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Abstract

The selection of the most efficient features for glaucoma identification is the subject of
our investigation because this disease is rapidly increasing worldwide. This disease causes
lifelong blindness due to damage to the eye’s optical nerve. Ophthalmologists have tradi-
tionally used tonometry, pachymetry, and other methods to measure intraocular pressure in
order to diagnose patients. Yet each of these judgments takes time, requires high profes-
sional experience, and can be open to human error (inter-observer variability). Therefore,
scholars are currently engaged in the domain of medical imaging, specifically focusing on
the analysis of retinal images for the purpose of predicting glaucoma. This research also
has the same objective and aims to address the aforementioned challenges. This empiri-
cal study proposes an artificial intelligence-based computer-assisted diagnosis (CAD) sys-
tem which is built to overcome these difficulties by providing the best features for machine
learning techniques for categorizing subject retinal pictures as "healthy" or "sick". This
study presents a new set of reduced hybrid features that were selected from an initial set of
36 features extracted from fundus images of benchmark datasets that belonged to different
classes to categorize patient fundus images into two categories: "healthy” or "infected."
The nature inspired computing-based Emperor Penguin Optimization (EPO) algorithm and
the Bacterial Foraging Optimization (BFO) algorithm are utilized to implement feature
selection (FS) process. Additionally, a novel hybrid algorithm combining these two tech-
niques is also proposed. Seven machine learning (ML) classifiers are engaged to compute
eight statistically based performance metrics along with execution time computation, and
a comparison of those metrics is also provided in a detailed fashion. The recommended
method exhibits a fortunate performance with the highest specificity of 0.9940, sensitivity
of 0.9347, and maximum accuracy of 96.55%. Expert medical practitioners who are over-
worked may receive assistance from the proposed system in making the optimal decisions
to preserve human vision.

Keywords Feature extraction - Nature inspired computing based feature selection - Nature
inspired optimization algorithms - Hybrid algorithm - Glaucoma detection - Medical data
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1 Introduction

The extensive adoption of social media platforms and sensor technologies has led to the
production of a significant amount of data with multiple dimensions. The dataset comprises
a variety of features(characteristics) and the process of choosing the most appropriate fea-
tures in relation to the target data is commonly known as feature selection (FS), which is
also acknowledged as attribute(or characteristics) subset selection [1]. The procedure of
FS is of utmost importance in the identification and extraction of the most pertinent infor-
mation from a given dataset. When dealing with high-dimensional data, it becomes less
useful to use regression, classification, and clustering methods. This is mostly because the
spatial and temporal complexity increases significantly. The dataset encompasses various
features, some of which may exhibit redundancy or insignificance. Duplicate and irrelevant
features are detrimental to a classifier’s effectiveness. Therefore, it is common practice to
employ FS techniques in order to identify the most suitable subset of features from datasets
that have a high number of dimensions as a means of addressing this problem. The proce-
dure of FS plays a vital role in accurately identifying and extracting the most pertinent and
valuable information from a provided dataset. Feature selection is a method employed to
enhance the accuracy of learning and improve the clarity of results by eliminating redun-
dant and noisy data from datasets with high dimensions [2]. By utilizing FS techniques,
the ML algorithm can be trained with improved efficiency and simplicity. In addition, it
efficiently addresses the issue of over-fitting and decreases the complexity of the classifier,
thereby improving its comprehensibility [3]. Hence, it is crucial to utilize a suitable mining
methodology to extract the fundamental characteristics (features) from the dataset. Previ-
ous studies have utilized various meta-heuristic techniques to effectively reduce the dimen-
sionality of the feature space. The utilization of technology facilitates the acceleration of
computational processes and improves the accuracy of categorization. The effectiveness of
classifiers might be hindered by feature spaces that include a substantial number of dupli-
cate or insignificant features. To enhance the efficiency of the classifiers, FS methods are
used to eliminate redundant characteristics from the initial collection. These techniques
facilitate the process of identifying the most suitable subset of features. FS is a commonly
utilized methodology in the domain of CAD that seeks to determine the relevant attributes
that have a significant impact on the accuracy of classification. In order to ensure opti-
mal performance of the classification subsystem, features that have minimal influence are
excluded to mitigate any potential negative effects. The primary objective of the FS subsys-
tem is to address the issue of duplicate features by strategically identifying and preserving
the most advantageous subsets of features in the dataset. Hence, the integration of FS will
greatly enhance the accuracy and efficiency of the CAD system.

As a result of the investigation of this experimental study, glaucoma, which is also
known as the "silent thief of vision," was first identified as a medical condition in the
early 17th century. This was the time when the word "glaukeoma" was first used in ancient
Greece. The term "cataract" is derived from the Greek words "obscurity of the lens" and
"cataract," and it denotes a lack of knowledge or awareness of this condition. On a global
scale, glaucoma is regarded as the second most frequent major cause of blindness. This
condition is the second most common cause of irreversible vision loss, right after cataracts.
There is a chance that it will supplant cataracts as the main etiological factor in the absence
of medical treatment. Glaucoma is thought to affect around 60 million people worldwide
and is expected to significantly increase to around 79.6 million by the year 2023 [4]. The
World Health Organization estimates that glaucoma affects more than 60 million people
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worldwide and could affect as many as 80 million people in the near future. Additionally,
it has been estimated that this issue affects 12 million people in India, which is a sizable
population. Common symptoms of this condition include an abrupt onset of visual impair-
ment, severe ocular discomfort, decreased visual clarity, irritated ocular organs, and the
observation of halos surrounding light sources [5]. People over the age of 40 are more
likely to experience the symptoms of this illness. The ability of the human brain to inter-
pret and comprehend the surrounding environment comes from its ability to receive vis-
ual information from the retina and transmit it to the brain via the optic nerve. Increased
intraocular pressure causes the optic nerve to be damaged, which causes the illness to
begin. Visual impairment, ocular discomfort, decreased visual acuity, ocular irritation, and
the observation of haloes around light sources are typical acute manifestations [6, 7]. Glau-
coma has the potential to cause the optic nerve to suffer irreparable damage in the absence
of proper medical intervention, which would subsequently worsen visual acuity. Therefore,
it is essential to emphasize the significance of early glaucoma detection because this sig-
nificantly reduces the risk of permanent vision loss.

