accuracy.

The remaining research is organized as follows: Section  2 contrasts and compares 
previous studies on the topic. In Section  3, an in-depth description of the ZFNet the 
building’s expectation–maximization-based video segmentation method is given. 
Transfers exponential Conjugate gradient neural networks are then used for data 
categorization. The experimental analysis carried out for this study is presented in 
Section  4. In the fifth section,  we wrap up the study’s main findings and talk about 
possible directions for further research.
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2 � Related works

Crowd safety in public places has always been a serious but difficult issue, especially in high-
density gathering areas. The higher the crowd level, the easier it is to lose control [7], which can 
result in severe casualties. To aid in mitigation and decision-making, it is important to search 
for an intelligent form of crowd analysis in public areas. Crowd counting and density estima-
tion are valuable components of crowd analysis [8] since they can help measure the impor-
tance of activities and provide appropriate staff with information to aid decision-making. As 
a result, crowd counting and density estimation have become hot topics in the security sector, 
with applications ranging from video surveillance to traffic control to public safety and urban 
planning [9]. Numerous crowd-analysis articles were examined in the work [10]. The two main 
subfields of crowd analysis are statistics and behaviour. Anomaly detection is frequently dis-
cussed in crowd behaviour analysis. Any subtopic of crowd behaviour analysis can experience 
anomalies. Finding unknown or understudied crowd analysis sub-areas that could profit from 
DL is the goal of this project. The author of [11] studied the crowd-related literature, including 
techniques for behaviour analysis and crowd surveillance. The author also provided descriptions 
of the methodology and datasets used. Different techniques and current deep learning concepts 
have been assessed. The various contemporary methods for crowd monitoring and analysis are 
explained in this text. The study [12] suggested a picture classification, crowd management, and 
warning system for the Hajj. Images are classified using Convolutional neural network models 
(CNN), a DL (deep learning) technology. CNN has found various uses in the scientific and 
industrial domains, including speech recognition and image categorization. The author [13] 
suggests the Density density-independent and Scale Aware Model (DISAM), which works well 
for high-density crowds where photographs only show a portion of the human head. CNN is 
used to generate a reply matrix utilizing scale-aware head suggestions and it is also used as a 
head detector to ascertain the odds of a skull in an image. The "you only look once" (YOLO) 
detection technique is commonly used to locate objects in photos with a significant amount of 
perspective values, or minimum threshold values, according to [14]. In order to create multipo-
lar adjusted maps of density for crowd counting, work [15] suggested using CNN and learning 
to scale. It generates a patch-level density map by a density estimation process, which it then 
classifies into various densities. For each patch densities map, a method for online learning for 
centers with multi-polar loss is applied. In [16], CNN as well as short-term memory are uti-
lized to calculate crowd density in surveillance videos. For estimating crowd density [19], two 
traditional Googlenet [17] and VGGNet [18], were utilized. Similar to this, [20] first estimates 
the size of the crowd in general, and then counts the precise number of persons present. The 
accuracy of 90% is still maintained by the efficiency. To find and keep an eye on a person in 
a crowded area, localization information might be employed [21]. We have built a regression-
guided detecting network (RDNet) for RGB-Datasets that concurrently estimates head counts 
and uses boundaries to localize heads in images. Similar to [22], an accurate localization of the 
heads in a dense image was achieved using a density map. Using the neural network, localiza-
tion was discovered in [23] with the aid of a statistic called Mean Localization Error (MLE) 
[24]. Employed image processing to determine crowd behavior using optical flow as well 
as motion history image techniques. As in [25], the identification of abnormal behavior was 
achieved by the use of a Support Vector Machine (SVM) in conjunction with an optical circula-
tion technique. In [26], a Cascades Shallow Auto Encoder (CDA) and a combination of multi-
frame optical flow information are presented to identify crowd behavior. Isometrically projec-
tion (ISOMAP), spatiotemporal, and temporal texture models were used to identify abnormal 
crowds. Table 1 explains the overview of related works.
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3 � Proposed system

In this section, the proposed model for video segmentation and classification in human crowd 
analysis harnesses the power of deep learning (DL) techniques to comprehensively analyze 
crowd behavior from surveillance footage. The process initiates with input collection, where 
surveillance video undergoes noise removal to ensure clarity, followed by obtaining the crowd 
scene for analysis [27]. Segmentation, the pivotal stage, employs an expectation–maximization-
based ZFNet architecture to precisely delineate individual elements within the crowd scene, 
facilitating the identification of specific behaviors and interactions.

