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Abstract
The selection of the most efficient features for glaucoma identification is the subject of 
our investigation because this disease is rapidly increasing worldwide. This disease causes 
lifelong blindness due to damage to the eye’s optical nerve. Ophthalmologists have tradi-
tionally used tonometry, pachymetry, and other methods to measure intraocular pressure in 
order to diagnose patients. Yet each of these judgments takes time, requires high profes-
sional experience, and can be open to human error (inter-observer variability). Therefore, 
scholars are currently engaged in the domain of medical imaging, specifically focusing on 
the analysis of retinal images for the purpose of predicting glaucoma. This research also 
has the same objective and aims to address the aforementioned challenges. This empiri-
cal study proposes an artificial intelligence-based computer-assisted diagnosis (CAD) sys-
tem which is built to overcome these difficulties by providing the best features for machine 
learning techniques for categorizing subject retinal pictures as "healthy" or "sick". This 
study presents a new set of reduced hybrid features that were selected from an initial set of 
36 features extracted from fundus images of benchmark datasets that belonged to different 
classes to categorize patient fundus images into two categories: "healthy” or "infected." 
The nature inspired computing-based Emperor Penguin Optimization (EPO) algorithm and 
the Bacterial Foraging Optimization (BFO) algorithm are utilized to implement feature 
selection (FS) process. Additionally, a novel hybrid algorithm combining these two tech-
niques is also proposed. Seven machine learning (ML) classifiers are engaged to compute 
eight statistically based performance metrics along with execution time computation, and 
a comparison of those metrics is also provided in a detailed fashion. The recommended 
method exhibits a fortunate performance with the highest specificity of 0.9940, sensitivity 
of 0.9347, and maximum accuracy of 96.55%. Expert medical practitioners who are over-
worked may receive assistance from the proposed system in making the optimal decisions 
to preserve human vision.
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1 Introduction

The extensive adoption of social media platforms and sensor technologies has led to the 
production of a significant amount of data with multiple dimensions. The dataset comprises 
a variety of features(characteristics) and the process of choosing the most appropriate fea-
tures in relation to the target data is commonly known as feature selection (FS), which is 
also acknowledged as attribute(or characteristics) subset selection [1]. The procedure of 
FS is of utmost importance in the identification and extraction of the most pertinent infor-
mation from a given dataset. When dealing with high-dimensional data, it becomes less 
useful to use regression, classification, and clustering methods. This is mostly because the 
spatial and temporal complexity increases significantly. The dataset encompasses various 
features, some of which may exhibit redundancy or insignificance. Duplicate and irrelevant 
features are detrimental to a classifier’s effectiveness. Therefore, it is common practice to 
employ FS techniques in order to identify the most suitable subset of features from datasets 
that have a high number of dimensions as a means of addressing this problem. The proce-
dure of FS plays a vital role in accurately identifying and extracting the most pertinent and 
valuable information from a provided dataset. Feature selection is a method employed to 
enhance the accuracy of learning and improve the clarity of results by eliminating redun-
dant and noisy data from datasets with high dimensions [2]. By utilizing FS techniques, 
the ML algorithm can be trained with improved efficiency and simplicity. In addition, it 
efficiently addresses the issue of over-fitting and decreases the complexity of the classifier, 
thereby improving its comprehensibility [3]. Hence, it is crucial to utilize a suitable mining 
methodology to extract the fundamental characteristics (features) from the dataset. Previ-
ous studies have utilized various meta-heuristic techniques to effectively reduce the dimen-
sionality of the feature space. The utilization of technology facilitates the acceleration of 
computational processes and improves the accuracy of categorization. The effectiveness of 
classifiers might be hindered by feature spaces that include a substantial number of dupli-
cate or insignificant features. To enhance the efficiency of the classifiers, FS methods are 
used to eliminate redundant characteristics from the initial collection. These techniques 
facilitate the process of identifying the most suitable subset of features. FS is a commonly 
utilized methodology in the domain of CAD that seeks to determine the relevant attributes 
that have a significant impact on the accuracy of classification. In order to ensure opti-
mal performance of the classification subsystem, features that have minimal influence are 
excluded to mitigate any potential negative effects. The primary objective of the FS subsys-
tem is to address the issue of duplicate features by strategically identifying and preserving 
the most advantageous subsets of features in the dataset. Hence, the integration of FS will 
greatly enhance the accuracy and efficiency of the CAD system.

As a result of the investigation of this experimental study, glaucoma, which is also 
known as the "silent thief of vision," was first identified as a medical condition in the 
early 17th century. This was the time when the word "glaukeoma" was first used in ancient 
Greece. The term "cataract" is derived from the Greek words "obscurity of the lens" and 
"cataract," and it denotes a lack of knowledge or awareness of this condition. On a global 
scale, glaucoma is regarded as the second most frequent major cause of blindness. This 
condition is the second most common cause of irreversible vision loss, right after cataracts. 
There is a chance that it will supplant cataracts as the main etiological factor in the absence 
of medical treatment. Glaucoma is thought to affect around 60 million people worldwide 
and is expected to significantly increase to around 79.6 million by the year 2023 [4]. The 
World Health Organization estimates that glaucoma affects more than 60 million people 
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worldwide and could affect as many as 80 million people in the near future. Additionally, 
it has been estimated that this issue affects 12 million people in India, which is a sizable 
population. Common symptoms of this condition include an abrupt onset of visual impair-
ment, severe ocular discomfort, decreased visual clarity, irritated ocular organs, and the 
observation of halos surrounding light sources [5]. People over the age of 40 are more 
likely to experience the symptoms of this illness. The ability of the human brain to inter-
pret and comprehend the surrounding environment comes from its ability to receive vis-
ual information from the retina and transmit it to the brain via the optic nerve. Increased 
intraocular pressure causes the optic nerve to be damaged, which causes the illness to 
begin. Visual impairment, ocular discomfort, decreased visual acuity, ocular irritation, and 
the observation of haloes around light sources are typical acute manifestations [6, 7]. Glau-
coma has the potential to cause the optic nerve to suffer irreparable damage in the absence 
of proper medical intervention, which would subsequently worsen visual acuity. Therefore, 
it is essential to emphasize the significance of early glaucoma detection because this sig-
nificantly reduces the risk of permanent vision loss.

A fundus camera captures eye images (Fig. 1). Fundus cameras use a microscope and 
light to image the retinal fundus. The fovea, macula, optic disc, and optic cup are fun-
dus region structures. Since it’s noninvasive, it’s an effective eye health test. The optic 
disc appears yellowish in colored fundus imaging, separated between the inner optic cup 
and the outside neuroretinal rim (outer boundary). Detection of glaucoma is performed 
via the optic nerve cup or by extending it. The most accurate glaucoma indication is the 

(a)Retinal fundus picture(Juneja et al.)[6] (b)Retinal fundus picture(Juneja et al.)[7] 

(c) Retinal picture of non-infected individual (d) Retinal picture of infected(glaucomatous) individual 

Fig 1  Retinal fundus pictures
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cup-to-disc ratio (CDR), which is the ratio of the optic cup diameter to the optic disc diam-
eter. Doctors diagnose glaucoma if the CDR is 0.65 or higher [8]. These medical practition-
ers must physically extract discs and cups from individual photos, making their methods 
slow, arduous, and unsuccessful. Professional graders can measure, record, and diagnose 
glaucoma in eight minutes per eye. To detect glaucoma in the retina, ophthalmologists 
use pachymetry, tonometry, perimetry, gonioscopy, and ophthalmoscopy. While ophthal-
moscopy examines the optic nerve’s color and structure, tonometry analyzes the pressure 
within the eye. By using gonioscopy, perimetry, and pachymetry, it is possible to meas-
ure the iris-cornea angle, the visual field, and the cornea’s thickness. All of these methods 
require a lot of time and human labor and have the potential to produce assessments that 
are subject to the biases displayed by various experts (vulnerable to human errors) [9]. An 
automated glaucoma diagnosis method is necessary to overcome existing techniques’ limi-
tations. Computers foresee medical concerns using non-invasive imaging. CAD systems 
are used to solve the classification problem. For diagnostic glaucoma screening, a CAD 
system may minimize computational complexity. Ophthalmologists need a second-opinion 
CAD system to save time. It may minimize misclassification, relieve doctors, and impro-
vise inter- and intra-observability. CAD systems can identify several retinal fundus traits, 
forecast glaucoma, and categorize retinal images as "normal" or "abnormal."

The number of patients with this disease is increasing at a very fast pace; as per the 
characteristics of this disease, the infection leads to irreversible blindness [10]. The infec-
tion must thus be identified as soon as possible in order to begin therapy promptly and stop 
the rate of visual loss (or at least reduce it). Traditional ophthalmological exams and proce-
dures take time and are subject to intra-observer variability. Moreover, manually comput-
ing the optic disc, cup, and cup-to-disc ratio by ophthalmologists is a common, labor-inten-
sive, and error-prone operation. It is widely acknowledged that glaucoma is a progressive 
condition that leads to the deterioration of the optic nerve, which plays a crucial role in 
transmitting visual stimuli from the eye to the brain. Patients typically do not notice any 
vision problems in the early stages of glaucoma, so they are unaware that they have the 
disease. By impairing peripheral vision in its severe stages, glaucoma can result in perma-
nent blindness. But glaucoma may be slowed down and properly treated to help prevent 
visual loss if it is discovered early. To aid in the early discovery of the condition, those 
who are suspected to be suffering from glaucoma should have routine eye exams. In order 
to identify whether or not glaucoma symptoms are present, an ophthalmologist will physi-
cally examine a patient’s retina during an eye exam. It could take a long time to manually 
analyze retinal pictures. In order to ensure the accuracy of the diagnosis, ophthalmologists 
with sufficient experience should also review the images. In light of the fact that expert 
ophthalmologists would have to analyze a significant number of patient photos, the major-
ity of which lack any signs of illness, frequent manual screening would be exceedingly bur-
densome on them. By collecting, analyzing, and categorizing retinal images independently, 
automated screening technology provides a way to get around these limitations. As a result, 
it can only make suggestions for people who show signs of glaucoma and are in need of 
medical attention. Because of all of these considerations, we are motivated and inspired to 
provide a reliable glaucoma CAD system that takes very little human interaction and time 
to confirm this infection. This system inputs the potential patient’s fundus photos and clas-
sifies each image as either "healthy" or "infected."

It is essential for every human disease classification system to first determine which 
of its most valuable components should be preserved before removing any extraneous 
or redundant parts. The feature collection’s capacity to forecast outcomes may be com-
promised if there are a significant number of irrelevant or undesirable features [11]. The 
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decision about the best features is very vital. As a result, the classifier’s capacity for mak-
ing precise predictions is increased while the associated computational costs are decreased 
[12]. This assertion encourages and inspires us to continue working on the creation of an 
ideal feature set, specifically in the context of dimension reduction, with the goal of iden-
tifying glaucoma. The technique being discussed aims to improve the performance of the 
classification system by reducing the feature space [13]. A glaucoma prediction system’s 
design process for feature selection is of utmost importance. Either a soft computing-based 
approach or a methodology with a statistical foundation is typically used in the field of FS. 
In order to address the current issue, the present study uses three nature inspired computing 
methodologies, specifically the EPO algorithm, the BFO algorithm, and their hybrid. The 
BFO algorithm has been selected due to several advantages like balancing exploration and 
exploitation, its adaptability, sturdiness, robustness, adaptive strategy, simplicity, ease and 
effectiveness, efficiency, frequently converges towards optimal solutions, scalability and 
parallelism and relevance which motivates us to select this algorithm. Similarly, the EPO 
algorithm also has been shortlisted due to its advantages like efficiency, balancing between 
global and local search, adaptive mechanisms, flexibility and mechanism, optimal conver-
gence, social interaction modeling, solving capability of engineering problems. Hybridiza-
tion of nature inspired algorithms is a viable strategy in a variety of computational applica-
tions because it provides several benefits such as enhanced performance, higher robustness, 
better solution quality, and flexibility to multiple issue scenarios. However, the limitations 
of BFO include sensitivity to parameter changes, computational overhead, chance of local 
optima trapping, strict investigation in complicated environments, no convergence guar-
antee, performance variability and problems with scalability. Similarly, EPO algorithm 
exhibit limitations like insufficient validation, restricted empirical research, sensitivity to 
parameters (configurations), convergence speed and solution quality, restricted application 
scope, challenges in execution and optimization performance: efficiency and scalability. As 
far as is known, these three algorithms haven’t been used very often to diagnose diseases 
that affect humans, like glaucoma. Benchmark fundus images that are widely used in the 
field are used to evaluate the proposed technique. The goal of the suggested methodology 
is to increase classification accuracy by using a feature selection strategy that reduces the 
number of features used and the error rate. Its use is intended to identify the most benefi-
cial set of characteristics for the specified task. Using particular and hybrid data transfor-
mation techniques, the benchmark dataset’s attributes are chosen to produce the greatest 
benefit. Six classifiers that are based on machine learning have been selected for analysis in 
order to compare the chosen attributes of these three methodologies. Fundus images taken 
from a benchmark dataset are used to evaluate the proposed methodology. There has been 
a total of twelve experiments. More than half of the attributes are excluded in a sizable 
portion of cases. A cut-short of up to 88.88% of initial extracted features is possible under 
ideal circumstances. When four of the original 36 characteristics are reclaimed without 
having a significant effect on accuracy, this decline can happen. In order to achieve a bal-
anced and ideal combination of global and local search strategies, as well as exploration 
and exploitation techniques, a hybrid algorithm is used. To make feature selection and clas-
sification in fundus images efficient, the suggested methodology combines the BFO and 
EPO algorithms.