A fundus camera captures eye images (Fig. 1). Fundus cameras use a microscope and
light to image the retinal fundus. The fovea, macula, optic disc, and optic cup are fun-
dus region structures. Since it’s noninvasive, it’s an effective eye health test. The optic
disc appears yellowish in colored fundus imaging, separated between the inner optic cup
and the outside neuroretinal rim (outer boundary). Detection of glaucoma is performed
via the optic nerve cup or by extending it. The most accurate glaucoma indication is the
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(a)Retinal fundus picture(Juneja et al.)[6] (b)Retinal fundus picture(Juneja et al.)[7]

(c) Retinal picture of non-infected individual (d) Retinal picture of infected(glaucomatous) individual

Fig 1 Retinal fundus pictures

@ Springer



77876 Multimedia Tools and Applications (2024) 83:77873-77944

cup-to-disc ratio (CDR), which is the ratio of the optic cup diameter to the optic disc diam-
eter. Doctors diagnose glaucoma if the CDR is 0.65 or higher [8]. These medical practition-
ers must physically extract discs and cups from individual photos, making their methods
slow, arduous, and unsuccessful. Professional graders can measure, record, and diagnose
glaucoma in eight minutes per eye. To detect glaucoma in the retina, ophthalmologists
use pachymetry, tonometry, perimetry, gonioscopy, and ophthalmoscopy. While ophthal-
moscopy examines the optic nerve’s color and structure, tonometry analyzes the pressure
within the eye. By using gonioscopy, perimetry, and pachymetry, it is possible to meas-
ure the iris-cornea angle, the visual field, and the cornea’s thickness. All of these methods
require a lot of time and human labor and have the potential to produce assessments that
are subject to the biases displayed by various experts (vulnerable to human errors) [9]. An
automated glaucoma diagnosis method is necessary to overcome existing techniques’ limi-
tations. Computers foresee medical concerns using non-invasive imaging. CAD systems
are used to solve the classification problem. For diagnostic glaucoma screening, a CAD
system may minimize computational complexity. Ophthalmologists need a second-opinion
CAD system to save time. It may minimize misclassification, relieve doctors, and impro-
vise inter- and intra-observability. CAD systems can identify several retinal fundus traits,
forecast glaucoma, and categorize retinal images as "normal" or "abnormal."

The number of patients with this disease is increasing at a very fast pace; as per the
characteristics of this disease, the infection leads to irreversible blindness [10]. The infec-
tion must thus be identified as soon as possible in order to begin therapy promptly and stop
the rate of visual loss (or at least reduce it). Traditional ophthalmological exams and proce-
dures take time and are subject to intra-observer variability. Moreover, manually comput-
ing the optic disc, cup, and cup-to-disc ratio by ophthalmologists is a common, labor-inten-
sive, and error-prone operation. It is widely acknowledged that glaucoma is a progressive
condition that leads to the deterioration of the optic nerve, which plays a crucial role in
transmitting visual stimuli from the eye to the brain. Patients typically do not notice any
vision problems in the early stages of glaucoma, so they are unaware that they have the
disease. By impairing peripheral vision in its severe stages, glaucoma can result in perma-
nent blindness. But glaucoma may be slowed down and properly treated to help prevent
visual loss if it is discovered early. To aid in the early discovery of the condition, those
who are suspected to be suffering from glaucoma should have routine eye exams. In order
to identify whether or not glaucoma symptoms are present, an ophthalmologist will physi-
cally examine a patient’s retina during an eye exam. It could take a long time to manually
analyze retinal pictures. In order to ensure the accuracy of the diagnosis, ophthalmologists
with sufficient experience should also review the images. In light of the fact that expert
ophthalmologists would have to analyze a significant number of patient photos, the major-
ity of which lack any signs of illness, frequent manual screening would be exceedingly bur-
densome on them. By collecting, analyzing, and categorizing retinal images independently,
automated screening technology provides a way to get around these limitations. As a result,
it can only make suggestions for people who show signs of glaucoma and are in need of
medical attention. Because of all of these considerations, we are motivated and inspired to
provide a reliable glaucoma CAD system that takes very little human interaction and time
to confirm this infection. This system inputs the potential patient’s fundus photos and clas-
sifies each image as either "healthy" or "infected."

It is essential for every human disease classification system to first determine which
of its most valuable components should be preserved before removing any extraneous
or redundant parts. The feature collection’s capacity to forecast outcomes may be com-
promised if there are a significant number of irrelevant or undesirable features [11]. The
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decision about the best features is very vital. As a result, the classifier’s capacity for mak-
ing precise predictions is increased while the associated computational costs are decreased
[12]. This assertion encourages and inspires us to continue working on the creation of an
ideal feature set, specifically in the context of dimension reduction, with the goal of iden-
tifying glaucoma. The technique being discussed aims to improve the performance of the
classification system by reducing the feature space [13]. A glaucoma prediction system’s
design process for feature selection is of utmost importance. Either a soft computing-based
approach or a methodology with a statistical foundation is typically used in the field of FS.
In order to address the current issue, the present study uses three nature inspired computing
methodologies, specifically the EPO algorithm, the BFO algorithm, and their hybrid. The
BFO algorithm has been selected due to several advantages like balancing exploration and
exploitation, its adaptability, sturdiness, robustness, adaptive strategy, simplicity, ease and
effectiveness, efficiency, frequently converges towards optimal solutions, scalability and
parallelism and relevance which motivates us to select this algorithm. Similarly, the EPO
algorithm also has been shortlisted due to its advantages like efficiency, balancing between
global and local search, adaptive mechanisms, flexibility and mechanism, optimal conver-
gence, social interaction modeling, solving capability of engineering problems. Hybridiza-
tion of nature inspired algorithms is a viable strategy in a variety of computational applica-
tions because it provides several benefits such as enhanced performance, higher robustness,
better solution quality, and flexibility to multiple issue scenarios. However, the limitations
of BFO include sensitivity to parameter changes, computational overhead, chance of local
optima trapping, strict investigation in complicated environments, no convergence guar-
antee, performance variability and problems with scalability. Similarly, EPO algorithm
exhibit limitations like insufficient validation, restricted empirical research, sensitivity to
parameters (configurations), convergence speed and solution quality, restricted application
scope, challenges in execution and optimization performance: efficiency and scalability. As
far as is known, these three algorithms haven’t been used very often to diagnose diseases
that affect humans, like glaucoma. Benchmark fundus images that are widely used in the
field are used to evaluate the proposed technique. The goal of the suggested methodology
is to increase classification accuracy by using a feature selection strategy that reduces the
number of features used and the error rate. Its use is intended to identify the most benefi-
cial set of characteristics for the specified task. Using particular and hybrid data transfor-
mation techniques, the benchmark dataset’s attributes are chosen to produce the greatest
benefit. Six classifiers that are based on machine learning have been selected for analysis in
order to compare the chosen attributes of these three methodologies. Fundus images taken
from a benchmark dataset are used to evaluate the proposed methodology. There has been
a total of twelve experiments. More than half of the attributes are excluded in a sizable
portion of cases. A cut-short of up to 88.88% of initial extracted features is possible under
ideal circumstances. When four of the original 36 characteristics are reclaimed without
having a significant effect on accuracy, this decline can happen. In order to achieve a bal-
anced and ideal combination of global and local search strategies, as well as exploration
and exploitation techniques, a hybrid algorithm is used. To make feature selection and clas-
sification in fundus images efficient, the suggested methodology combines the BFO and
EPO algorithms.