Subsequently, the segmented video segments are fed into a transfer exponential Conjugate 
gradient neural network (NN) for classification. This particular neural network improves per-
formance and resilience by generalizing information gained from models that have been trained 
across a variety of crowd environments and settings by utilizing methods of transfer learning 
[28]. Three main elements make up the suggested structure, which is shown in Fig. 1: input 
processing, segmentation, and classification. The input processing stage employs an individ-
ual activity recognition chain to extract features from sensor signals, converting them into time 
series data representing behavioural primitives or quantitative user behaviour characteristics 
[29]. Segmentation involves dividing each frame scene into non-overlapping cubes and extract-
ing global and local descriptors. Local descriptors, crucial for capturing fine-grained details 
within the crowd scene, utilize the Inner Temporal Approach (ITA) and a space–time neighbor-
hood approach to assess the similarity between patches. The local descriptor, a kind of local 
patch descriptor, determines how similar patches are by using the Structural Similarity Index 
Method (SSIM) approach. Regarding the first local description, each patch’s space–time neigh-
bourhood sections consist of one for the spatial neighbourhood, which includes the patch itself 
in the center, and one for the temporal neighbourhood, which comes after the patch. The initial 
local descriptor [d0,…, d9] gives rise to the SSIM values. In terms of the TIA, the SSIM value 
is calculated as [D0…, Dt-1] for each frame in the patch. Finally, the combined SSIM values 
from the two approaches are used to create the local descriptor [d0,…, d9, D0,…, Dt-1].

3.1 � Expectation–maximization‑based ZFNet architecture in video segmentation

The Expectation–Maximization technique was used to fit the WMM, as is customary, I 
considered it incomplete and is supplemented with a g dimensional z b, where z = 1 is true 
if r i I come from the kth component and 0 otherwise. Component memberships are defined 
as realizations of random vectors z1, z2,… , zn

)
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As it represents an estimate of the posterior probability zn
i
  that Γi belongs to a kth com-

ponent of mixture under a given parameter set �̂.The algorithm’s maximum stage aims to 
increase Q

(
Ψ∗Ψ̂n

)
 by Eq. (3) to obtain a fresh parameter estimate Ψ̂(t + 1).

By maximising Q
(
Ψ;Ψ̂

∗
)
 with the restriction 

∑�
i=1

��+1)
k

= 1 , the new estimates 𝜋̇n+1)

k
 for 

�k are produced via update rule via Eq. (4)

By utilizing a few matrix derivation techniques. By using Eq.  (5), we can get the 
updated equations for various parameters.

After premultiplying the previous equation by 2, we obtain the following for all k by 
Eq. (6):

Equation (7) is solved numerically to estimate nN′ , which is then reintroduced into (7) to 
obtain a suitable value for Q

(
∇∶�̂

�i
)
 . This is comparable to solving the following Eq. (7) 

separately for each component

where the digamma function, � ii is represented by the letter Σiis in Eq. (6). Then, formula (7) 
is solved numerically in a small number of iterations, and the solution n0+1

e
 is reintroduced in 

(7) to have a suitable value for 2n+11
i

 . In training the segmentation network, we address class 
imbalance by employing various loss functions, including cross-entropy, commonly used for 
segmenting medical images. Equation (7) calculates the cross-entropy loss, averaging pixel 
predictions, but it may lead to errors with unbalanced class representation. To mitigate bias 
towards wider classes, we resample the data space. Optimization techniques involve mini-
mizing the chosen loss function using backpropagation. The ZFNet architecture, depicted 
in Fig. 2, guides the network’s training process. Regularization techniques such as dropout 
and batch normalization are applied to prevent overfitting. Additionally, we utilize techniques 
like stochastic gradient descent (SGD) or Adam optimizer for efficient convergenceTech-
niques like grid search and random searches are used to tweak the algorithm’s hyperparam-
eters which include its rate of learning and batch size. Early stopping is employed to prevent 
overfitting, while model performance is monitored using validation data. Finally, the trained 
model’s performance is evaluated on unseen test data to ensure generalization capability [30].
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A lower number suggests a tighter connection between the same object sections in mul-
tiple photos and better consistency in the change caused by the masking procedure. Utiliz-
ing features from layers l = 5 and l = 7, we compare scores∆ for the left eye, right eye, and 
nose to random areas of the object. The layer 5 features’ lower scores for these regions 
compared to random object regions demonstrate that the model does build some degree of 
correlation [31, 32].