The aim of the study is to propose a novel, computer-based novel efficient, and fast 
feature selection approach that can select an optimal subset of features from the initial 
extracted features that are required for the prediction of human disease. Although many 
studies have been published in last decade on efficient feature selection approach but there 
is still a scope of improvements in classification results and computation time.
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One of the most important aspects of the data mining and machine learning fields is 
feature selection, which involves eliminating unnecessary data in order to choose the opti-
mal subset of features for the target data. Nevertheless, choosing the best set of features 
from a dataset using conventional feature selection techniques is difficult because there are 
 2n feature subsets that can be chosen for every n features. Thus, this study presents a new 
feature selection strategy based on soft-computing approaches for effective classification of 
healthy vs infected humans.

Even with the number of research on effective feature selection techniques published in 
the past ten years, there is still room for improvement in terms of computation times and 
classification accuracy. Other challenges include reduction of higher dimensionality data, 
selection of relevant features and removing of redundant features, computational complex-
ity of the approach, overfitting and generalization, interability and explainability of the 
selected features, and dynamic nature of the disease under investigation.

An extremely effective soft-computing dependent method for predicting human disease 
was suggested by this empirical study. These algorithms have proven useful in solving 
various engineering problems, but they are rarely applied to the classification of human 
diseases, particularly the prediction of glaucoma. Additionally, we have proposed a new 
algorithm that combines two well-known prior algorithms. Its performance is compared 
to these two prior algorithms. Additionally, a new dataset consisting of a combination of 
images from various benchmark image datasets is created. Additionally, this dataset is 
larger than many of the benchmark datasets that are currently in use Tables 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18.

The empirical study presented in this research aims to tackle the aforementioned issues 
by first identifying the optimal and most effective features required for the diagnosis of 
glaucoma, a prevalent eye disease. The study concludes by demonstrating exceptional 
performance and outcomes. The main contribution of this study can be summarized as 
follows:

• Based on a comprehensive review of the existing literature, it is evident that there exists 
significant potential for feature optimization in the context of glaucoma identification. 
A proposed feature selection strategy, referred to as the BFOEPO hybrid, is introduced 
by considering the advantages of both BFO and EPO. This approach has the poten-
tial to eliminate redundant and superfluous features within the feature space, thereby 
enhancing the accuracy of classification and reducing computational costs. Based on 
our current understanding, we are at the forefront of utilizing these algorithms for 
the purpose of identifying glaucoma, thereby addressing a significant void in existing 
research.

• The primary purpose of the FS strategy is to enhance the accuracy of categorization 
while simultaneously minimizing the count of shortlisted features and reducing the 
error rate. To achieve this, the strategy employs specified and hybrid data transforma-
tion techniques to obtain the optimal subset of attributes (features) from a combination 
of various standard datasets.

• Twelve tests have been conducted as part of a series of thorough experiments. Our cus-
tomized dataset also stands out as one of the largest when compared to the most recent 
state-of-the-art research shown in Table  19. Furthermore, this study presents a thor-
ough examination of various parameters in order to showcase the practicality of the 
proposed method. In addition to the evaluation of confusion metrics and ROC curves, 
the efficiency of six machine learning classifiers has been assessed through the compu-
tation of eight efficiency measurement parameters. These parameters serve as indica-
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tors of the classifiers’ performance in terms of efficiency. The implementation effort 
of this split approach also demonstrates the temporal requirements associated with the 
execution of a nature inspired-computing technique and the training and testing of a 
machine learning model.

• In addition, we have also disclosed the extended results as three tables that show the 
ideal values attained for eight efficiency assessment criteria. Based on the selection of 
the lowest number of features for each of the three techniques, these values were pro-
duced by six machine learning classifiers. In previous state-of-the-art studies, this spe-
cific table is seldom ever seen.

• This study aims to offer researchers the most informative features, including an effec-
tive and expedient support system for ophthalmologists that can be relied upon. Addi-
tionally, it seeks to provide a software-based tool that can aid in mitigating the decline 
of human eyesight by enabling early, efficient, and effective identification of ocular 
infections. The tool has the capability to be modified for compatibility with mobile and 
wearable medical equipment, thereby enabling its utilization in settings characterized 
by a scarcity of proficient medical professionals.

The organization of this research study is enumerated as follows: The second section is 
devoted to a consideration of prior relevant works. The datasets and methods are described 
in Section 3, whilst the findings and analyses are described in Section 4. In Section 5, com-
parisons with current state-of-the-art investigations are presented. In Section 6, the conclu-
sion of the study is demonstrated.

2  Prior studies

The authors of study [14] use the stacking ensemble learning technique to create a deep 
ensemble model. There were thirteen pre-trained models used. Multiple different settings, 
comprising five classification methods and thirteen convolutional neural network (CNN) 
designs, had their performance evaluated. An ensemble selection approach with two stages 
was developed to find the best combinations. A technique of probability averaging was 
used to merge a few combinations. The final classification was determined using an SVM 
classifier. This empirical study [15] demonstrated a method for accurate retinal vessel 
detection from fundus images using a generative adversarial network (GAN) with several 
loss functions. The proposed GAN architecture consists of a classification network for the 
discriminator and a segmentation network for the generator. The discriminator is a vision 
transformer acting as a binary classifier, while the generator is a multi-scale residual CNN 

Table 2  List of images utilized for performance evaluation

S No. Name of the dataset Images Selected

1. ACRIMA 396 infected cases and 309 normal cases
2. DRISHTI 16 infected cases
3. HRF 15 infected cases and 15 normal cases
4. ORIGA 168 infected cases and 482 normal cases
5. Private 631 infected cases and 1080 normal cases
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with skip connections and upsampling. The inception module collects fine vessel segment 
scales as well as multiscale vessel segment parameters. Stacking self-attention networks 
and positionally completely connected feed-forward networks are used to infer two-class 
output. The attention mechanism of the transformer was capable of discriminating and 
preserving both global and local information. The suggested GAN model splits the blood 
arteries more accurately using adversarial learning to provide cutting-edge results. A con-
trast-limited adaptive histogram equalization approach enhances the contrast of blood ves-
sels during preprocessing. In [16],the segmentation models include three different CNN 
backbones: Inception-v3, visual geometry group 19 (VGG19), and residual neural network 
50 (ResNet50). They are based on an attention U-Net. The three CNN architectures men-
tioned above are changed and used in the classification models as well. In [17] the idea 
behind this is to provide a novel pre-processing method that uses Gaussian filtering to help 
remove undesirable noise from photos. The Modified Level Set Algorithm is then used to 
segment the Optic Cup. Segmentation is followed by the derivation of morphological (disc 
area, cup area, and blood vessel) and non-morphological (color, shape, and modified LBP) 
properties. 5 to 100 micrometers is the range of blood vessel thickness. The weights are 
then adjusted using the Self Adaptive Butterfly Optimization Algorithm, and these features 
are subsequently categorized using the adjusted CNN framework. In this study[18], a quick 
segmentation technique for the segmentation of the optic disc and the arteries of the retina 
is suggested. It is based on a novel simplified U-Net design. The redesigned and strength-
ened structure of the suggested technique would shorten prediction times while keeping 
performance and accuracy on par with existing cutting-edge approaches. In [19], a deep 
neurofuzzy network (DNFN)-based technique for glaucoma detection is introduced. The 
retinal picture is first input for noise-removal preprocessing. Then, the DeepJoint model 
and the blackhole entropy fuzzy clustering technique are used, respectively, to segment 
blood vessels and identify the optic disc (OD). OD and blood vessels are then supplied to 
the DNFN, which is then trained using the newly developed MultiVerse Rider Wave Opti-
mization (MVRWO). The recently created MVRWO combines the MultiVerse Optimizer, 
Rider Optimization Algorithm, and Water Wave Optimization. The output is then catego-
rized using the DNFN’s loss function.

Wavelet feature extraction occurred first in study [20], followed by genetic feature opti-
mization, a few learning strategies, and several parameter settings. The segmented, blood 
vessel-free optic disc used in this work is used to extract characteristics. The wavelet 

Table 4  Experiments settings Size of the Population 5, 10, 15, 20

No. of features 36
No. of samples 3112
Upper Bound 1
Lower Bound 0
Times of elimination 2
Times of reproduction 4
Maximum length of swim 5
Rate of Elimination 0.25
Mutation rate 0.08
Selection method Essential selection
Crossover type One-site crossover
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properties of the segmented optic disc picture are clinically more relevant in the diagnosis 
of glaucoma from a fundus image than features of the entire or sub fundus image, accord-
ing to the experimental findings provided in this work. The suggested method uses the 
image denoising of digital fundus images to reduce the statistics of the wavelet coefficients 
of glaucoma photos using a non-Gaussian bivariate probability distribution function. The 
well-known feature selection procedure was used after the usual visual characteristics were 
eliminated. The least square support vector machine classifier, which uses a variety of ker-
nel functions, is then given the chosen attributes. This study [21] makes use of the optic 
disc (OD) and the non-parametric GIST descriptor. Following ground-breaking area-based 
optic disc segmentation, the radon transformation (RT) is recommended in the methodol-
ogy. A modified census transformation (MCT) is used to account for differences in the 
light levels of the radon-converted picture. Using the GIST descriptor, the spatial envelope 
energy spectrum is then extracted from the MCT pictures. Locality-sensitive discriminant 
analysis (LSDA) is used to minimize the generated GIST descriptor dimension before uti-
lizing a variety of feature selection and ranking methods. Practitioners provided a unique 
technique for an automated glaucoma diagnosis using digital fundus pictures in [22]. The 
iterative Variational Mode Decomposition (VMD) approach was used for picture decom-
position. A few of the characteristics that may be derived from VMD components are frac-
tal dimensions, Yager entropy, Renyi entropy, and Kapoor entropy. Following the selection 
of the discriminating features using the ReliefF approach, the least squares support vector 
machine (SVM) classifies the data using these features. To automatically identify between 
normal and glaucoma classes, the approach suggested in the study uses data from higher-
order spectra (HOS), trace transforms (TT), and discrete wavelet transforms (DWT) [23]. 
The SVM classifier performed a exemplary perfromance of differentiating between glau-
coma and healthy pictures thanks to its polynomial-order-2 kernel function.