The aim of the study is to propose a novel, computer-based novel efficient, and fast
feature selection approach that can select an optimal subset of features from the initial
extracted features that are required for the prediction of human disease. Although many
studies have been published in last decade on efficient feature selection approach but there
is still a scope of improvements in classification results and computation time.
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One of the most important aspects of the data mining and machine learning fields is
feature selection, which involves eliminating unnecessary data in order to choose the opti-
mal subset of features for the target data. Nevertheless, choosing the best set of features
from a dataset using conventional feature selection techniques is difficult because there are
2" feature subsets that can be chosen for every n features. Thus, this study presents a new
feature selection strategy based on soft-computing approaches for effective classification of
healthy vs infected humans.

Even with the number of research on effective feature selection techniques published in
the past ten years, there is still room for improvement in terms of computation times and
classification accuracy. Other challenges include reduction of higher dimensionality data,
selection of relevant features and removing of redundant features, computational complex-
ity of the approach, overfitting and generalization, interability and explainability of the
selected features, and dynamic nature of the disease under investigation.

An extremely effective soft-computing dependent method for predicting human disease
was suggested by this empirical study. These algorithms have proven useful in solving
various engineering problems, but they are rarely applied to the classification of human
diseases, particularly the prediction of glaucoma. Additionally, we have proposed a new
algorithm that combines two well-known prior algorithms. Its performance is compared
to these two prior algorithms. Additionally, a new dataset consisting of a combination of
images from various benchmark image datasets is created. Additionally, this dataset is
larger than many of the benchmark datasets that are currently in use Tables 1, 2, 3, 4, 5, 6,
7,8,9,10, 11, 12, 13, 14, 15, 16, 17 and 18.

The empirical study presented in this research aims to tackle the aforementioned issues
by first identifying the optimal and most effective features required for the diagnosis of
glaucoma, a prevalent eye disease. The study concludes by demonstrating exceptional
performance and outcomes. The main contribution of this study can be summarized as
follows:

e Based on a comprehensive review of the existing literature, it is evident that there exists
significant potential for feature optimization in the context of glaucoma identification.
A proposed feature selection strategy, referred to as the BFOEPO hybrid, is introduced
by considering the advantages of both BFO and EPO. This approach has the poten-
tial to eliminate redundant and superfluous features within the feature space, thereby
enhancing the accuracy of classification and reducing computational costs. Based on
our current understanding, we are at the forefront of utilizing these algorithms for
the purpose of identifying glaucoma, thereby addressing a significant void in existing
research.

e The primary purpose of the FS strategy is to enhance the accuracy of categorization
while simultaneously minimizing the count of shortlisted features and reducing the
error rate. To achieve this, the strategy employs specified and hybrid data transforma-
tion techniques to obtain the optimal subset of attributes (features) from a combination
of various standard datasets.

e Twelve tests have been conducted as part of a series of thorough experiments. Our cus-
tomized dataset also stands out as one of the largest when compared to the most recent
state-of-the-art research shown in Table 19. Furthermore, this study presents a thor-
ough examination of various parameters in order to showcase the practicality of the
proposed method. In addition to the evaluation of confusion metrics and ROC curves,
the efficiency of six machine learning classifiers has been assessed through the compu-
tation of eight efficiency measurement parameters. These parameters serve as indica-
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Table 2 List of images utilized for performance evaluation

S No. Name of the dataset Images Selected

1. ACRIMA 396 infected cases and 309 normal cases
2. DRISHTI 16 infected cases

3. HRF 15 infected cases and 15 normal cases

4. ORIGA 168 infected cases and 482 normal cases
5. Private 631 infected cases and 1080 normal cases

tors of the classifiers’ performance in terms of efficiency. The implementation effort
of this split approach also demonstrates the temporal requirements associated with the
execution of a nature inspired-computing technique and the training and testing of a
machine learning model.

e In addition, we have also disclosed the extended results as three tables that show the
ideal values attained for eight efficiency assessment criteria. Based on the selection of
the lowest number of features for each of the three techniques, these values were pro-
duced by six machine learning classifiers. In previous state-of-the-art studies, this spe-
cific table is seldom ever seen.

e This study aims to offer researchers the most informative features, including an effec-
tive and expedient support system for ophthalmologists that can be relied upon. Addi-
tionally, it seeks to provide a software-based tool that can aid in mitigating the decline
of human eyesight by enabling early, efficient, and effective identification of ocular
infections. The tool has the capability to be modified for compatibility with mobile and
wearable medical equipment, thereby enabling its utilization in settings characterized
by a scarcity of proficient medical professionals.

The organization of this research study is enumerated as follows: The second section is
devoted to a consideration of prior relevant works. The datasets and methods are described
in Section 3, whilst the findings and analyses are described in Section 4. In Section 5, com-
parisons with current state-of-the-art investigations are presented. In Section 6, the conclu-
sion of the study is demonstrated.