3.2 � Transfer exponential Conjugate gradient neural networks‑based classification

The input data for our neural network model consists of images with three layers: height (h), 
width (w), and depth (d), where d represents the feature or channel dimension, and h and w 
represent the spatial dimensions. The input layer has dimensions h × w and d color channels 
(d = 1 for grayscale or d = 3 for RGB). Equation (8) describes how the vector output yij is cal-
culated from the input vector xij at position, i use a function fks.

To reduce the parameter count, we employ Eq. (9) to define ( In(g)) the average of a func-
tion g over a collection of independent random variables g

(
xi

)
.

Then a simple evaluation gives us �(I(g) − In(g)
)2

=
Var(g)

n
, Var(g) = ∫

X
g2(x)dx −

(
∫

X
g(x)dx

)2

(8)yij = fks
({

xij + ∢isj + sj
}
, 0 ≤ �i,�j ≤ k

)

(9)In(g) =
1

n

∑n

i=1
g
(
xi

)

Input Surveillance Ex-Max-ZFNET based segmentation

Segmented Video SceneTEXPO_Conj_GNN based 
Classification

Classified Output

Processing for noise 
removal, obtaining 

video scene

Parametric
Analysis

Fig. 1   Proposed architecture
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Given that the neural network (NN) is composed of three layers: input, result, and hidden 
( e(n)) , It is required to calculate the result of the layer that is concealed prior to calculating the 
output of the whole network. Equation (9), where indicates activation function, i⃗  represents 
the hidden neuron, denotes the input neurons, and mm

(ai)
 is utilized to determine the hidden lay-

er’s output, or ein, and denotes bias weight. The NN model is given (10).

The weight matrices are provided in (9) and (10). Equation (11) is utilized to generate weight 
matrices and biases for optimization, where Wn represents the weight matrix and Bn the bias value.

where Wn = N weight within the weight matrix. The term "rand" refers to the number chosen at 
random in (1) that is between [0,1], where Bn is a bias value and an is a constant parameter for 
the suggested technique that is less than 1. As such, formula (12) gives the weight list matrix:

(10)

e(n) = nf

(
w
(m)

(ni)
+

n∑

j=1

w
(N)

(j)
FD

)

�𝜎�o = nf

(
w(𝜔̇o) +

s∑

i=1

w
(𝜔)(
�i
)e(m)

)

(11)

Wn = Un =

N∑

m=1

a ⋅
(
rand −

1

2

)
.

Bn =

N∑

n=1

a ⋅
(
rand −

1

2

)
.

|||R(f ) − R̂n(f )
||| ≤ sup

f∈Hm

|||R(f ) − R̂n(f )
||| = sup

f∈Hm

||I(g) − In(g)
||

(12)Wc =
[
W1

n
,W2

n
,W3

n
,… ,WN−1

n

]

Video Frames

Video Instance 
Segmentation

Semantic Segmentation

Image Input 224*224

Layer1 Layer2 Layer5

Layer6 Layer7

Output
…

Fig. 2   Architecture of ZFNet
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Weight matrices are organized into a weight list matrix as shown in Eq. (12). The neu-
ral network process predicts the total of square errors for every weight matrix. A layer for 
input, a hidden or "state" layer, and a result layer comprise the three-layer network frame-
work. Equations (13) and (14) describe the propagation of input vectors through weight 
layers in both simple recurrent networks and neural networks.

where, Bm(j) is a bias and m is a number of inputs. In a basic recurrent network, an input 
vector is similarly transmitted across a weight layer. but it is also paired with the activation 
of the previous state by a second recurrent weight layer, U by Eq. (14).