505 fundus photographs were entirely disassembled using quasi-bivariate variational 
mode decomposition (QB-VMD) [24], resulting in band-limited sub-band images (SBIs) 
that are tuned to a certain frequency. There are no faults or mode-mixing issues with 
these SBIs. Using QB-VMD SBIs, 70 features were retrieved. The ReliefF technique is 
used to choose the retrieved features. The dimension of the selected characteristics is then 
decreased by feeding them via singular value decomposition. Once the attributes have been 
decreased, the least square SVM classifier is used to classify them. Glaucoma is recog-
nized using anisotropic dual-tree complex wavelet transform features and a time-invariant 

Table 10  FS on varying population size (PS) from 5 to 20 implemented splitting approach

Experiment 1: Performance on PS 5
NoF NoI PS FNo. FV ET
36 100 5 2, 4, 15, 17, 29, 35, 36 0.8104

5.3794
Experiment 2: Performance on PS 10
36 200 10 13 2, 4, 8, 16, 18, 21, 22, 24, 27, 29, 31, 32, 35 0.8542 24.8557
Experiment 3: Performance on PS 15
36 200 15 19 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, 19, 20, 21, 24, 26, 29, 31, 32, 33 0.8239 49.2316
Experiment 4: Performance on PS 20
36 400 20 28 1, 2, 3, 4, 5, 6, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 

25, 26, 27, 28, 29, 32, 34, 35, 36
0.752 68.059
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cup-to-disc (CDR) ratio [25]. Fuzzy C-Means clustering was used to segment the optic 
disc, while Otsu’s thresholding was employed to segment the optic cup. Fundus pictures 
were used in this study’s Cup to Disc Ratio (CDR) measurement in order to identify glau-
coma [26]. Using Au-Net, the borders of OD and optic cup (OC) were segmented through-
out the feature extraction process. The glaucomatous images were then reduced using a 
random forest classifier based on the CDR values. Deformable, full-deformable, and origi-
nal U-Nets have all been used to test the success of the suggested course of action. The 
extraction of GIST and pyramid histogram of oriented gradients (PHOG) features from 
preprocessed fundus pictures was the main emphasis of this paper [27]. Principal com-
ponent analysis (PCA) was used to filter and pick the most important attributes from the 
obtained features, which were then sent to an SVM classifier for classification.

This research, [28], provides a mathematical technique combined with region-based 
deep convolutional neural networks to provide a reliable and effective optic disk detection 
and fovea localization method. There are two phases to the suggested model: Using Faster 
R-CNN, the authors initially created a number of optic disk region proposals before iden-
tifying the optic disk by utilizing the boundary box with the greatest score. Using a math-
ematical model and the coordinates of the anticipated optic disk region, they determined 
the localization of the fovea in the second stage. The cuckoo search algorithm and struc-
tural similarity index measure are used to localize the optic disk in retinal images in this 
paper [29]. Average optic disk is compared to candidate optic disk by SSIM. Randomly 
selected images were used to calculate average optic disk values. The algorithm used aver-
age optic disk values and colored retina fundus images. To match brightness and contrast 
across images, adaptive histogram equalization was used. Next, the search algorithm calcu-
lated candidate optic disk centers and calculated their similarity to the average optic disk. 
The search algorithm found the true optic disk center by maximizing computed similarity.

Weakly-Supervised Concealed Object Segmentation (WSCOS) trains models with 
sparsely annotated data to separate objects well integrated into their contexts [30]. Intrin-
sic similarity makes it hard to distinguish hidden items from the background, and sparsely 
labelled training data provide insufficient supervision for model learning. Authors address 
these two issues with a new WSCOS approach in the work. A multi-scale feature group-
ing module aggregates results from multiple granularities to solve the intrinsic similarity 
problem. Grouping related features improves segmentation coherence, resulting in com-
plete single- and multi-object segmentation. They build segmentation masks for model 

Table 14  FS on PS 5 , 10, 15 and 20 for splitting approach

Experiment 1: Performance on PS 5
NoF NoI PS FSel FNo. FV ET
36 400 5 8 1, 8, 13, 14, 15, 19, 21, 28 0.8186 2.2669
Experiment 2: Performance on PS 10
36 400 10 16 1, 2, 3, 4, 5, 13, 14, 20, 21, 23, 25, 26, 27, 31, 32, 34 0.8807 6.4523
Experiment 3: Performance on PS 15
36 300 15 20 1, 4, 9, 11, 13, 14, 15, 18, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31, 

32, 36
0.7683 10.6695

Experiment 4: Performance on PS 20
36 400 20 23 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 

24, 28, 33, 35
0.8346 16.0964
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training using the recently proposed vision foundation model, Segment Anything Model 
(SAM), and sparse annotations for the weak supervision challenge. Multi-augmentation 
result ensemble, entropy-based pixel-level weighting, and image-level selection can reduce 
low-quality segmentation masks. They enhance segmentation model training supervision. 
Authors find our method works well on several WSCOS jobs. Camouflaged object detec-
tion (COD) works to identify items visually blended into their surroundings. Camouflaged 
objects’ background resemblance and unclear borders make COD difficult [31]. There are 
several ways to mimic the human visual system. Although disguised objects deceive the 
vision system, these strategies work in many situations. Researchers propose the COD 
FEature Decomposition and Edge Reconstruction (FEDER) model. The FEDER model 
addresses foreground-background similarities by decomposing features into frequency 
bands using learnable wavelets. Small foreground-background hints from the most inform-
ative bands are mined. Create frequency attention and guidance-based feature aggregation 
modules. The recommend learning COD and an auxiliary edge reconstruction task to solve 
the ambiguous boundary problem. Authors ODE-based edge reconstruction tool creates 
accurate edges. By learning the auxiliary task with the COD task, the FEDER model can 
create accurate object boundary prediction maps.

Unpaired medical image enhancement (UMIE) improves LQ medical images to HQ 
without paired images [32]. Most effective systems use Pix2Pix/Cycle GAN, but they don’t 
explicitly use HQ information to drive the augmentation process, which may cause arte-
facts and structural distortions. This research proposes a novel UMIE method that directly 
encodes HQ cues into the LQ enhancement process in a variational form to simulate the 
UMIE problem under the combined distribution of the LQ and HQ domains, avoiding the 
limitations of existing methods. To guide LQ enhancement with the variational normaliza-
tion module, we explicitly integrate HQ picture characteristics into the enhancement net-
work. Their purpose is to encode HQ cues. To ensure HQ image, we train the enhancement 
network adversarially with a discriminator. Authors proposed content-aware loss, wavelet-
based pixel-level, and multiencoder-based feature-level constraints for enhancement. A bi-
level learning scheme to optimize the UMIE task and downstream tasks cooperatively to 
generate visually appealing and suitable HQ images is proposed to improve downstream 
tasks. Three medical datasets demonstrate that the suggested strategy improves quality 
and job performance better than existing methods. Camouflaged object detectors (COD) 
involve spotting camouflaged items in the environment. In difficult situations, COD detec-
tors still give inaccurate readings despite their popularity [33]. Researchers designed algo-
rithms for both sides based on the prey-vs-predator game, which improves prey camouflage 
and predator vision. Camouflageator, an adversarial prey training framework, generates 
more camouflaged items that COD methods cannot detect using an auxiliary generator. 
Adversarial camouflageators teach the generator and detector, strengthening the detector 
with a stronger auxiliary generator. A predator-side COD approach called Internal Coher-
ence and Edge Guidance (ICEG) extracts camouflaged objects’ internal coherence using 
a disguised feature coherence module for better segmentation. ICEG suggests an edge-
guided segregated calibration module to avoid inaccurate predictions and unclear bounds. 
ICEG outperforms conventional COD detectors in numerous trials, and Camouflageator 
can improve any COD detector to state-of-the-art performance.

The Grey Wolf Optimizer (GWO) and Whale Optimization Algorithm (WOA) are used 
in this empirical study to create a novel and effective methodology [34]. As novel, inno-
vative scientific contribution, authors created the hybrid version (hGWWO) of these two 
approaches. The baseline algorithms above have been used for feature selection across 
domains. These three algorithms are being used for the first time to identify glaucoma, 
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especially on the public benchmark dataset ORIGA. Classifying fundus retinal images 
under investigation uses nature-inspired computing strategies for feature selection and 
ML models for classification. The ORIGA dataset yielded 65 features. Three soft-comput-
ing-based feature selection methods select the most influential features from the dataset. 
Machine Learning classifiers are trained on this data and evaluated 70:30. Ophthalmolo-
gists can use the deep learning system to diagnose glaucoma fundus lesions like retinal 
nerve fiber layer defects, optic nerve head damage, and optic disc hemorrhage [35]. Early 
detection of these lesions can prevent structural damage, visual function loss, and visual 
field damage. Deep convolutional neural networks, developed from deep learning, are inte-
grating artificial intelligence with testing devices like visual field meters, fundus imaging, 
and optical coherence to accelerate clinical glaucoma diagnosis and prediction. Some of 
the advances in glaucoma diagnosis and prediction using artificial intelligence, visual field, 
fundus photography, and optical coherence tomography are familiar—some are not. Then 
authors discuss current challenges and future clinical applications.

Temporal data carpentry and machine learning and logistic regression methods were 
used to create a predictive analytic framework for early glaucoma prediction using EHR 
from over 650 US hospitals and clinics [36]. The entire dataset was predictively analyzed 
using four machine-learning classification methods. Five-fold cross-validation trained and 
refined models to calculate accuracy, sensitivity, specificity, and f1 score. Compared to 
logistic regression (LR) at 0.73, XGBoost, MLP, and RF performed similarly well in pre-
dicting glaucoma one year before its onset with AUC scores of 0.81 and 0.73, respectively. 
Machine learning (ML) model performance improvement depends on FS, which selects 
the most influential subset of features. Researchers recommended metaheuristic-based 
FS using the Gravitational search optimization algorithm (GSOA) [7]. Optic nerve fibers 
can degrade and cannot be replaced in this disease. Starting with retinal fundus images of 
glaucoma patients and healthy people, 36 features were retrieved from public benchmark 
datasets and private datasets. The approach used the GSOA’s returned subset of features 
to train six ML models for classification. Selecting key features improves classification 
performance with the suggested FS method. The eight statistical performance parameters 
and execution time are calculated. The training and testing used a split approach (70:30), 
5-fold CV, and 10-fold CV. The suggested method was 95.36% accurate in classification 
task. This study uses fewer structural and nonstructural features to characterize retinal fun-
dus images[37]. Authors extracted the grey level co-occurrence matrix (GLCM), grey level 
run length matrix (GLRM), first order statistical matrix (FOS), wavelet, and structural fea-
tures like DDLS and CDR. The set of features was sent to three classical nature inspired 
algorithms (Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Binary 
Cuckoo Search (BCS)) and their two-layered model (PSO-ABC) to generate a subset of 
reduced features (feature selection phase) that computes auspicious accuracy when sent to 
three ML classifiers. Researchers believe these four soft computing algorithms are rarely 
used in this application. Subject datasets ORIGA, REFUGE, and their combinations are 
used to evaluate suggested strategy. Calculations include accuracy, specificity, precision, 
and sensitivity. The BCS performs well with 91% to 98.46% accuracy. With minor accu-
racy loss, PSO-ABC greatly reduces the feature set.

It has proven possible to sort super-pixels for glaucoma screening utilizing histograms 
and center-surround data (Cheng et al [38]). Kolar and Jan [39] integrated an SVM with 
power spectral features and fractal dimensions (FDs). Singh et  al. [40] employed vari-
ous deep learning models for performance evaluation investigation on different glaucoma 
benchmark datasets. Higher-order spectra and complex wavelet transform were used by 
Raja and Gangatharan [41]. Along with entropy and energy maps, they used wavelet packet 
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decomposition (WPD) as a characteristic. Kirar and Agrawal have suggested the DWT and 
histogram functions for this infection identification [42]. Kirar and Agrawal [43] recom-
mended the use of 2D-DWT to distinguish between images showing glaucoma and images 
of unaffected eyes, and histogram-based characteristics were used to carry out the clas-
sification. Yadav et al. used glaucoma fundus images for texture-based feature extraction 
and categorization [44]. Empirical wavelet transform (EWT) was employed by Mahesh-
wari et al. [45] to disassemble fundus images. In the recently released study on glaucoma 
diagnosis utilizing fundus images [46, 47], it has been shown that the least square-SVM 
was helpful for using on fundus pictures in two categories.

A comparative table (Table 1) is shown below, in which we have discussed 25 state-of-
the-art studies published on glaucoma identification through feature extraction, followed by 
feature selection, and then finally image classification.