2 Prior studies

The authors of study [14] use the stacking ensemble learning technique to create a deep
ensemble model. There were thirteen pre-trained models used. Multiple different settings,
comprising five classification methods and thirteen convolutional neural network (CNN)
designs, had their performance evaluated. An ensemble selection approach with two stages
was developed to find the best combinations. A technique of probability averaging was
used to merge a few combinations. The final classification was determined using an SVM
classifier. This empirical study [15] demonstrated a method for accurate retinal vessel
detection from fundus images using a generative adversarial network (GAN) with several
loss functions. The proposed GAN architecture consists of a classification network for the
discriminator and a segmentation network for the generator. The discriminator is a vision
transformer acting as a binary classifier, while the generator is a multi-scale residual CNN

@ Springer
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Table 4 Experiments settings

Size of the Population 5,10, 15, 20

No. of features 36

No. of samples 3112

Upper Bound 1

Lower Bound 0

Times of elimination 2

Times of reproduction 4

Maximum length of swim 5

Rate of Elimination 0.25

Mutation rate 0.08

Selection method Essential selection
Crossover type One-site crossover

with skip connections and upsampling. The inception module collects fine vessel segment
scales as well as multiscale vessel segment parameters. Stacking self-attention networks
and positionally completely connected feed-forward networks are used to infer two-class
output. The attention mechanism of the transformer was capable of discriminating and
preserving both global and local information. The suggested GAN model splits the blood
arteries more accurately using adversarial learning to provide cutting-edge results. A con-
trast-limited adaptive histogram equalization approach enhances the contrast of blood ves-
sels during preprocessing. In [16],the segmentation models include three different CNN
backbones: Inception-v3, visual geometry group 19 (VGG19), and residual neural network
50 (ResNet50). They are based on an attention U-Net. The three CNN architectures men-
tioned above are changed and used in the classification models as well. In [17] the idea
behind this is to provide a novel pre-processing method that uses Gaussian filtering to help
remove undesirable noise from photos. The Modified Level Set Algorithm is then used to
segment the Optic Cup. Segmentation is followed by the derivation of morphological (disc
area, cup area, and blood vessel) and non-morphological (color, shape, and modified LBP)
properties. 5 to 100 micrometers is the range of blood vessel thickness. The weights are
then adjusted using the Self Adaptive Butterfly Optimization Algorithm, and these features
are subsequently categorized using the adjusted CNN framework. In this study[18], a quick
segmentation technique for the segmentation of the optic disc and the arteries of the retina
is suggested. It is based on a novel simplified U-Net design. The redesigned and strength-
ened structure of the suggested technique would shorten prediction times while keeping
performance and accuracy on par with existing cutting-edge approaches. In [19], a deep
neurofuzzy network (DNFN)-based technique for glaucoma detection is introduced. The
retinal picture is first input for noise-removal preprocessing. Then, the DeepJoint model
and the blackhole entropy fuzzy clustering technique are used, respectively, to segment
blood vessels and identify the optic disc (OD). OD and blood vessels are then supplied to
the DNFN, which is then trained using the newly developed MultiVerse Rider Wave Opti-
mization (MVRWO). The recently created MVRWO combines the MultiVerse Optimizer,
Rider Optimization Algorithm, and Water Wave Optimization. The output is then catego-
rized using the DNFN’s loss function.

Wavelet feature extraction occurred first in study [20], followed by genetic feature opti-
mization, a few learning strategies, and several parameter settings. The segmented, blood
vessel-free optic disc used in this work is used to extract characteristics. The wavelet

@ Springer
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Table 10 FS on varying population size (PS) from 5 to 20 implemented splitting approach

Experiment 1: Performance on PS 5
NoF Nol PS FNo. FV ET
36 100 5 2,4,15,17, 29, 35,36 0.8104

5.3794
Experiment 2: Performance on PS 10
36 200 10 13 2,4,8,16, 18,21, 22,24,27, 29,31, 32,35 0.8542 24.8557
Experiment 3: Performance on PS 15
36 200 15 19 2,3,5,7,8,10, 11, 13,15, 16, 19, 20, 21, 24, 26, 29, 31, 32,33 0.8239 49.2316
Experiment 4: Performance on PS 20

36 400 20 28 1,2,3,4,5,6,8,9,13,14,15,16,17, 18,19, 20, 21, 22, 24, 0.752  68.059
25,26, 27, 28,29, 32, 34, 35, 36

properties of the segmented optic disc picture are clinically more relevant in the diagnosis
of glaucoma from a fundus image than features of the entire or sub fundus image, accord-
ing to the experimental findings provided in this work. The suggested method uses the
image denoising of digital fundus images to reduce the statistics of the wavelet coefficients
of glaucoma photos using a non-Gaussian bivariate probability distribution function. The
well-known feature selection procedure was used after the usual visual characteristics were
eliminated. The least square support vector machine classifier, which uses a variety of ker-
nel functions, is then given the chosen attributes. This study [21] makes use of the optic
disc (OD) and the non-parametric GIST descriptor. Following ground-breaking area-based
optic disc segmentation, the radon transformation (RT) is recommended in the methodol-
ogy. A modified census transformation (MCT) is used to account for differences in the
light levels of the radon-converted picture. Using the GIST descriptor, the spatial envelope
energy spectrum is then extracted from the MCT pictures. Locality-sensitive discriminant
analysis (LSDA) is used to minimize the generated GIST descriptor dimension before uti-
lizing a variety of feature selection and ranking methods. Practitioners provided a unique
technique for an automated glaucoma diagnosis using digital fundus pictures in [22]. The
iterative Variational Mode Decomposition (VMD) approach was used for picture decom-
position. A few of the characteristics that may be derived from VMD components are frac-
tal dimensions, Yager entropy, Renyi entropy, and Kapoor entropy. Following the selection
of the discriminating features using the ReliefF approach, the least squares support vector
machine (SVM) classifies the data using these features. To automatically identify between
normal and glaucoma classes, the approach suggested in the study uses data from higher-
order spectra (HOS), trace transforms (TT), and discrete wavelet transforms (DWT) [23].
The SVM classifier performed a exemplary perfromance of differentiating between glau-
coma and healthy pictures thanks to its polynomial-order-2 kernel function.