where f is an extension of f to inf
j
∫

ℝd Fourier transform. In (14) the convergence rate is 
dimension-independent. However, because it uses the Fourier transform, constant Δ(f ∗) 
could be dimension-dependent. In both cases, the state and a set of weights for output W 
generated by eq control the output of the network (15).

g is an output function. Thus, the error is determined using Eq. (16):

Equation (17) gives the network’s performance index:

(13)
netj(t) =

n∑

i

xi(t)wm(j) + Bm(j)

inf
m∈Km

|| f ∗ − fm||
2

L2(P)
≲

Δ(f ∗)2

m

(14)

yj(t) = f
�
netj(t)

�
.

netj(t) =

∑
i�

i

xi(t)Ws(m) +

n�

i

n(t − 1)Un(j) + Bm(j),

yj(t) = f
�
netj(t)

�
,

Δ(f ) ∶= inf
j ∫

ℝd

∥ 𝜔∥1
���
�f (𝜔) ��� d𝜔 < ∞,

(15)
etk (t) =

∑M

j
yj (t) Wmak j + Bm�k,

Yk (t) = g
�
net k (t)

�
,

(16)E =
(
Tk − Yk

)

(17)

V(x) =
1

2

K∑

k=1

(
Tk − Xk

)T(
Tk − Yk

)

VF(x) =
1

2

K∑

k=1

ET
⋅ E.

(18)V�(x) =

∑N

j=1
VF(x)

Pi
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Equation (19) introduces a random feature method,

where the i.i.d random variables w0
j
 and {w0

j
}mj = 1 are selected from the prefixed distribu-

tion 0 The coefficients are a = (a1,… , am)T ∈ Rm and the collection is {�(;;w0j)} are the 
random characteristics. The replicating kernel Hilbert space (RKHS), which is caused by 
the kernel by eq, is the natural function space for this paradigm (20)

Denote by Hk this RKHS. Then for any f ∈ Hk , there exists a(⋅) ∈ L2(�0) such thateq 
(21).

In batch-wise training, variations originate from the gradient variance. The noisy gradi-
ent is a drawback of using a random sample, but it has the benefit of requiring far fewer 
calculations per iteration. Please be aware that the rate of convergence in the preceding 
paragraph is calculated through iterations. To look at the training dynamics of every itera-
tion, we need to first establish the Lyapunov function using Eq. (22).

The formula calculates the separation between the existing solution, �t , and the ideal 
solution, �∗ where ht is a random variable. As a result, using Eq. (23), one can determine 
the SGD’s convergence rate:

It is a random sample of d in the sample space Ω , and the random variable ht+1 − ht 
depends on the sample drawn ( �

�
 ) and the rate of learning ( �t ). It indicates the extent 

to which reducing YAR{∇yw(dt)} improves the convergence rate. We gauge SGD’s 
effectiveness using (k) = �

�
‖z(k) − z∗‖2

�
 , This stands for the expected squared differ-

ence between the optimal solution and the solution at time k. Unlike the study for SGD, 
we will concentrate on two error terms. The first term, called the expected optimization 
error, defines the expected squared length among z(k) and z*. The average squared dis-
tance between the ideal z* and each iterate’s z_i (k) is given by Eq. (24).

(19)fm(x;a) =
1

m

∑m

j=1
aj�

(
x;w0

j

)

(20)k
(
x, x

�)
= �

w∼�0

[
�(x;w)�

(
x

�

;w
)]

(21)
f (x) =

∫
a(w)�(x;w)d�0(w),

∥ f∥2
Hk

= inf
a∈Sf ∫

a2(w)d�0(w),

(22)ht = ‖�t − �
∗‖2

2

(23)

ht+1 − ht = ‖�t+1 − �
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2
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2
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�
�
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�
�
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�
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���
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Thus, comparing the two terms will help us understand how well DSGD is working. 
indicate by Eq. (25) to simplify the notation.