Most of the research discussed in Table 1 has primarily concentrated on feature selec-
tion using a variety of techniques, which is necessary for the disease’s confirmation. While 
some authors [48, 50, 51] have concentrated on the HOS features, other have focused on 
features like wavelet features [20, 49, 55, 58, 60, 68], textural [48], geostatistical [57], sta-
tistical [59], HOG [63], GLCM [63, 66], wavelet [55], and Gabor filters [52, 55]. Some 
researchers have shifted their focus to extracting structural features from subject retinal 
fundus images [53–56, 62, 67, 69]. Principal component analysis (PCA), linear discrimi-
nant analysis (LDA), independent component analysis (ICA), singular value decomposi-
tion, T-test, Bhattacharyya distance method, entropy ranking method, gain ratio, co-rela-
tion, relief feature ranking, neighborhood component analysis, sequential floating forward 
selection method, and Wilcoxon rank-sum test method are some of the approaches used for 
subset construction of the most informative features after feature extraction. Additionally, 
it was observed that fewer studies—some of which used genetic algorithms and particle 
swarm intelligence—have been published that use nature-inspired computing techniques 
for feature selection. In order to introduce a novel and effective feature selection approach, 
the current study has innovated by utilizing two recently developed nature-inspired com-
puting algorithms along with their hybridized versions. The most demanding classifiers 
identified from above table for classification were SVM and its variants (such as TWIN 
SVM and Least Squares SVM). Neural networks, multi-layer perceptrons, KNNs, and RF 
have been used by others. Nonetheless, seven machine learning classifiers are used in this 
empirical study to identify the nine statistical performance measuring metrics that plays the 
key role. These earlier studies used benchmark datasets that differ significantly from one 
another. The studies listed in Table 1 each work separately on these datasets, but the cur-
rent study looks into how these datasets are combined to create one of the largest datasets.

After a thorough examination of this table, which contains 25 cutting-edge studies, 
we have determined that researchers are continuously and assiduously pursuing novel 
approaches for the early and prompt screening of this disease. In each of these investiga-
tions, multiple image processing-based features are extracted from the fundus. However, 
in the majority of these studies, as indicated above, the feature extraction is limited to one, 
or two classes of features, however our work is more improved to almost all in this term 
because we have extracted more than two classes of features.

In our case, the extracted features are then cut down to make a subset of them that works 
very well and can be highly trusted. This operation is carried out in virtually all research, 
utilizing various mathematical or statistical methods. Only one or two studies have used 
nature inspired computing-based classical methodologies such as genetic algorithms (GA) 
or particle swarm optimization (PSO) for feature selection; this is one of the most sig-
nificant research gaps we have uncovered. GA and PSO are classically old algorithms with 
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their own problems, which is why academics are developing novel nature inspired comput-
ing algorithms, such as BFO and EPO. This motivated us to select these feature-picking 
methods. In addition, we’ve applied a third algorithm that is a hybrid combination of these 
two, which we’ve proposed. On the basis of this table and our review of the relevant lit-
erature, we can confidently assert that we are the ahead in applying three nature inspired-
computing-based methods for efficient and robust feature selection for early, efficient and 
timely glaucoma identification. The suggested technique’s performance is evaluated using 
commonly recognized benchmark fundus images. The methodology presented in this study 
is utilized to determine the most suitable combination of attributes, with the primary aim 
of improving the accuracy of classification while simultaneously minimizing the selection 
of features and error rate. The utilization of both well-defined and hybrid data transforma-
tion algorithms leads to the production of the most optimal subset of features from a range 
of benchmark datasets.

2.1  Research gap identification and Justification of the proposed approach

Data mining is a potent new method for extracting data warehouse secrets. Data mining 
analyses enormous amounts of raw data to identify patterns and knowledge. Data min-
ing approaches like clustering and classification are useful in banking, supply chain man-
agement, insurance, vehicular ad hoc networks, and wireless sensor networks. Medical 
researchers have used data mining to investigate genetic and environmental disease agents 
and improve diagnostic tools for many patients. Researchers gain insight into the environ-
mental and genetic causes of diseases and develop more effective diagnostic procedures 
by mining vast datasets of patients. Data storage has expanded due to the rapid growth of 
the internet, IoT, and RFID. Given the expanding amount of data processed by applica-
tion systems integrated inside devices that are internet-accessible, saving the data is essen-
tial. Clearing and extracting appropriate information and feature selection approaches are 
becoming more critical. Feature selection decreases running time by eliminating unneces-
sary and redundant information, boosting classification accuracy, and simplifying learnt 
classifiers or models. With several features, feature selection is difficult. Complex categori-
zation problems involve several features. Thus, the classifier classifies observations across 
time.

Medical research and diagnostics depend on finding effective illness detection features. 
Despite advances in machine learning and medical imaging, research gaps remain. Gaps 
include:

Feature Selection and Extraction: Finding the best medical data features for disease 
detection is difficult. More advanced algorithms are needed to extract discriminative 
characteristics from complicated and diverse datasets, notably in medical imaging like 
MRI, CT, and histopathology images.
Interpretability of traits: Machine learning models may discover traits as important 
for disease detection, but interpreting their biological or clinical relevance is difficult. 
To close this gap, models must accurately forecast diseases and explain selected traits in 
a clinically interpretable manner.

Medical datasets often have small sample sizes for rare diseases or uneven distributions 
across disease classes. This hinders accurate and generalizable model training. We need 
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methods to handle short sample numbers and class imbalances while preserving model 
performance.

Features are selected to minimize dataset dimensionality, enhance classification accu-
racy, and prevent overfitting to increase wireless sensor network efficiency and energy con-
sumption and lengthen network lifetime. The main challenge in feature selection difficul-
ties is discarding some of the pre-processed data without affecting quality. Many methods 
have been developed for feature selection. These algorithms had a hefty computing cost 
when they were introduced 30 years ago. This challenge was solved by fast computers and 
large storage resources, but creating a fast solution to deliver this function is still relevant 
due to new challenges’ enormous data sets. Compressive sensing technology has been pre-
sented by many academics to eliminate data redundancy and limit the number of nodes in 
wireless sensor networks to save energy consumption. The above method samples fewer 
points than needed for signal capture and reconstruction with high probability. New and 
efficient optimization methods include evolutionary game theory, graph theory, and heu-
ristics. Optimization methods can be divided into exact and approximate algorithms. Exact 
algorithms can optimize exactly but are inefficient in robust optimization and take expo-
nentially longer to solve. Close to optimization, approximate techniques can solve robust 
optimization issues quickly. Heuristic and metaheuristic approximate algorithms exist. 
Q-learning algorithm identifies limited search space and produces high-quality results in 
reasonable computation times. They are employed in many commercial packages because 
they can easily face real-world limits. Evolutionary algorithms help solve mobile ad hoc 
networks, quantitative association rules, and traveling salesman problems. A feature selec-
tion procedure begins with an exhaustive search through the subset of features to find the 
best feature among the primary probable subclasses based on a given assessment criterion. 
If the feature set has n features, the best subset must be selected using optimum feature 
selection. Since evolutionary computation approaches provide global search, they are used 
as a strong solution and alternative to standard searching methods to handle these chal-
lenges. Particle swarm optimization, genetic algorithms, genetic programming, and ant 
colony optimization are popular feature selection methods. Heuristic models use diverse 
tactics to find the tradeoff between exploration and exploitation. Exploration helps uncover 
clear search spaces, whereas exploitation helps maintain better solutions by examining the 
local search space. Some meta-heuristic search methods use exploration, while others use 
exploitation for superior results. Using hybrid approaches can improve search algorithm 
performance. The yield of each approach increases when hybridization combines positive 
qualities of at least two procedures. This study uses BFO and EPO, two novel and effective 
meta-heuristics, to construct a hybrid strategy to improve general categorization tasks. This 
research presented a hybrid feature selection approach using filter and wrapper methods. 
This model aims to simplify moderate-dimensional feature selection computations.

Wrapper techniques are computationally complex since they select a feature subset and 
run the classifier on it each iteration, then compute classification accuracy from the confu-
sion matrix. Integration of the filter and wrapper methodologies uses the speed and power 
of filter and wrapper techniques to identify relevant dataset features. A combination of 
classification techniques, BFO algorithm, EPO algorithm, and their hybrid was utilized to 
extract dataset features. Integrating these two algorithms’ balances exploration and exploi-
tation to develop an algorithm without the previous flaw by exploiting their strengths—
high convergence speed and exploration ability. Only features with a selection prob-
ability matching the final subset are expected to align with classification, and the feature 
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selection procedure is only applied to these. According to several writers, prediction meth-
ods are effective for achieving good results. So, the algorithm’s computational complexity 
is reduced and a subset with fewer features is chosen. The suggested approach acceler-
ates feature selection for high-dimensional datasets, improves classification accuracy, and 
reduces feature selection. By comparing this approach on our unique mid-dimension data-
set, this research shows its success. Therefore, the current study goal is to address the ques-
tion. Will combining the BFO and EPO algorithms in the proposed approach’s evaluation 
function pick influential characteristics and improve classification accuracy also.

3  Materials and methods

This section gives important information on the three-nature inspired computing-based FS 
techniques that were employed and focuses on the datasets that were chosen for this experi-
mental study.

3.1  Dataset

The dataset utilized in this study comprises a fusion of images sourced from five widely rec-
ognized benchmark public datasets, alongside a proprietary dataset procured from hospitals 
situated in close proximity. The analysis involved a dataset consisting of 3112 images, of which 
1226 were categorized as glaucomatic and 1886 were categorized as healthy. A diverse range 
of sources, including ACRIMA, DRISHTI, HRF, ORIGA, and a privately-owned dataset, were 
utilized to obtain a comprehensive collection of 3112 images. The ACRIMA dataset comprised 
396 images depicting glaucomatous eyes and 309 images representing healthy eyes. Further-
more, the DRISHTI dataset made a valuable contribution by providing a total of 16 images 
depicting eyes affected by glaucoma. The Human Retinal Fundus (HRF) dataset consisted of 
a collection of 30 images. Among these images, 15 of them portrayed glaucomatous condi-
tions while the remaining 15 images depicted healthy conditions. In contrast, ORIGA made a 
substantial contribution by providing a more extensive dataset comprising 650 images. Among 
these, 168 images exhibited glaucomatous conditions, while the remaining 482 images por-
trayed healthy conditions. Furthermore, the private dataset consisted of a total of 631 images 
illustrating glaucomatous conditions and 1080 images depicting healthy conditions (Table 2).

The images in the ACRIMA database are from the ACRIMA project (TIN2013-
46751-R), which was started by Spain’s Ministerio de Economía y Competitividad with 
the goal of creating automatic algorithms for the evaluation of retinal diseases. There are 
705 fundus images in the ACRIMA database (396 glaucomatous and 309 normal images). 
They were taken from glaucomatous and normal patients with their prior agreement and in 
compliance with the ethical guidelines outlined in the 1964 Declaration of Helsinki as part 
of the ACRIMA research. Experts chose each patient based on their criteria and the clinical 
results of the test. The majority of the fundus photos in this collection came from the right 
and left eyes, which had previously been dilated and positioned in the optic disc. A few of 
them were eliminated due to noise, artifacts, and inadequate contrast. The IMAGEnet® 
capture system and the Topcon TRC retinal camera were used to record them. Photographs 
were captured using a 35° field of view. Two eight-year-old glaucoma specialists annotated 
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every picture from the ACRIMA database. When assigning labels to the photos, no addi-
tional clinical data was used. The ACRIMA database’s initial iteration was limited to cat-
egorization tasks.

With a FOV of 30 degrees, the Drishti collection consists of many retinal fundus 
images. The photos have a resolution of 2896 x 1944 pixels and are saved as uncompressed 
PNG files. The Aravind Eye Hospital in India provided the images used in this collection. 
The age range of the chosen glaucoma patients was 40–80 years old. Patients who do not 
have a glaucoma diagnosis were chosen to represent the normal class. The four experts 
annotated each of these photographs. Three of the four ophthalmologists’ opinions were 
sought before the standard was issued.

There are currently 15 pictures of healthy patients, 15 pictures of patients with diabetic 
retinopathy, and 15 pictures of patients with glaucoma in the public database HRF. Each 
subgroup includes one image of a healthy fundus, one of a patient with diabetic retinopa-
thy, and one image showing glaucoma. The sizes of the images are 3,304 x 2,336 with 
a 22/23 split between training and testing images. For every image, binary gold standard 
vessel segmentation images are supplied. Additionally, for specific datasets, the masks 
determining the field of view (FOV) are provided. A team of specialists in the field of 
retinal image analysis and physicians from the affiliated ophthalmology clinics create the 
gold standard data. In order to assist with the evaluation of algorithms that localize the 
macula, optic disc, or distinguish between arteries and veins, researchers plan to add more 
gold standard data to the current images. A cooperative research team created this database 
to facilitate comparative analyses of automatic segmentation techniques on retinal fundus 
pictures. Research can be conducted using the database at no cost. Under a Creative Com-
mons 4.0 Attribution License, researchers make it available.