505 fundus photographs were entirely disassembled using quasi-bivariate variational
mode decomposition (QB-VMD) [24], resulting in band-limited sub-band images (SBIs)
that are tuned to a certain frequency. There are no faults or mode-mixing issues with
these SBIs. Using QB-VMD SBIs, 70 features were retrieved. The ReliefF technique is
used to choose the retrieved features. The dimension of the selected characteristics is then
decreased by feeding them via singular value decomposition. Once the attributes have been
decreased, the least square SVM classifier is used to classify them. Glaucoma is recog-
nized using anisotropic dual-tree complex wavelet transform features and a time-invariant
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Table 14 FSonPS 5, 10, 15 and 20 for splitting approach

Experiment 1: Performance on PS 5

NoF Nol PS FSel FNo. FV ET

36 400 5 8 1,8,13, 14, 15, 19, 21,28 0.8186 2.2669
Experiment 2: Performance on PS 10

36 400 10 16 1,2,3,4,5,13,14, 20,21, 23, 25, 26, 27, 31, 32, 34 0.8807 6.4523

Experiment 3: Performance on PS 15

36 300 15 20 1,4,9,11, 13,14, 15, 18, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31,  0.7683 10.6695
32,36

Experiment 4: Performance on PS 20

36 400 20 23 1,2,3,4,5,7,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23,  0.8346 16.0964
24,28, 33,35

cup-to-disc (CDR) ratio [25]. Fuzzy C-Means clustering was used to segment the optic
disc, while Otsu’s thresholding was employed to segment the optic cup. Fundus pictures
were used in this study’s Cup to Disc Ratio (CDR) measurement in order to identify glau-
coma [26]. Using Au-Net, the borders of OD and optic cup (OC) were segmented through-
out the feature extraction process. The glaucomatous images were then reduced using a
random forest classifier based on the CDR values. Deformable, full-deformable, and origi-
nal U-Nets have all been used to test the success of the suggested course of action. The
extraction of GIST and pyramid histogram of oriented gradients (PHOG) features from
preprocessed fundus pictures was the main emphasis of this paper [27]. Principal com-
ponent analysis (PCA) was used to filter and pick the most important attributes from the
obtained features, which were then sent to an SVM classifier for classification.

This research, [28], provides a mathematical technique combined with region-based
deep convolutional neural networks to provide a reliable and effective optic disk detection
and fovea localization method. There are two phases to the suggested model: Using Faster
R-CNN, the authors initially created a number of optic disk region proposals before iden-
tifying the optic disk by utilizing the boundary box with the greatest score. Using a math-
ematical model and the coordinates of the anticipated optic disk region, they determined
the localization of the fovea in the second stage. The cuckoo search algorithm and struc-
tural similarity index measure are used to localize the optic disk in retinal images in this
paper [29]. Average optic disk is compared to candidate optic disk by SSIM. Randomly
selected images were used to calculate average optic disk values. The algorithm used aver-
age optic disk values and colored retina fundus images. To match brightness and contrast
across images, adaptive histogram equalization was used. Next, the search algorithm calcu-
lated candidate optic disk centers and calculated their similarity to the average optic disk.
The search algorithm found the true optic disk center by maximizing computed similarity.

Weakly-Supervised Concealed Object Segmentation (WSCOS) trains models with
sparsely annotated data to separate objects well integrated into their contexts [30]. Intrin-
sic similarity makes it hard to distinguish hidden items from the background, and sparsely
labelled training data provide insufficient supervision for model learning. Authors address
these two issues with a new WSCOS approach in the work. A multi-scale feature group-
ing module aggregates results from multiple granularities to solve the intrinsic similarity
problem. Grouping related features improves segmentation coherence, resulting in com-
plete single- and multi-object segmentation. They build segmentation masks for model

@ Springer
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training using the recently proposed vision foundation model, Segment Anything Model
(SAM), and sparse annotations for the weak supervision challenge. Multi-augmentation
result ensemble, entropy-based pixel-level weighting, and image-level selection can reduce
low-quality segmentation masks. They enhance segmentation model training supervision.
Authors find our method works well on several WSCOS jobs. Camouflaged object detec-
tion (COD) works to identify items visually blended into their surroundings. Camouflaged
objects’ background resemblance and unclear borders make COD difficult [31]. There are
several ways to mimic the human visual system. Although disguised objects deceive the
vision system, these strategies work in many situations. Researchers propose the COD
FEature Decomposition and Edge Reconstruction (FEDER) model. The FEDER model
addresses foreground-background similarities by decomposing features into frequency
bands using learnable wavelets. Small foreground-background hints from the most inform-
ative bands are mined. Create frequency attention and guidance-based feature aggregation
modules. The recommend learning COD and an auxiliary edge reconstruction task to solve
the ambiguous boundary problem. Authors ODE-based edge reconstruction tool creates
accurate edges. By learning the auxiliary task with the COD task, the FEDER model can
create accurate object boundary prediction maps.

Unpaired medical image enhancement (UMIE) improves LQ medical images to HQ
without paired images [32]. Most effective systems use Pix2Pix/Cycle GAN, but they don’t
explicitly use HQ information to drive the augmentation process, which may cause arte-
facts and structural distortions. This research proposes a novel UMIE method that directly
encodes HQ cues into the LQ enhancement process in a variational form to simulate the
UMIE problem under the combined distribution of the LQ and HQ domains, avoiding the
limitations of existing methods. To guide LQ enhancement with the variational normaliza-
tion module, we explicitly integrate HQ picture characteristics into the enhancement net-
work. Their purpose is to encode HQ cues. To ensure HQ image, we train the enhancement
network adversarially with a discriminator. Authors proposed content-aware loss, wavelet-
based pixel-level, and multiencoder-based feature-level constraints for enhancement. A bi-
level learning scheme to optimize the UMIE task and downstream tasks cooperatively to
generate visually appealing and suitable HQ images is proposed to improve downstream
tasks. Three medical datasets demonstrate that the suggested strategy improves quality
and job performance better than existing methods. Camouflaged object detectors (COD)
involve spotting camouflaged items in the environment. In difficult situations, COD detec-
tors still give inaccurate readings despite their popularity [33]. Researchers designed algo-
rithms for both sides based on the prey-vs-predator game, which improves prey camouflage
and predator vision. Camouflageator, an adversarial prey training framework, generates
more camouflaged items that COD methods cannot detect using an auxiliary generator.
Adversarial camouflageators teach the generator and detector, strengthening the detector
with a stronger auxiliary generator. A predator-side COD approach called Internal Coher-
ence and Edge Guidance (ICEG) extracts camouflaged objects’ internal coherence using
a disguised feature coherence module for better segmentation. ICEG suggests an edge-
guided segregated calibration module to avoid inaccurate predictions and unclear bounds.
ICEG outperforms conventional COD detectors in numerous trials, and Camouflageator
can improve any COD detector to state-of-the-art performance.