We decided to use Eq. (26) after being motivated by the SGD analysis

V(k), the observed consensus error, is a reflection of the extra disruptions caused by the 
differences in solutions. Additionally, Relation (17) demonstrates that U(k)’s predicted 
convergence rate for SGD cannot be higher than R(k). On the other hand, two more factors 
will probably become negligible over time if V(k) decays fast enough in relation to U(k), 
and we would anticipate that U(k) will converge at a rate comparable to R(k) for SGD.

4 � Performance analysis

The teaching platform was a Windows 7 64-bit computer equipped with an Intel Xeon 
E5-1650 processor. The computer resources included CUDA 8.1, Python 2.7, CUDNN 7.5, 
and Visual Studio by Microsoft 12.0.

Dataset description: The first dataset used for population counts was from UCSD. The 
information was gathered using a camera that was mounted on a walkway for pedes-
trians. The dataset comprises 2000 video sequence frames at a resolution of 238 × 158 
pixels, together with ground truth tagging of 49,885 pedestrians per fifth frame. Secu-
rity cameras installed at a shopping center were used to collect the mall dataset. 2000 
frames in all, 320 × 240 pixels in size. The challenging UCF CC 50 dataset offers a vari-
ety of sceneries and densities. This information was collected from a variety of locations, 
including stadiums, marathons, political rallies, and concerts. There are a total of 50 
annotated photos, with 1279 individuals on average per picture. The resolution of each 
person in this set of images varies from around 94 to 4543, suggesting a broad variation 
in the image. The limitation on the number of photos available for training and evalua-
tion is a downside of this type of dataset. This dataset’s 220 maximum crowd count is 
too low to accurately assess the counting of highly dense crowds. The 1198 pictures and 
330,165 identified heads in the Shanghai Tech collection are available for large-scale 
crowd counting. In terms of the number of documented heads, this group is among the 
biggest. The dataset is divided into two categories: Part A and Part B. There are 482 ran-
domly chosen photos from the internet in Part A. Seventeen hundred and sixteen images 
from an alleyway in Shanghai are included in Part B. UCF-QNRF, which contains 1535 
pictures, is the most recent dataset. The range of individuals in this dataset, from 49 to 
12,865, results in a significant fluctuation in population density. Moreover, it features 
crowd videos with a wide range of view sizes and swarm densities, and its enormous 
resolution of images spans from 400 × 300 to 9000 × 6000. The CUHK dataset was gath-
ered in a variety of places, including streets, malls, airports, and parks. 474 video clips 
from 215 scenes make up the dataset shown in Table 2.

Table 3 shows the analysis of various video datasets based on human crowd behaviour. 
the datasets compared are UCSD, MALL, UCF_CC_50, World Expo 10, Shanghai Tech 

(25)U(k) = �

�
‖z(k) − z∗‖2

�
,V(k) =

�n

i=1
�

�
‖zi(k) − z(k)‖2

�
,∀k

(26)U(k + 1) ≤
�
1 −

1

k

�2

U(k) +
2L
√
n�

√
U(k)V(k)

k
+

L2

n�2

V(k)

k2
+

�2

n�2

1

k2
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A, B, UCF-QNRF, CUHK. The parameters analyzed are MAP, MSE, training accuracy, 
validation accuracy, and specificity.

Figures 3a-e, 4, 5, 6, 7, 8, and 9a-e shows the analysis for various human crowd behav-
iour datasets. The suggested method shows significant gains in performance measures 
when compared to current approaches on different datasets of human crowd behavior. The 
suggested method yielded the following results in the UCSD dataset: the mean squared 
error (MSE) of 43%, training accuracy of 75%, accuracy for validation of 77%, and sensi-
tivity of 71%. The average mean precision (MAP) was 44%. SVM achieved a MAP of 43%, 
MSE of 42%, training accuracy of 72%, validation accuracy of 74%, and specificity of 68%, 
whereas the current CNN earned a MAP of 41%, MSE of 38%, retraining accuracy of 68%, 
verification accuracy of 72%, and specific of 65%. For comparison. The suggested strategy 
also performed better in the MALL dataset than the previous approaches, with MAP of 
49%, MSE of 47%, trained reliability of 75%, validation precision of 79%, and sensitivity 
of 75%. MAP of 42%, MSE of 39%, training success of 72%, validation accuracy of 75%, 
and selectivity of 69% were attained by the current CNN, whereas SVM yielded Gis of 
46%, MSE of 45%, learning correctness of 73%, testing accuracy of 77%, and specificity of 
73%. Furthermore, the suggested approach scored better on the UCF_CC_50 dataset, show-
ing MAP of 51%, MSE of 48%, training precision of 81%, accuracy for validation of 88%, 
and specific of 77%. While SVM obtained a MAP of 48%, Msw of 43%, training accuracy 
of 78%, validation success rate of 85%, and specificity of 76%, the current CNN got a MAP 
of 44%, MSE of 41%, training quality of 74%, validating accuracy of 79%, and specificity 