650 photographs from the Singapore Malay Eye Study (SiMES) are part of the Online 
Retinal Fundus Image Dataset for Glaucoma Analysis and Research (ORIGA) database. 
The Singapore Eye Research Institute (SERI) is the organization behind SiMES. Experts 
annotated the photographs. The purpose of this dataset is to supply benchmark segmenta-
tion and classification algorithms with clinical ground truth. It generates manual segmenta-
tion for the optic disk and optic cup using a specially designed tool. In addition, it classifies 
each image as either healthy or glaucomatous and offers the cup-to-disk ratio. This dataset 
has been a standard in some of the most recent cutting-edge studies for the categorization 
of glaucoma.

The private dataset composed of retinal fundus images of 631 infected cases and 1080 
normal cases. These images have been collected from various private hospitals, after con-
sulting the ophthalmologists working there, located in the township of authors.

The given below Eqs. 1-17 is a short mathematical representation of the features that 
were retrieved

1. CDR (Cup Disc Ratio) –The eye is considered normal. The formula to calculate CDR 
is:

2. GLCM (Grey Level Co-occurrence Matrix) –Grey level Co-occurrence Matrix S(o, t):

(1)Cup_Disc_Ratio =
Dia_of_Cup

Dia_of_Disc
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3. SRE (Short Run Emphasis)–

Here p(l,m) , (l,m)th element define the number of run with grey level  l and length m in 
the image.

4. GLU (Grey Level Uniformity)–

 where gmax and gmin correspond to the maximum and minimum gray levels respectively 
and the whole range of gray levels is 255-0.

5. DDLS (Disc Damage Likelihood Scale)-

6. Bicoherence-

(2)Sm(o) =

Pk
∑

t=1

S(o, t)

(3)Sn(o) =

Pk
∑

t=1

S(o, t)

(4)Sm+n(k) =
∑Pk

o=1

Pk
∑

t=1

S(o, t)

(5)Amn1 = −
∑

o

∑

t

S(o, t)log
{

Sm(o)Sn(t)
}

(6)Amn2 = −
∑

o

∑

t
S(o, t)log{Sm(o)Sn(t)log

{

Sm(o)Sn(t)
}

(7)
SRE =

sg
∑

l=1

pr
∑

m=1

p(l,m,�)

m2

pr(�)

(8)
���(���� ��� ��������) − LRE =

sg
∑

l=1

pr
∑

m=1

p(l,m, �).m2

pr(�)

(9)g(i, j) = 255 −
g(i, j) − gmin

gmax − gmin

(10)Disc_Dam_Like_Scale =
Rim_of_Width

Diameter_of_Disc
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 is a magnitude feature and e j�(X(w1,w2)) is a phase feature.

7. Energy-

8. Homogenity –

9. Correlation-

 10. Contrast-

 11. Dissimilarity (dissi)-

 12. Entropy-

A comprehensive collection of 36 features has been derived from the images pro-
vided. The list of features can be located in Table 3. Figure 2 explicates the diagram-
matic view of proposed prediction system for detection and classification of glaucoma.
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(12)energy =

Nk
∑

i=1

Nk
∑

j=1

p(i, j)2

(13)homop =

Nk
∑

i=1

Nk
∑

j=1

p(i, j)

1 + |i − j|2

(14)correlation =

M−1
∑

i=0

M−1
∑

j=0

{i × j} × p(i, j) −
{

�x × �y

}

�x × �y

(15)contr =

Ng
∑

i=1

Ng
∑

j=1

(i, j)2p(i, j)

(16)dissi =

Ng
∑

i=1

Ng
∑

j=1

|i − j|p(i, j)

(17)ENTROPY = −

G−1
∑

i=0

G−1
∑

j=0

P(i, j) × log(P(i, j))
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3.2  Feature selection algorithms

This research study has selected three nature inspired algorithms, namely EPO, BFO, 
and their hybrid variant, for inclusion (Fig. 3). Kindly locate the precise particulars of 

Fig 2  Diagrammatic view of the proposed work for glaucoma recognition
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the algorithms presented hereafter. The parameters and related values that were assigned 
throughout the execution of the three algorithms are shown in Table 3.

Table  4 displays the parameters and the associated values used in the algorithms. 
Equation (18) describes the objective function (Rastrigin Function) for each optimiza-
tion process.

(18)f (x) =
∑n

i=1

[

xi2 − 10 cos(2�xi) + 10
]

Fig. 3  Flowchart of BFO and EPO algorithm
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The hybrid BFOAEPO algorithm's pseudocode is shown below:

Step 01:  Load the dataset for experimentation

Step 02: Initialize the BFOA parameters.

Step 03 : Produce a Sample Size for further study X(i=1,2,…,PopSize)(by BFOA)

Step 04: For t=1 to Max_iters

Step 05: The loops of elimination and dispersion

Step 06: Loop of reproduction

Step 07: Perform the computation on the fitness function.

Step 08: Eliminate unpromising bacteria(s).

Step 09: Update population (by EPO)

Step 10:  Set the initial EPO parameters.

Step 11: Perform the computation on the fitness function.

Step 12: if (better solution is obtained) then update the current best

End if.

Update y=y+1

End For

Step 13: Return the optimal solution. 

Three algorithms BFO, EPO and their hybrid are shortlisted for this study, whose details 
are given below. The Table 4, shown above, depicts the various parameters and their values 
assigned during the implementation of these three algorithms.

Novel nature-inspired optimization algorithms include the Bacteria Foraging Optimization 
Algorithm (BFO) [70, 71]. Tensile flagella propel the real bacteria during foraging. Flagella 
help E.coli forage by falling or swimming. Each flagellum pulls on the cell while spinning 
clockwise. Thus, the flagella move independently and the bacteria tumbles less, but in a dan-
gerous environment, it tumbles often to find a nutritional gradient. Bacteria move swiftly by 
rotating flagella counterclockwise. Bacteria use chemotaxis to migrate toward a food gradient 
and avoid unpleasant conditions in the algorithm above. In friendly environments, pathogens 
spread. When they have enough food, they expand and break in the middle to make an identi-
cal clone at the right temperature. Passino added a replication event to BFO algorithm because 
to this. Chemotactic development may be disturbed by environmental changes or an attack, 
and a group of bacteria may travel or join the swarm. An elimination-dispersal event in a real 
bacterial community kills all germs or disperses a subpopulation into a different location [70, 
71]. BFO algorithms parameters are displayed in Table 5.

The mathematical equations used in the algorithms are as follows

(19)�(j) =
Δ(j)

√

Δ(j)MΔ(j)

(20)ℵ
j((k + 1, l,m) = ℵ

j(k, l,m) + A(j)𝜇(j)

(21)
Bcc

�

ℵ,ℵi(k, l,m)
�

=
o
∑

j=1

�

−rattractexp1

�

xattract
∑h

s

�

ℵd − ℵ
j

d

�2
��

+
o
∑

j=1

�

−h1repellantexp1

�

xrepellant
∑h

s

�

ℵd − ℵ
j

d

�2
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The emperor penguin is one of the largest, with male and female being similar in size. 
Emperor penguins have black backs, white bellies, golden ear patches, and grayish-yel-
low breasts. The emperor penguin’s wings are a fin when swimming. Emperor penguins 
walk like people. The Antarctic winter can reach - 60 °C, but they live their entire lives 
there and are known for reproducing. Their distinctive feathers and body fat shield them 
from cold winds, but in extreme cold, they must congregate. During mating season, each 
female penguin lays one egg, which a male take. After egg transfer, females will seek 
up to 80 kilometers at sea. The eggs survive because male penguins keep them warm in 
their brood pouches. When a female emperor penguin returns to the nest after two months 
in the ocean, she vomits food for the babies to eat and care for. Emperor penguins are 
great swimmers and divers. The pair often hunt and forage. Only these creatures survive 
Antarctic winter by huddling. A mathematical model was created by dividing emperor 
penguin huddling into four stages. Emperor penguins randomly construct huddle bounda-
ries. Second, they calculate their surroundings’ temperature. Third, the method simpli-
fies emperor penguin exploration and exploitation by computing penguin distances. Th 
approach decide the effective mover is best and recalculate the huddle’s boundaries by 
rearranging the emperor penguins. Discovering the best mover is the goal of this math-
ematical approach. Huddles are on 2D polygonal L-shaped surfaces. The EPO algorithm 
was devised to combat this huddling [72].

(22)F(j, k, l) = F(j, k,m, l) + Bcc
(

ℵ,ℵj(k, l,m)
)

(23)Qr =
Q

2



77921Multimedia Tools and Applications (2024) 83:77873–77944 

1 3

The mathematical equations applied in the algorithm are as follows Let � defines the wind 
velocity and ℑ be the gradient of �.

Vector  ℜ is combined with � to generate the complex potential al

where j denotes the imaginary constant and AF is an analytical function on the polygon 
plane.

The temperature profile around the huddle A′  is computed as follows:

Here y define the current iteration, Maximumiteration represents the maximum number of 
iteration. A is the time for finding best optimal solution in a search space.

where ���������⃗Disepn shows the distance between the emperor penguin and best fittest search agent. 
y shows the current iteration. ����⃗A1 and ���⃗c1 are used to avoid the collision between neighbors. 
k() defines the social forces of emperor penguins.

Poly_grid(Acc) defines the polygon grid accuracy by comparing difference between 
emperor penguins and random function Random().

where e defines the expression function. f  and l are control parameters for better 
exploration.

(24)ℑ = Δ�

(25)AF = � + jℜ

(26)A� =

(

A −
Maximumiteration

y −Maximumiteration

)

(27)A =

{

0, if Radius > 1

1, if Radius < 1

(28)���������⃗Disepn = Abs
(

k
(

����⃗A1
)

.�����⃗l(y) − ���⃗c1. ���������⃗lepn(y)

)

(29)����⃗A1 =
(

Mov ×
(

A� + Poly_grid(Acc)
)

× Random()
)

− A�

(30)Poly_grid(Acc) = Abs
(

l⃗ − �����⃗lepn

)

(31)���⃗c1 = Random()

(32)k
�

����⃗A1
�

=

�
√

f .e−x∕l − e−x
�2
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3.2.1  Time complexity of EPO

1. Population initialization process requires O(n × d) time where n indicates the population 
size and d indicates the dimension of a given problem.

2. The fitness of each agent requires O(Maxiteration × n × d) time where Maxiteration is 
the maximum number of iteration to simulate the proposed algorithm.

3. The function S () requires O(N) time where N defines the social forces of emperor 
penguins for better exploration and exploitation.

4. Steps 2 and 3 is repeated until the termination criteria is satisfied which needs O(k) time. 
Hence, the total complexity of Steps 2 and 3 is O(n × Maxiteration × d × N). Therefore, 
the overall time complexity of EPO algorithm is O(k × n × Maxiteration × d × N).
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3.2.2  BFO time complexity

The time complexity of BFO algorithm can be presented O(P × (Q × (R × T × (L + W) 
+ D) + N)). In the given expression P means iteration number for elimination dispersal. 
Q shows reproduction iteration time,R describe the number of chemotaxis activity, T is 
the bacterial number, L is the calculation time for fitness function, W represent the time 
complexity for chemotaxis operations based on evaluation method, D represents the com-
putation time for reproduction process and N shows the computation time for elimination 
dispersal module.

3.2.3  Hybrid BFOAEPO algorithm time complexity

The overall computational complexity of Hybrid of bacterial foraging optimization algo-
rithm and emperor penguins optimization is O(Max Iteration ×  N4 + (l × p × t × f)). The 
complexity depends on maximum iteration, elimination and dispersion, reproduction, fit-
ness function computation and elimination bacteria for the BFO, additionally including the 
updating of EPO computational complexity.