The Grey Wolf Optimizer (GWO) and Whale Optimization Algorithm (WOA) are used
in this empirical study to create a novel and effective methodology [34]. As novel, inno-
vative scientific contribution, authors created the hybrid version (h\GWWO) of these two
approaches. The baseline algorithms above have been used for feature selection across
domains. These three algorithms are being used for the first time to identify glaucoma,
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especially on the public benchmark dataset ORIGA. Classifying fundus retinal images
under investigation uses nature-inspired computing strategies for feature selection and
ML models for classification. The ORIGA dataset yielded 65 features. Three soft-comput-
ing-based feature selection methods select the most influential features from the dataset.
Machine Learning classifiers are trained on this data and evaluated 70:30. Ophthalmolo-
gists can use the deep learning system to diagnose glaucoma fundus lesions like retinal
nerve fiber layer defects, optic nerve head damage, and optic disc hemorrhage [35]. Early
detection of these lesions can prevent structural damage, visual function loss, and visual
field damage. Deep convolutional neural networks, developed from deep learning, are inte-
grating artificial intelligence with testing devices like visual field meters, fundus imaging,
and optical coherence to accelerate clinical glaucoma diagnosis and prediction. Some of
the advances in glaucoma diagnosis and prediction using artificial intelligence, visual field,
fundus photography, and optical coherence tomography are familiar—some are not. Then
authors discuss current challenges and future clinical applications.

Temporal data carpentry and machine learning and logistic regression methods were
used to create a predictive analytic framework for early glaucoma prediction using EHR
from over 650 US hospitals and clinics [36]. The entire dataset was predictively analyzed
using four machine-learning classification methods. Five-fold cross-validation trained and
refined models to calculate accuracy, sensitivity, specificity, and fl1 score. Compared to
logistic regression (LR) at 0.73, XGBoost, MLP, and RF performed similarly well in pre-
dicting glaucoma one year before its onset with AUC scores of 0.81 and 0.73, respectively.
Machine learning (ML) model performance improvement depends on FS, which selects
the most influential subset of features. Researchers recommended metaheuristic-based
FS using the Gravitational search optimization algorithm (GSOA) [7]. Optic nerve fibers
can degrade and cannot be replaced in this disease. Starting with retinal fundus images of
glaucoma patients and healthy people, 36 features were retrieved from public benchmark
datasets and private datasets. The approach used the GSOA’s returned subset of features
to train six ML models for classification. Selecting key features improves classification
performance with the suggested FS method. The eight statistical performance parameters
and execution time are calculated. The training and testing used a split approach (70:30),
5-fold CV, and 10-fold CV. The suggested method was 95.36% accurate in classification
task. This study uses fewer structural and nonstructural features to characterize retinal fun-
dus images[37]. Authors extracted the grey level co-occurrence matrix (GLCM), grey level
run length matrix (GLRM), first order statistical matrix (FOS), wavelet, and structural fea-
tures like DDLS and CDR. The set of features was sent to three classical nature inspired
algorithms (Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Binary
Cuckoo Search (BCS)) and their two-layered model (PSO-ABC) to generate a subset of
reduced features (feature selection phase) that computes auspicious accuracy when sent to
three ML classifiers. Researchers believe these four soft computing algorithms are rarely
used in this application. Subject datasets ORIGA, REFUGE, and their combinations are
used to evaluate suggested strategy. Calculations include accuracy, specificity, precision,
and sensitivity. The BCS performs well with 91% to 98.46% accuracy. With minor accu-
racy loss, PSO-ABC greatly reduces the feature set.

It has proven possible to sort super-pixels for glaucoma screening utilizing histograms
and center-surround data (Cheng et al [38]). Kolar and Jan [39] integrated an SVM with
power spectral features and fractal dimensions (FDs). Singh et al. [40] employed vari-
ous deep learning models for performance evaluation investigation on different glaucoma
benchmark datasets. Higher-order spectra and complex wavelet transform were used by
Raja and Gangatharan [41]. Along with entropy and energy maps, they used wavelet packet
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decomposition (WPD) as a characteristic. Kirar and Agrawal have suggested the DWT and
histogram functions for this infection identification [42]. Kirar and Agrawal [43] recom-
mended the use of 2D-DWT to distinguish between images showing glaucoma and images
of unaffected eyes, and histogram-based characteristics were used to carry out the clas-
sification. Yadav et al. used glaucoma fundus images for texture-based feature extraction
and categorization [44]. Empirical wavelet transform (EWT) was employed by Mahesh-
wari et al. [45] to disassemble fundus images. In the recently released study on glaucoma
diagnosis utilizing fundus images [46, 47], it has been shown that the least square-SVM
was helpful for using on fundus pictures in two categories.

A comparative table (Table 1) is shown below, in which we have discussed 25 state-of-
the-art studies published on glaucoma identification through feature extraction, followed by
feature selection, and then finally image classification.