Table 3   Analysis for various video datasets based on human crowd behaviour

Datasets Techniques MAP MSE Training 
accuracy

Validation 
accuracy

Specificity

UCSD CNN [16] 41 38 68 72 65
SVM [25] 43 42 72 74 68
HCB_VSC_DLA 44 43 75 77 71

MALL CNN 42 39 72 75 69
SVM 46 45 73 77 73
HCB_VSC_DLA 49 47 75 79 75

UCF_CC_50 CNN 44 41 74 79 71
SVM 48 43 78 85 76
HCB_VSC_DLA 51 48 81 88 77

World Expo 10 CNN 45 44 78 81 73
SVM 49 48 79 83 77
HCB_VSC_DLA 53 49 83 86 79

Shanghai Tech A, B CNN 47 48 81 83 75
SVM 49 52 83 88 81
HCB_VSC_DLA 53 53 85 89 83

UCF-QNRF CNN 49 51 82 85 81
SVM 51 53 85 89 83
HCB_VSC_DLA 53 55 88 92 85

CUHK CNN 52 55 84 91 82
SVM 55 58 89 93 86
HCB_VSC_DLA 59 61 95 95 88
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of 71%. Furthermore, the approach suggested showed a noteworthy enhancement in the 
World Expo 10 dataset, exhibiting a MAP of 53%, an MSE of 49%, training precision of 
83%, validation precision of 86%, and sensitivity of 79%. MAP of 45%, MSE of 44%, train-
ing accuracy of 78%, validation accuracy of 81%, and specificity of 73% were obtained by 

(a) MAP (b) MSE

(c) training accuracy (d) valida�on accuracy

(e) specificity

Fig. 3   Examination of the UCSD dataset with respect to (a) specificity, (b) training accuracy, (c) validation 
accuracy, and (e) MAP
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the current CNN, whereas SVM obtained MAP of 49%, MSE of 48%, trainee accuracy of 
79%, testing accuracy of 83%, and specificity of 77%. Additionally, the suggested method 
demonstrated outstanding outcomes with a MAP of 53%, MSE of 53%, training precision 
of 85%, validation precision of 89%, and sensitivity of 83% on the Shanghai Tech A, B 

 

(a) 

 

(b) 

 

(c)  

 

(d)  

 

(e)  

Fig. 4   Analysis of the MALL dataset in terms of (a) MAP, (b) MSE, (c) training accuracy, (d) validation 
accuracy, (e) specificity
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dataset. In comparison to the SVM, which obtained a MAP of 49%, MSE of 52%, accuracy 
in the training of 83%, accuracy for validation of 88%, and specificity of 81%, the current 
CNN produced MAPs of 47%, 48%, 81%, and specificity of 75%. Finally, the suggested 
technique demonstrated outstanding results with a MAP of 53%, MSE of 55%, training 

 

(a) MAP 

 

(b) MSE 

 

(c) training accuracy 

 

(d) valida�on accuracy 

 

(e) specificity 

Fig. 5   Examination of the UCF_CC_50dataset concerning (a) specificity, (b) training precision, (c) valida-
tion the precision, and (e) MSE
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reliability of 88%, validation accuracy of 92%, and selectivity of 85% in the UCF-QNRF 
dataset. MAP of 49%, MSE of 51%, training success rate of 82%, validation success rate 
of 85%, and selectivity of 81% were acquired by the current CNN, while MAP of 51%, 
MSE of 53%, train accuracy of 88%, testing accuracy of 92%, and specificity of 85% were 

 