4  Results and discussion

The primary objective of utilizing nature-inspired computing techniques is to reduce the 
initial set of extracted features so as to precisely classify subject fundus retinal images into 
two distinct classes. The aforementioned reduced features will subsequently be employed 
as input for various ML classifiers. A comprehensive process of twelve distinct tests has 
been conducted, employing all three algorithms. All experiments possess a common objec-
tive function. Within the confines of a particular experimental setting, the population size 
exhibits a range spanning from 5 to 20, with incremental intervals of 5. This population’s 
performance is evaluated after a number of iterations, from 100 to 500, in increments of 
100. The attributes (features) of the case with the lowest objective function value are cho-
sen, and then this case’s attributes are sent to the classifier. The remaining four instances 
are excluded from further analysis. The computed findings have been aggregated and are 
displayed in Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18. The findings generated 
by the EPO algorithm are presented in Tables 6 and 7. Tables 10 and 11 have been allo-
cated for the purpose of displaying the outcomes produced by the BFO algorithm, while 
Tables 14 and 15 have been specifically designated for showcasing the outputs obtained by 
the hybrid algorithm. The tables (Table 6, 10, and 14) display and record the occurrences 
in which the minimum fitness value is observed within the five sub-experiments. The data 
for Table 7 is collected from Table 6, where the minimal objective value and the solution 
with the highest value created for each performance evaluation indicator are shown (by 
applying different ML classifiers). So, as the solution(s), we have prepared two tables from 
all the tests conducted under the canopy of one nature inspired-computing algorithm (for 
example, Tables 8 and 9 are comprised of all the experiments conducted under the EPO 
algorithm). Table 9 (as well as Tables 13 and 17) indicates the maximum value generated 
for each performance metric. Thus, Tables 9, 13 and 17 demonstrate the maximum values 
generated for various metrics by the EPO algorithm, BFO method, and hybrid algorithm, 
respectively. Table 8 (as well as Tables 12 and 16) illustrates the best values provided for 
various performance measures when the number of features picked has the smallest count 
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(in the case of EPO). Consequently, Tables 8, 12, and 16 illustrate the best values generated 
for various performance measures when the number of selected features had the lowest 
count (in the case of the EPO, BFO, and hybrid algorithms, respectively). The computed 
results are graphically represented in Figs. 4, 5 and 6. The respective confusion metrics are 
depicted in Figs. 4, 5 and 6 respectively.

One of the most common applications of the DeLong test is to compare the area 
under the receiver operating characteristic curves (AUC) of two different models. The 
p-value that is obtained from the DeLong test is something that is used in order to deter-
mine whether or not the difference in AUC between the two models is statistically sig-
nificant. In the experiment, p-value statistical testing was also performed. In the context 
of machine learning, accurately calculating the standard deviation can be a helpful way 
to assess the variability or consistency of model performance over several runs or data-
sets. Achieving accuracy in the standard deviation is one way to do this. Along with the 
computation of various ML performance metrics, standard deviation and p-value(two-
tailed test) have also been performed.

4.1  Experiment results generated through the EPO algorithm

The best confusion matrices produced by the four tests through EPO algorithm are 
shown in Fig. 4

(a) Experiment 1:Random Forest (b) Experiment 2 :KNN 

 

 (c ) Experiment 3:Support  Vector Machine (d)Experiment 4:Random Forest 

Fig. 4  Confusion Matrix of accuracy obtained by best classifier on split methodology (a) Least cost 
0.82390 and PS 5 5 (b) Least cost 0.87603 and PS 10 (c) Least cost 0.78808 and PS 15 (d) Least cost 
0.80926 and PS 20
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4.2  Results computed after applying the splitting approach to the BFO algorithm 
in different experiments

The best confusion matrices produced by the four tests through BFO algorithm are 
shown in Fig. 5.

4.3  Experimental results computed with features returned by the hybrid algorithm

Tables 12, 13, 14, and 15 depicts the results generated through the proposed and imple-
mented hybrid approach with population size 5 to 20 with variation of 5.

The best confusion matrices produced by the four tests through hybrid approach are 
shown in Fig. 6.

The Table 18 presents the final best results from three different perspectives. The first per-
spective showcases the best results achieved for a customized dataset. The next perspective dis-
plays the best generated results using our proposed approach for a private dataset. Lastly, the 
results generated through our approach for a public dataset are shown in the last perspective.

4.4  Discussion and analysis

The proposed solution encompasses the utilization of three distinct algorithms: BFO, 
EPO, and a hybrid approach that amalgamates the functionalities of both algorithms. The 

tseroFmodnaR)b(tseroFmodnaR)a(

tseroFmodnaR)d(tseroFmodnaR)c(

Fig. 5  Confusion Matrix of accuracy obtained by best classifier on splitting approach, (a) With least cost 
of 0.81045 ( PS 5), (b) With least cost of 0.85425 (PS10), (c) With least cost of 0.82395 ( PS 15), (d) With 
least cost of 0.75206 (PS 20)
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objective of these algorithms is to minimize the initial feature set that will be inputted into 
various ML classifiers, with the aim of classifying the subject fundus images into two dis-
tinct categories. A comprehensive investigation of twelve distinct tests has been adminis-
tered, utilizing all three methodologies. All experiments possess a common objective func-
tion. Within the confines of a particular experimental setting, the population size exhibits 
a range spanning from 5 to 20, with increments occurring at intervals of 5. Through a 
methodical modification of the number of iterations, ranging from 100 to 500, with incre-
ments of 100, the performance of the population is evaluated. The properties, which are also 
known as features, of the instance that exhibits the lowest value of the objective function 
are then sent to the classifier. The study does not include and does not take into account 
the other four occurrences. The information in the aforementioned tables indicates that a 
minimum of 4 features may be collected and a maximum of 28 features. As a result, the 
level of feature reduction might be as high as 88.88% (4 out of 36) or as low as 22.22%. The 
timing of an execution must be determined by taking into account two different viewpoints. 
The main focus is on demonstrating the length of iteration for nature inspired computing 
methods, followed by an examination of the time needed for developing and testing machine 
learning models. The first six ML classifiers have qualities that are commonly associated 
with classical techniques, while the seventh one composition combines aspects from the first 
six. A variety of measures, including accuracy, sensitivity, specificity, and precision, as well 
as the F1-Score, Kappa-Score, Matthews Correlation Coefficient (MCC), and Area Under 
the Curve (AUC), are used to assess classifier performance. Each of these metrics plays a 
pivotal role in the prognosis of human diseases based on medical images. The simultaneous 
observation of all these computations within a single research study is infrequent.

tseroFmodnaR)b(NNK)a(

enihcaMrotceVtroppuS)d(tseroFmodnaR)c(

Fig. 6  Confusion Matrix of accuracy obtained by best classifier on splitting approach, (a) With least cost 
of 0.81865 (PS 5), (b) With least cost of 0.88075 (PS 10), (c) With least cost of 0.76834 (PS 15), (d) With 
least cost of 0.83461 (PS 20)
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The accuracy of our model refers to the ratio of correct predictions to the total number 
of predictions made [10]. The determination of the accuracy rate involves the division of 
the count of accurate forecasts by the overall count of predictions. The metric of accuracy 
holds significant importance as a performance indicator, and our findings in this regard 
are noteworthy. By combining the hybrid algorithm with the Random Forest classifier, a 
remarkable accuracy rate of 96.55% was attained. The hybrid case exhibits the lowest accu-
racy rate of 89.180%, followed by the BFO case with an accuracy of 85.902%, and the EPO 
case with an accuracy of 87.065%. The proposed method demonstrates a notable degree of 
precision. The concept of sensitivity holds significant importance in the context of meas-
urement, specifically in relation to the test’s capacity to effectively identify individuals who 
genuinely suffer from the disease. The sensitivity of a medical test, also referred to as the 
"detection rate" in clinical contexts, pertains to the ratio of individuals who yield positive 
test results for a particular illness among those who genuinely possess the ailment. A diag-
nostic test with a sensitivity of 100% will accurately identify and categorize every individ-
ual with the specific condition as positive. According to the EPO analysis, the sensitivity 
results reveal that RF exhibits the highest score of 0.8974. In a similar vein, the sensitivity 
score for BFO is recorded as 0.92187. In regard to the hybrid models, the utilization of a 
decision tree methodology results in the attainment of the highest sensitivity score, specifi-
cally 0.934780.

The notion of specificity pertains to the capacity of a diagnostic test to effectively dis-
cern individuals who do not manifest any symptoms and are in a state of optimal health. 
The concept of "specificity" refers to the proportion of individuals who do not have a par-
ticular disease and obtain a negative result when tested [14]. A positive outcome suggests a 
high probability of the presence of the condition. A test with perfect specificity would cor-
rectly identify all individuals who do not have the condition by producing a negative result, 
while a test with imperfect specificity would conclusively demonstrate the absence of the 
sickness. As the efficacy of this strategy can be seen in the range of values acquired, the 
criteria of creating specificity is of the biggest significance and must be properly taken into 
consideration. The range of EPO, when taking into account the random forest (RF), spans 
from 0.9029 to 0.99401. The range of BFO values spans from 0.88745 to 0.98466. The 
hybrid method, taking into account RF, exhibits a range of values spanning from 0.91616 
to 0.99376. As a result, a specificity rate of 90% was achieved in all scenarios, with the 
random forest algorithm demonstrating superior efficiency as a classifier. The F1-score is 
determined by taking the harmonic mean of accuracy and recall, resulting in a well-bal-
anced evaluation metric for the classifier. The F1-score is a performance measure com-
monly employed in the evaluation of classification models. It is designed to assess accu-
racy by considering the impact of both false positives and false negatives. The combination 
of EPO-RF yields a maximum F1-score value of 0.91001, while the BFO combination 
achieves a maximum F1-score value of 0.9215. Additionally, the hybrid-RF configuration 
achieves a maximum F1-score value of 0.9386. Precision is the ratio of correctly identified 
positive cases to all the cases that are identified as positive [73]. It is feasible to accurately 
ascertain the prevalence of glaucoma among individuals. Moreover, the degree of precision 
has a direct influence on the quantity of significant data points. It is crucial that we exercise 
caution in commencing treatment for a patient who, according to our theoretical frame-
work, displays symptoms suggestive of glaucoma but does not manifest the actual patho-
logical state. The precision values for EPO, BFO, and the hybrid approach are 0.98387, 
0.9722, and 0.98876, respectively, at their maximum values.

Each diagnostic threshold is accompanied by a corresponding set of sensitivity and 
specificity values. In order to construct a Receiver Operating Characteristic (ROC) curve, 
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the dataset was utilized to plot pairs of data points, with the x-axis representing specific-
ity and the y-axis representing sensitivity [74]. Both the computation of the AUC and the 
examination of the characteristics of the ROC curve can be utilized to evaluate the discrim-
inative capacity of a specific test. As the curve gradually approaches the upper left corner 
and the area beneath it expands, the test demonstrates enhanced discriminatory capacity in 
discerning between afflicted and non-afflicted states. The integral of the curve, which is a 
dependable indicator of the effectiveness of the test, can assume values within the range 
of 0 to 1. The non-selective region of a test is characterized by an area of 0.50, whereas 
an ideal diagnostic test exhibits AUC of 1. The AUC is a widely accepted measure uti-
lized for assessing the diagnostic precision of a given test. Furthermore, we have computed 
the AUC scores, which exhibit favourable outcomes in this specific context. The combina-
tion of the EPO algorithm and the RF classifier yielded AUC scores ranging from 0.8764 
to 0.9698. In a similar vein, the BFO algorithm demonstrated AUC scores spanning from 
0.9010 to 0.9763, whereas the hybrid algorithm, incorporating the RF classifier, exhibited 
AUC scores ranging from 0.9078 to 0.9799. As the value approaches 1.000, the quality of 
the output increases. The hybrid technique stands out among the classifiers due to its exten-
sive performance range, reaching a maximum value of 0.9799. However, the Random For-
est classifier demonstrates superior performance in relation to the AUC metric. The results 
encompass a range of important parameters, such as ROC curves for each instance, confu-
sion metrics, and calculations of MCC and Kappa scores for each experiment.

5  Comparison with the current best practices

Table 19 provides an evaluation of the proposed technique compared to the current state-
of-the-art glaucoma prediction approaches. This comparison table demonstrates the effi-
cacy of the applied method in identifying glaucoma relative to earlier research. This table 
shows strong evidence that the suggested method is reliable and good at classifying fun-
dus pictures. Compared to earlier research, the used method is up to 96.55% accurate at 
finding glaucoma. As with other measures, the performance’s sensitivity and specificity 
are also both auspicious. When compared to the other 20 methods indicated in Table 19 
that were published in or after 2018, our performance displays excellent results. In a few 
instances, our approach, which leverages nature inspired computing and ML techniques, 
has exhibited superior efficacy when compared to deep learning (DL) methodologies. In 
a few situations, however, the datasets against which the other techniques were tested may 
vary. In our case, multiple datasets have been analyzed to determine the generalizability of 
our proposed method, as we have worked on them to assess the performance of the previ-
ously disclosed strategy.