Most of the research discussed in Table 1 has primarily concentrated on feature selec-
tion using a variety of techniques, which is necessary for the disease’s confirmation. While
some authors [48, 50, 51] have concentrated on the HOS features, other have focused on
features like wavelet features [20, 49, 55, 58, 60, 68], textural [48], geostatistical [57], sta-
tistical [59], HOG [63], GLCM [63, 66], wavelet [55], and Gabor filters [52, 55]. Some
researchers have shifted their focus to extracting structural features from subject retinal
fundus images [53-56, 62, 67, 69]. Principal component analysis (PCA), linear discrimi-
nant analysis (LDA), independent component analysis (ICA), singular value decomposi-
tion, T-test, Bhattacharyya distance method, entropy ranking method, gain ratio, co-rela-
tion, relief feature ranking, neighborhood component analysis, sequential floating forward
selection method, and Wilcoxon rank-sum test method are some of the approaches used for
subset construction of the most informative features after feature extraction. Additionally,
it was observed that fewer studies—some of which used genetic algorithms and particle
swarm intelligence—have been published that use nature-inspired computing techniques
for feature selection. In order to introduce a novel and effective feature selection approach,
the current study has innovated by utilizing two recently developed nature-inspired com-
puting algorithms along with their hybridized versions. The most demanding classifiers
identified from above table for classification were SVM and its variants (such as TWIN
SVM and Least Squares SVM). Neural networks, multi-layer perceptrons, KNNs, and RF
have been used by others. Nonetheless, seven machine learning classifiers are used in this
empirical study to identify the nine statistical performance measuring metrics that plays the
key role. These earlier studies used benchmark datasets that differ significantly from one
another. The studies listed in Table 1 each work separately on these datasets, but the cur-
rent study looks into how these datasets are combined to create one of the largest datasets.

After a thorough examination of this table, which contains 25 cutting-edge studies,
we have determined that researchers are continuously and assiduously pursuing novel
approaches for the early and prompt screening of this disease. In each of these investiga-
tions, multiple image processing-based features are extracted from the fundus. However,
in the majority of these studies, as indicated above, the feature extraction is limited to one,
or two classes of features, however our work is more improved to almost all in this term
because we have extracted more than two classes of features.

In our case, the extracted features are then cut down to make a subset of them that works
very well and can be highly trusted. This operation is carried out in virtually all research,
utilizing various mathematical or statistical methods. Only one or two studies have used
nature inspired computing-based classical methodologies such as genetic algorithms (GA)
or particle swarm optimization (PSO) for feature selection; this is one of the most sig-
nificant research gaps we have uncovered. GA and PSO are classically old algorithms with
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their own problems, which is why academics are developing novel nature inspired comput-
ing algorithms, such as BFO and EPO. This motivated us to select these feature-picking
methods. In addition, we’ve applied a third algorithm that is a hybrid combination of these
two, which we’ve proposed. On the basis of this table and our review of the relevant lit-
erature, we can confidently assert that we are the ahead in applying three nature inspired-
computing-based methods for efficient and robust feature selection for early, efficient and
timely glaucoma identification. The suggested technique’s performance is evaluated using
commonly recognized benchmark fundus images. The methodology presented in this study
is utilized to determine the most suitable combination of attributes, with the primary aim
of improving the accuracy of classification while simultaneously minimizing the selection
of features and error rate. The utilization of both well-defined and hybrid data transforma-
tion algorithms leads to the production of the most optimal subset of features from a range
of benchmark datasets.

2.1 Research gap identification and Justification of the proposed approach

Data mining is a potent new method for extracting data warehouse secrets. Data mining
analyses enormous amounts of raw data to identify patterns and knowledge. Data min-
ing approaches like clustering and classification are useful in banking, supply chain man-
agement, insurance, vehicular ad hoc networks, and wireless sensor networks. Medical
researchers have used data mining to investigate genetic and environmental disease agents
and improve diagnostic tools for many patients. Researchers gain insight into the environ-
mental and genetic causes of diseases and develop more effective diagnostic procedures
by mining vast datasets of patients. Data storage has expanded due to the rapid growth of
the internet, IoT, and RFID. Given the expanding amount of data processed by applica-
tion systems integrated inside devices that are internet-accessible, saving the data is essen-
tial. Clearing and extracting appropriate information and feature selection approaches are
becoming more critical. Feature selection decreases running time by eliminating unneces-
sary and redundant information, boosting classification accuracy, and simplifying learnt
classifiers or models. With several features, feature selection is difficult. Complex categori-
zation problems involve several features. Thus, the classifier classifies observations across
time.

Medical research and diagnostics depend on finding effective illness detection features.
Despite advances in machine learning and medical imaging, research gaps remain. Gaps
include:

Feature Selection and Extraction: Finding the best medical data features for disease
detection is difficult. More advanced algorithms are needed to extract discriminative
characteristics from complicated and diverse datasets, notably in medical imaging like
MRI, CT, and histopathology images.

Interpretability of traits: Machine learning models may discover traits as important
for disease detection, but interpreting their biological or clinical relevance is difficult.
To close this gap, models must accurately forecast diseases and explain selected traits in
a clinically interpretable manner.

Medical datasets often have small sample sizes for rare diseases or uneven distributions
across disease classes. This hinders accurate and generalizable model training. We need
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methods to handle short sample numbers and class imbalances while preserving model
performance.

Features are selected to minimize dataset dimensionality, enhance classification accu-
racy, and prevent overfitting to increase wireless sensor network efficiency and energy con-
sumption and lengthen network lifetime. The main challenge in feature selection difficul-
ties is discarding some of the pre-processed data without affecting quality. Many methods
have been developed for feature selection. These algorithms had a hefty computing cost
when they were introduced 30 years ago. This challenge was solved by fast computers and
large storage resources, but creating a fast solution to deliver this function is still relevant
due to new challenges’ enormous data sets. Compressive sensing technology has been pre-
sented by many academics to eliminate data redundancy and limit the number of nodes in
wireless sensor networks to save energy consumption. The above method samples fewer
points than needed for signal capture and reconstruction with high probability. New and
efficient optimization methods include evolutionary game theory, graph theory, and heu-
ristics. Optimization methods can be divided into exact and approximate algorithms. Exact
algorithms can optimize exactly but are inefficient in robust optimization and take expo-
nentially longer to solve. Close to optimization, approximate techniques can solve robust
optimization issues quickly. Heuristic and metaheuristic approximate algorithms exist.
Q-learning algorithm identifies limited search space and produces high-quality results in
reasonable computation times. They are employed in many commercial packages because
they can easily face real-world limits. Evolutionary algorithms help solve mobile ad hoc
networks, quantitative association rules, and traveling salesman problems. A feature selec-
tion procedure begins with an exhaustive search through the subset of features to find the
best feature among the primary probable subclasses based on a given assessment criterion.
If the feature set has n features, the best subset must be selected using optimum feature
selection. Since evolutionary computation approaches provide global search, they are used
as a strong solution and alternative to standard searching methods to handle these chal-
lenges. Particle swarm optimization, genetic algorithms, genetic programming, and ant
colony optimization are popular feature selection methods. Heuristic models use diverse
tactics to find the tradeoff between exploration and exploitation. Exploration helps uncover
clear search spaces, whereas exploitation helps maintain better solutions by examining the
local search space. Some meta-heuristic search methods use exploration, while others use
exploitation for superior results. Using hybrid approaches can improve search algorithm
performance. The yield of each approach increases when hybridization combines positive
qualities of at least two procedures. This study uses BFO and EPO, two novel and effective
meta-heuristics, to construct a hybrid strategy to improve general categorization tasks. This
research presented a hybrid feature selection approach using filter and wrapper methods.
This model aims to simplify moderate-dimensional feature selection computations.