(a) MAP 

 

(b) MSE 

 

(c) training accuracy 

 

(d) valida�on accuracy 

 

(e) specificity 

Fig. 6   Examination of the World Expo 10 dataset with respect to (a) specificity, (b) training accuracy, (c) 
validation accuracy, and (e) MSE
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achieved by the SVM. Furthermore, the suggested method demonstrated remarkable out-
comes on the CUHK dataset, exhibiting a MAP of 59%, an MSE of 61%, trained accuracy 
of 95%, validation precision of 95%, and specific of 88%. SVM attained a MAP of 55%, 
MSE of 58%, training precision of 89%, validation precision of 93%, and specificity of 

 

(a) MAP 

 

(b) MSE 

 

(c) training accuracy 

 

(d) valida�on accuracy 

 

(e) specificity 

Fig. 7   Shanghai Tech A, B dataset analysis in terms of (a) specificity, (b) training accuracy, (c) validation 
accuracy, and (e) MAP
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86%, whereas the current CNN achieved a MAP of 52%, MSE of 55%, training precision of 
84%, testing accuracy of 91%, and specificity of 82%. These results highlight the suggested 
technique’s effectiveness and supremacy over current approaches on a variety of datasets 
about natural behavior in crowds.

 

(a) MAP 

 

(b) MSE 

 

(c) training accuracy 

 

(d) valida�on accuracy 

 

(e) specificity 

Fig. 8   Evaluation of the UCF-QNRF dataset with respect to (a) specificity, (b) training accuracy, (c) valida-
tion accuracy, and (e) MSE
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(a) MAP
(b) MSE

(c) training accuracy (d) valida�on accuracy

(e) specificity

Fig. 9   Examination of the CUHK dataset concerning (a) particularity, (b) training precision, (c) validation 
accuracy, and (e) MAP
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5 � Conclusion

In this work, we used video segmentation and classification to build a novel approach for 
the investigation of human crowd behavior. By leveraging expectation–maximization-based 
ZFNet architecture for segmentation and transfer exponential Conjugate gradient neural net-
works for classification, we achieved promising results. Our experiments on real human activ-
ity databases demonstrated the superiority of our deep learning (DL) approach, with notable 
numerical findings including a MAP of 59%, MSE of 61%, and high training and validation 
accuracies of 95%, along with a specificity of 88%. Despite these advancements, limitations 
exist, notably the need for further optimization in control parameters and potential bias in seg-
mentation networks when dealing with imbalanced data. Moving forward, future work will 
explore ensemble techniques and self-adaptive parameter control-based evolution for DL 
models, inspired by the success of our approach. Additionally, we aim to integrate multimodal 
data, such as audio or sensor information for depth and accuracy of crowd behaviour analysis.

Nomenclature  [d0,…, d9]:  Local Descriptor; [D0…, Dt-1]:  SSIM value; I:  Incomplete; g:  Dimensional; 
z:  Component memberships; 1,�1,… ,�k:  Mulr multinomial distribution; Q

(
Ψ ∶ Ψ̂n

)
:  Conditional 

expectation; v: Observed data; zn
i
: Posterior probability; Γi: Kth component of the mixture; �̂: Parameter 

set; Ψ̂(t + 1):  Fresh parameter; 𝜋̇n+1)

k
:  New estimates; zn

n
:  Digamma function; h × w:  Height, width; 

d: Depth; xij: Input vector; fks: Function; yij: Vector output; In(g): Average of a function g; g
(
xi
)
: Inde-

pendent random variables; Wn: Weight matrix; Bm(j): Bias and m is the number of inputs; Δ(f ∗): Con-
stant; inf

j
∫

ℝd:  Fourier transform extension; W:  Output weights; w0

j
:  Random variables; (a1,… , am)

:  Coefficients; U(k):  Projected convergence rate; V(k):  Observed consensus error; zi(k):  Iterates; z:  First 
term; z*: Expected optimization error; R(k): SGD’s effectiveness; �t: Rate of learning; dt: Sample drawn; 
d: Random sample; Ω: Sample space; ht+1 − ht: Random variable; wt: The separation between the existing 
solution; w∗: Ideal solution; ht: Random variable
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