In this discussion about how our study compares to other research, our results have been 
compared to those of the fifteen studies listed in Table 16. This has allowed for a thorough 
look at the topic. The use of DL algorithms for the evaluation of the characteristics of the 
OC and OD has received significant attention recently in the field of glaucoma research. 
A plethora of studies have been published in this field. According to researchers, delays 
in treatment can be attributed to the time-consuming manual input required from ophthal-
mologists in conventional methodologies, specifically the need for measurements of disc 
and cup sizes during screening. Hence, it is crucial to enhance the progress of more effec-
tive and accurate diagnostic instruments for the detection of glaucoma. The practical and 
efficient identification of glaucoma can be achieved through the utilization of automated 
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techniques. The evaluation of the OD and OC plays a crucial role in the diagnosis of glau-
coma. The primary aim of the proposed methodologies is to achieve precise segmentation 
of the OD and OC from a fundus image. The dataset utilized in the study comprised 101 
Drishti GS1 images and 650 ORIGA images [75]. The process of segmenting OD and OC, 
along with calculating the CDR and evaluating the four sections of the neuro-retinal rim 
(NRR), was conducted. The researchers exhibited an accuracy rate of 76.42%, a sensitivity 
rate of 0.799, and a specificity rate of 0.738. In contrast to the findings of previous studies, 
our results exhibit a higher level of performance across all three metrics. The authors of 
[76] presented an effective approach for segmenting the OC and OD using semi-supervised 
conditional generative adversarial networks (GANs). The performance evaluation of the 
proposed method was carried out using two datasets: ORIGA, which comprises 650 fundus 
images consisting of 168 eyes with glaucoma and 482 eyes without glaucoma, and REF-
UGE, which consists of 400 fundus images including 40 eyes with glaucoma and 360 eyes 
without glaucoma. As the training set for their study, the researchers have chosen a dataset 
that consists of 300 fundus images with precise annotations. Out of the available options, a 
total of 30 images can be attributed to individuals diagnosed with glaucoma. The remain-
ing images have been assigned to the testing set. The accuracy values for the ORIGA and 
REFUGE datasets were determined to be 76.57% and 82.78%, respectively. The sensitivity 
values for the ORIGA and REFUGE datasets were calculated to be 0.7273 and 0.7, respec-
tively. Furthermore, the specificity values for the ORIGA and REFUGE datasets were 
determined to be 0.8041 and 0.7, respectively. The overall specificity was calculated to be 
0.956. In the following study [77], the authors presented two sophisticated glaucoma detec-
tion techniques that employed deep learning methodologies. The M-Net is a multi-label 
segmentation network that combines the segmentation of an OD and an OC. The U-shaped 
convolutional network of M-Multi-scale Net was utilized to generate a segmentation prob-
ability map. This network incorporates a side-output layer to facilitate the learning of dis-
criminative representations. The assessment of glaucoma risk was performed by employing 
the vertical CDR, which was obtained through the segmentation of the optic disc and cup. 
The second network employed in the study is known as the disc-aware ensemble network, 
abbreviated DENet. The network successfully integrates the local optical disc region with 
the deep hierarchical context of the global fundus image. The DENet algorithm provides a 
glaucoma detection result without requiring the use of image segmentation techniques. The 
researchers used the Singapore Chinese Eye Study dataset, which includes 1676 images 
and 46 cases of glaucoma, along with the ORIGA dataset. Additionally, a dataset derived 
from a population-based study was incorporated, encompassing 5783 eye images, with 
113 eyes affected by glaucoma and 5670 eyes classified as normal. The obtained outcomes 
encompass an accuracy rate of 84.29%, a sensitivity rate of 0.8478%, and a specificity rate 
of 0.8380%. Upon comparing our findings with this particular strategy, we have observed 
that our outcomes have been significantly superior. The utilization of a lightweight, deep 
architecture for the detection of glaucoma has been documented in a study, demonstrating 
its ability to carry out segmentation and classification tasks [46]. The training and testing 
procedures involved the incorporation of a combined total of 2482 images from the ORIGA 
dataset and other datasets that were deemed relevant. After that, the above networks were 
used to make a glaucoma assessment system that gives a clear diagnosis of glaucoma, a 
range of morphological measurements, and segmentations of relevant anatomical parts. In 
relation to the classification metrics, the obtained outcomes encompass an accuracy rate of 
87%, a sensitivity value of 0.85, and an AUC score of 0.93. Upon conducting a compara-
tive analysis between our endeavors and the findings of this study, it becomes apparent that 
our results exhibit a similar level of excellence.
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The system under consideration initially employed a DeepLabv3+ architecture for the 
purpose of segmenting the optic disc region. Nevertheless, the encoder module was later 
replaced with several deep CNNs [78]. The experts used three ways to put things into 
groups: (1) transfer learning, (2) learning the feature descriptors using SVMs, and (3) 
putting together groups of approaches that came from (1) and (2). The researchers’ 
research study involved a thorough analysis of five different datasets, including REF-
UGE, ACRIMA, ORIGA, and additional datasets. These datasets collectively encom-
passed a total of 2787 retinal images. The study’s findings indicate that a combination of 
DeepLabv3+ and MobileNet proves to be the most efficacious method for segmenting 
the OD. The integration of various methodologies demonstrated superior performance 
compared to current approaches in the classification of glaucoma. The achieved accuracy 
scores were 97.37%, 90.00%, 86.84%, and 99.53%, with corresponding AUC ratings of 
100%, 92.06%, 91.67%, and 99.98%.The empirical study [79] employed DL-based tech-
niques to achieve two primary objectives: the segmentation of the OD and OC and the 
classification of glaucoma. REFUGE provides the general public with unrestricted access 
to an extensive compilation of data that is currently unparalleled in its breadth and depth. 
The dataset consists of a thorough compilation of 1,200 fundus images, along with pre-
cise segmentations and clinical glaucoma labels. The researchers encountered limitations 
in their ability to provide data pertaining to precision and specificity. Nevertheless, a 
sensitivity value of 0.9752 was successfully determined. The absence of certain crucial 
elements, such as precision and specificity, in the discourse is noteworthy, particularly in 
light of the fact that our findings surpass the suggested ones. The authors proposed the 
utilization of an enhanced UNet++ neural network for the simultaneous segmentation of 
the OD and OC, with the region of interest (ROI) serving as the foundation, as suggested 
in a previous study [80]. The calculation of the cup-to-disc ratio was performed using the 
segmentation outcomes. When the increasing field of view (IFOV) feature was added, 
the goal was to get all the textural properties, statistical features, and other hidden image-
based data. Subsequently, the most suitable feature combination is selected from a com-
prehensive set of all feasible feature combinations. In order to mitigate the problem of 
imbalanced training data, the adaptive synthetic sampling technique is subsequently 
employed. The development of the gradient-boosting decision tree (GBDT) classifier 
was specifically focused on its application in glaucoma screening. Experimental results 
using 650 images from the ORIGA dataset show that the algorithm suggested in this 
study exhibits glaucoma screening performance. The algorithm achieves a sensitivity of 
0.894%, an accuracy of 0.843%, and an AUC of 0.901. Upon conducting a comparative 
analysis between our findings and the outcomes of the aforementioned study, it becomes 
evident that our results exhibit a superior level of quality. This study presents a novel 
methodology for classifying glaucoma, employing a solitary deep CNN [82]. A determi-
nation was made to choose a combined total of 10,658 photographs from the subsequent 
sources: Refuge 24, Origa 25, LAG 26, Drishti-GS127, sjchoi86-HRF 28, HRF 29, and 
ODIR 30. The attained accuracy of 95.3%, sensitivity of 0.841, and specificity of 0.958% 
fail to exceed the performance of our suggested approach. The fundus image underwent 
processing using a CNN consisting of 18 layers, which was constructed and trained. The 
objective of this procedure was to identify and extract the distinctive characteristics that 
are present within the image. The model’s architecture comprises a fully connected layer, 
two max-pooling layers, and four convolutional layers. The use of a two-stage tuning 
technique is advised for the purpose of determining an appropriate batch size and initial 
learning rate. The network evaluation was performed utilizing several databases, namely 
DRISHTI-GS1, ORIGA, RIM-ONE2 (version 2), ACRIMA, and large-scale 
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attention-based glaucoma (LAG) databases. The DRISHTI-GS1, RIM-ONE2, ORIGA, 
LAG, and ACRIMA databases exhibited overall accuracy rates of 86.62%, 85.97%, 
78.33%, 94.43%, and 96.64%, respectively. Through the utilization of the ACRIMA data-
base, the approach put forth in this study demonstrated a sensitivity value of 0.5806 and 
a specificity value of 0.9244. The findings of our study exceed the previously docu-
mented results, encompassing both our own dataset and the ACRIMA dataset. A better 
deep learning-based custom UNET++ model [83] was created by the researchers to pre-
dict glaucoma. It does this by using a new segmentation technique to separate the OD 
and OC. The application of the Dhristi dataset led to improved presentation on a 
restricted dataset. The development of the segmentation-specific model involved the uti-
lization of a modified loss function and the implementation of hyperparameter tuning 
techniques. The loss function that has been recently developed successfully addresses the 
problem of class imbalance caused by the limited dimensions of the optic nerve head. To 
classify a set of 650 ORIGA images as either glaucomatous or non-glaucomatous, the 
ISNT criteria’s clinical feature was employed. The proposed methodology successfully 
distinguishes between images displaying indications of glaucoma and those that do not, 
achieving a 96% success rate by identifying pertinent clinical characteristics. The sensi-
tivity and specificity values obtained were 0.87 and 0.81, respectively. After conducting 
a comparative analysis of our empirical investigation with other relevant studies, it 
becomes apparent that our findings outperform theirs across all three criteria. The meth-
odology employed in this study entailed the implementation of an automated system uti-
lizing the Deep CNN architecture known as Glaucoma Network (G-Net) [84]. The utili-
zation of this system was implemented to discern between the OD and OC within retinal 
fundus images. The proposed methodology employs a dual neural network architecture 
with the objective of segmenting the optic disc and cup. The model achieved a segmenta-
tion accuracy of 95.8% for disc segmentation on a dataset consisting of 50 fundus 
images. Additionally, the model demonstrated an accuracy of 93% for cup segmentation. 
The methodology utilized in this research entails the concurrent operation of two neural 
networks, which yield segmentation accuracies of 95.8% and 93.2% for OD and OC, 
respectively. The accuracy, sensitivity, and specificity attained for the DRISHTI data set 
are 95.03%, 0.7379, and 0.8623, respectively. The obtained results exhibit a resemblance 
to our own research findings. This research paper introduces the application of the Grey 
Wolf Optimized Neural Network (GWO-NN) as a diagnostic tool for glaucoma. During 
the preprocessing phase, the input image is subjected to multiple steps. Initially, the 
image undergoes a conversion process to grayscale. Subsequently, the process of noise 
reduction is executed through the use of an adaptive median filter (AMF). Subsequently, 
the process of image normalization is implemented. The process of feature extraction 
was performed by utilizing GLCM features, which were derived from the image’s energy, 
contrast, homogeneity, and correlation. Furthermore, the researchers employed SURF, 
HOG, and global features in their study. The extracted features comprised variance, 
mean, and standard deviation. The subsequent step involves the implementation of the 
classification procedure using the GWO-NN algorithm. The approach that was presented 
demonstrated an accuracy rate of 93.103%, a sensitivity rate of 0.916778, and a specific-
ity rate of 0.94117. By comparing our proposed strategy to the suggested work, we can 
see how well our method works for both selecting features using a nature inspired com-
puting approach and classifying them using machine learning classifiers. The results of 
our study clearly indicate a higher level of performance when considering all three com-
parable metrics. In addition, it is important to acknowledge that the authors of the afore-
mentioned study [63] have not made the training and testing datasets accessible to the 
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public.This next study suggests that glaucoma can be found in fundus photographs by 
using image channels (ICs) and the DWT [85]. After the process of scaling the input 
images, the resulting outputs consist of the red channel (RC), green channel (GC), blue 
channel (BC), and grayscale (GS) images. Using the second-level (SL) discrete wavelet 
transform (DWT) makes it possible to improve and separate four different types of 
images into subband images (SBIs) that can be looked at separately. After that, the most 
important parts were taken out one by one from each of the sub-band images (SBIs) that 
were created using the DWT. Summation, normalization, and a numerical value assign-
ment combine the extracted features from the RC, GC, BC, and GS images. The robust 
properties are incorporated into the least squares support vector machine (LS-SVM) 
classifier. The dataset employed for analysis was the RIM-1 dataset. A Zernike moment 
feature, seven Hu’s invariant moment features, six Chip histogram features, thirteen basic 
texture features derived from GLCM, fourteen Haralick texture features, twenty-two 
advanced GLCM features, and seven grey level run length matrix (GLRLM) features 
were extracted from the dataset. These are based on the number of grey-level runs for 
different lengths. Combining the characteristics from the red channel (RC), green chan-
nel (GC), blue channel (BC), and grayscale (GS) images produced the composite image 
C-RGBGs-IF. The use of 10-fold cross validation resulted in the C-RGBGs-achieved IF 
exhibiting an accuracy of 84.95%, a sensitivity of 86%, and a specificity of 83.85%. After 
conducting a comprehensive comparison between our research findings and the existing 
empirical evidence, it is apparent that our findings demonstrate a higher level of poten-
tial. The authors [47] introduced a new methodology for the detection of glaucoma, 
employing FAWT to divide the pre-processed images into multiple sub-band images. 
The ReliefF and sequential box-counting (SBC) techniques were subsequently utilized to 
extract a variety of entropies and features derived from fractal dimension (FD). The 
aforementioned features encompass Kapur entropy (KE), Renyi entropy (RE), Yager 
entropy (YE), and the FD feature. In addition, Fisher’s LDA was implemented to assess 
the obtained feature values. The categorization of glaucoma stages was performed by 
employing the LS-SVM classifier, which utilized the higher-rank features. The evalua-
tion of the proposed method involved the utilization of a total of 941 images sourced 
from the glaucoma datasets RIM-ONE, ORIGA, DRISHTI, and HRF. The efficacy of the 
suggested methodology was assessed through the implementation of tenfold cross-vali-
dation. The findings demonstrate a classification accuracy of 93.4%, a sensitivity of 0.94, 
and a specificity of 0.8784. The findings presented exhibit a lower level of quality in 
comparison to our own results, as they were acquired through the utilization of a split-
based approach with a ratio of 70:30. The study conducted by the authors focused on the 
retrieval of GIST, a method based on Gabor filters that extracts textural characteristics 
from fundus images, as well as pyramid histograms of oriented gradients (PHOG) fea-
tures. These features were extracted from preprocessed fundus images. The authors 
employed these features in order to obtain a comprehensive shape description of fundus 
images [27]. The acquired attributes were assessed and selected by PCA to identify the 
most essential features. The classification of images into two categories, infected or nor-
mal, was performed using a SVM classifier. The assessment was carried out on a sample 
of sixty images, comprising both Drishti-GS1 and HRF images. The researchers’ method 
yielded an accuracy of 83.4% and an AUC value of 0.88. Neither of these statistics meets 
the level of success that our planned technique enabled us to achieve. The calculation of 
sensitivity and specificity has not been performed.
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If we examine the full description of the studies included in Table 19 that is pro-
vided above, we can observe that our study is distinct and superior in many aspects 
to the vast majority of the research addressed in Table 19. It is immediately apparent 
that the majority of the study has only examined OD, OC, and CDR. Other feature 
classes have gotten little consideration (or no importance). However, instead of focus-
ing just on OD, OC, and CDR, our study focuses on a range of feature classes. The 
great majority of researchers have also employed DL-based methods (proposing the 
new model or customizing the available DL models). A few studies applying ML have 
also been published. The fact that feature extraction has not been commonly used in 
these studies is a fundamental component of our technique. Few studies have focused 
on feature selection (sometimes referred to as feature dimension reduction), and those 
that have used approaches like LDA and PCA have largely cited their results. Never-
theless, for this operation, we employed three nature computing techniques (for opti-
mal feature selection), two recently proposed, and one hybrid of these from our side. 
We have also shown one of the three that is a hybrid of the other two, which suf-
ficiently displays the uniqueness, novelty, and innovation of the presented work. We 
have employed a number of ML classifiers, including an ensemble of them; nonethe-
less, these classifiers are not commonly used in one work. In addition, we generated 
other statistical performance evaluation indicators, including execution time. Seldom 
does the analysis get published in such depth. Our method’s results for performance 
evaluation metrics like accuracy, sensitivity, specificity, F1-score, and AUC are bet-
ter (in almost all ways) than those of almost all previous research. This shows that our 
approach works in highly impressive fashion.

6  Advantages, limitations and future scope of the proposed work

The proposed approach demonstrates a high level of effectiveness in identifying the most 
influential features necessary for confirming the presence of the disease. This approach has 
the potential to be applied to any dataset in order to efficiently select features that are nec-
essary for the classification of the problem being addressed. The suggested approach not 
only decreases the dimensionality of the search space but also reduces the training and 
testing time of the machine learning models. Simultaneously, this approach enhances the 
effectiveness of the classification models by eliminating unnecessary features. Owing to 
exemplary performance of the proposed approach indicate its potential to enhance the deci-
sion-making process for medical professionals by serving as a valuable second opinion. 
The presented system can also be implemented in areas with a limited number of skilled 
physicians.

Here are some of the limitations of this work. Relying solely on machines may not 
be suitable at this time, considering the importance placed on evidence-based medicine. 
Incorporating Macula scans, as well as publicly accessible features such as intraocular 
pressure (IOP) and visual test readings, would undoubtedly enhance the accuracy of the 
method. This task is limited to a single customized mid-size data set. It may be worth con-
sidering seeking external validation for the proposed method using larger and more varied 
data sets. There are potential benefits to be gained by increasing the sample size in the 
database. In order to facilitate real-time implementation, it may be beneficial to include 
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the out-of-sample data set. Utilizing sophisticated image processing and classification 
algorithms can enhance the accuracy of classification. Furthermore, properties that are 
not explicitly mentioned in the suggested approach may also be evaluated. Various hybrid 
variations of recent nature inspired computing-based techniques are suggested. It is possi-
ble that certain algorithms may exhibit superior performance in terms of accuracy, feature 
reduction, or a combination of both. We have assumed that the patient may have an eye 
infection, if any. The current focus is on classification, regardless of whether or not an 
individual has glaucoma. There is a lack of distinction in this work regarding the varying 
stages of glaucoma infection.

Other drawback of this study is its sole reliance on a single mid-size customized data-
set for performance evaluation. However, by applying the recommended approach to addi-
tional datasets, the study’s scope could be expanded even further. In addition, the explo-
ration of different datasets could be considered for future studies. There is potential for 
expanding the range of features that can be extracted. In addition, the image was not pre-
processed in our study to eliminate blood vessels. Our objective is to analyze the impact of 
this process on the ultimate classification outcome. Another important factor to consider is 
the classification phase. Given our focus on achieving efficient feature selection, we found 
that the evaluated classifiers needed further fine-tuning to reach their optimal performance. 
We are of the opinion that incorporating multi-objective methods into our approach would 
enhance our outcomes by enabling more accurate parameter tuning.

Glaucoma is a multifaceted systemic condition. Conducting a comprehensive anal-
ysis of the visual system could potentially enhance the accuracy of glaucoma diagno-
sis and prognosis. Through the utilization of cutting-edge neuro-imaging and retinal 
imaging technologies, the integration of data from different visual system components 
can lead to the accomplishment of this objective. For better results, future research in 
this field can explore various feature selection strategies and employ different clas-
sification approaches to enhance accuracy and efficiency. In order to enhance the sys-
tem’s overall accuracy and rectify misclassifications, it is recommended that future 
research explore the utilization of different features or the integration of texture, 
shape, and color features. A pressing issue revolves around evaluating the efficacy of 
specific features through the application of diverse statistical feature selection tech-
niques. In addition, the development of a two-phase feature selection strategy presents 
an evaluation challenge and signifies a new avenue of research. The initial step of the 
strategy entails utilizing classical statistical methods for selection, while the subse-
quent step involves employing soft-computing approaches for selection. Evaluating 
the performance of different versions of the BFO and EPO, as suggested by research-
ers, poses yet another challenging problem. In addition, researchers are currently 
developing an advanced nature inspired-based optimization algorithm with innovative 
features. Thus, there is room for enhancing classification accuracy by integrating the 
recently introduced algorithms more effectively with highly efficient classifiers. The 
current issue can be reframed as a multi-objective problem, where the aim is to bal-
ance the selection of features and accuracy. Collaboration between ophthalmologists 
and machine-learning researchers remains essential for ongoing progress. By leverag-
ing a strong blend of technical knowledge and deep industry experience, the poten-
tial for delivering highly efficient and impactful solutions is greatly enhanced. We 
will also explore the performance of the suggested approach on K-fold cross valida-
tion approach. For enhanced accuracy, there is potential to expand the scope of this 
work in the future by incorporating automation techniques, specifically by leveraging 



77935Multimedia Tools and Applications (2024) 83:77873–77944 

1 3

deep learning methodologies and a more extensive dataset.. Future efforts can fur-
ther enhance the current methodology by seamlessly integrating it with the graphical 
user interface designed for glaucoma diagnosis. Researchers are currently develop-
ing novel optimization algorithms inspired by nature. We will also investigate this 
avenue in order to identify a more efficient approach that surpasses the suggested 
method. The optimization problem at hand can be expressed using a multi-objective 
criterion. Additionally, a thorough review of the existing literature reveals that there 
has been limited research conducted in this particular area. Therefore, the exploration 
of feature selection using multi-objective criteria remains an untapped opportunity for 
future researchers. In the future, the deep cooperation between artificial intelligence 
and medical technology will make the datasets and clinical application rules more 
standardized, and glaucoma diagnosis and prediction tools will be simplified in a sin-
gle direction, which will benefit multiple ethnic groups. In addition, it encompasses 
the skill to detect and identify various eye conditions, including diabetic retinopathy, 
macular edema, and retinal hemorrhage.

7  Conclusions

It is crucial to promptly identify glaucoma in order to effectively manage the advance-
ment of visual impairment. Without appropriate medical intervention, this condition has 
the potential to advance and result in irreversible visual impairment. The challenging and 
time-intensive nature of traditional diagnostic procedures significantly impairs the efficacy 
of early detection and diagnosis of glaucoma. Moreover, a crucial task entails the iden-
tification and subsequent gathering of the most pertinent features(attributes). The main 
goal of this study is to introduce an innovative and effective feature selection strategy. The 
implemented strategy aims to identify the most influential features, resulting in a reduced 
feature space. Additionally, it is expected to enhance the overall performance of the clas-
sification system and reduce the training and testing time of machine learning models. To 
achieve the above-mentioned goals through the proposed strategy, this article provides an 
in-depth of the utilization of the EPO algorithm, the BFO algorithm, and a hybrid variant 
that combines both algorithms for the selection of most informative features. Based on our 
current understanding, there has been limited observation of the utilization of these algo-
rithms for the detection of glaucoma. The features selected in these three algorithms are 
assessed using six machine learning classifiers. The presented approach is evaluated using 
benchmark fundus image datasets. Many tests have been conducted with the objective of 
identifying the optimal combination of selected features using a machine learning classi-
fier. In the ideal situation, feature selection is able to achieve a remarkable rate, whereby 
only few features are preserved from the initial set of features, with no significant impact 
on accuracy. The performance has also been assessed using statistical measures, such as 
calculating the standard deviation of accuracy and conducting a p-value(two tailed test )
test. The proposed methodology for the processing and analysis of high-resolution retinal 
images demonstrates both computational efficiency and a minimal time commitment. Oph-
thalmologists may consider employing the proposed methodology as an additional tool in 
the diagnostic evaluation of glaucoma. Hence, the proposed technique has the potential 
to provide significant advantages in the initial assessment of individuals diagnosed with 
glaucoma.
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Appendix

Figure 7 depicts the look of the receiver operating characteristic (ROC) results produced by 
the EPO algorithm for all four algorithms. Figures 8 and 9 are devoted to the organization 
of the ROC produced by the BFO algorithm and hybrid algorithm, respectively for all four 
algorithms.

)b()a(

)d()c(

Fig. 7  Collective ROC curve of all ML classifiers with70:30 implemented approach, (a) Least cost 0.82390 
and PS 5, (b) Least cost 0.87603 and PS10, (c) Least cost 0.78808 and PS 15 (d) Least cost 0.80926 and PS 
20
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Fig. 8  A ROC curve that combines the outcomes of various classifiers that use a splitting method, (a) With 
least cost of 0.81045 (PS 5), (b) With least cost of 0.85425 (PS 10), (c) With least cost of 0.82395 (PS 15), 
(d) With least cost of 0.75206 (PS 20)
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Fig. 9  ROC curves of multiple classifiers combined using a splitting approach, (a) With least cost of 
0.81865 (PS 5), (b) With least cost of 0.88075 (PS 10), (c) With least cost of 0.76834 (PS 15), (d) With 
least cost of 0.83461 (PS 20)
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