Wrapper techniques are computationally complex since they select a feature subset and
run the classifier on it each iteration, then compute classification accuracy from the confu-
sion matrix. Integration of the filter and wrapper methodologies uses the speed and power
of filter and wrapper techniques to identify relevant dataset features. A combination of
classification techniques, BFO algorithm, EPO algorithm, and their hybrid was utilized to
extract dataset features. Integrating these two algorithms’ balances exploration and exploi-
tation to develop an algorithm without the previous flaw by exploiting their strengths—
high convergence speed and exploration ability. Only features with a selection prob-
ability matching the final subset are expected to align with classification, and the feature
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selection procedure is only applied to these. According to several writers, prediction meth-
ods are effective for achieving good results. So, the algorithm’s computational complexity
is reduced and a subset with fewer features is chosen. The suggested approach acceler-
ates feature selection for high-dimensional datasets, improves classification accuracy, and
reduces feature selection. By comparing this approach on our unique mid-dimension data-
set, this research shows its success. Therefore, the current study goal is to address the ques-
tion. Will combining the BFO and EPO algorithms in the proposed approach’s evaluation
function pick influential characteristics and improve classification accuracy also.

3 Materials and methods

This section gives important information on the three-nature inspired computing-based FS
techniques that were employed and focuses on the datasets that were chosen for this experi-
mental study.

3.1 Dataset

The dataset utilized in this study comprises a fusion of images sourced from five widely rec-
ognized benchmark public datasets, alongside a proprietary dataset procured from hospitals
situated in close proximity. The analysis involved a dataset consisting of 3112 images, of which
1226 were categorized as glaucomatic and 1886 were categorized as healthy. A diverse range
of sources, including ACRIMA, DRISHTI, HRF, ORIGA, and a privately-owned dataset, were
utilized to obtain a comprehensive collection of 3112 images. The ACRIMA dataset comprised
396 images depicting glaucomatous eyes and 309 images representing healthy eyes. Further-
more, the DRISHTI dataset made a valuable contribution by providing a total of 16 images
depicting eyes affected by glaucoma. The Human Retinal Fundus (HRF) dataset consisted of
a collection of 30 images. Among these images, 15 of them portrayed glaucomatous condi-
tions while the remaining 15 images depicted healthy conditions. In contrast, ORIGA made a
substantial contribution by providing a more extensive dataset comprising 650 images. Among
these, 168 images exhibited glaucomatous conditions, while the remaining 482 images por-
trayed healthy conditions. Furthermore, the private dataset consisted of a total of 631 images
illustrating glaucomatous conditions and 1080 images depicting healthy conditions (Table 2).
The images in the ACRIMA database are from the ACRIMA project (TIN2013-
46751-R), which was started by Spain’s Ministerio de Economia y Competitividad with
the goal of creating automatic algorithms for the evaluation of retinal diseases. There are
705 fundus images in the ACRIMA database (396 glaucomatous and 309 normal images).
They were taken from glaucomatous and normal patients with their prior agreement and in
compliance with the ethical guidelines outlined in the 1964 Declaration of Helsinki as part
of the ACRIMA research. Experts chose each patient based on their criteria and the clinical
results of the test. The majority of the fundus photos in this collection came from the right
and left eyes, which had previously been dilated and positioned in the optic disc. A few of
them were eliminated due to noise, artifacts, and inadequate contrast. The IMAGEnet®
capture system and the Topcon TRC retinal camera were used to record them. Photographs
were captured using a 35° field of view. Two eight-year-old glaucoma specialists annotated

@ Springer



77914 Multimedia Tools and Applications (2024) 83:77873-77944

every picture from the ACRIMA database. When assigning labels to the photos, no addi-
tional clinical data was used. The ACRIMA database’s initial iteration was limited to cat-
egorization tasks.

With a FOV of 30 degrees, the Drishti collection consists of many retinal fundus
images. The photos have a resolution of 2896 x 1944 pixels and are saved as uncompressed
PNG files. The Aravind Eye Hospital in India provided the images used in this collection.
The age range of the chosen glaucoma patients was 40-80 years old. Patients who do not
have a glaucoma diagnosis were chosen to represent the normal class. The four experts
annotated each of these photographs. Three of the four ophthalmologists’ opinions were
sought before the standard was issued.

There are currently 15 pictures of healthy patients, 15 pictures of patients with diabetic
retinopathy, and 15 pictures of patients with glaucoma in the public database HRF. Each
subgroup includes one image of a healthy fundus, one of a patient with diabetic retinopa-
thy, and one image showing glaucoma. The sizes of the images are 3,304 x 2,336 with
a 22/23 split between training and testing images. For every image, binary gold standard
vessel segmentation images are supplied. Additionally, for specific datasets, the masks
determining the field of view (FOV) are provided. A team of specialists in the field of
retinal image analysis and physicians from the affiliated ophthalmology clinics create the
gold standard data. In order to assist with the evaluation of algorithms that localize the
macula, optic disc, or distinguish between arteries and veins, researchers plan to add more
gold standard data to the current images. A cooperative research team created this database
to facilitate comparative analyses of automatic segmentation techniques on retinal fundus
pictures. Research can be conducted using the database at no cost. Under a Creative Com-
mons 4.0 Attribution License, researchers make it available.

650 photographs from the Singapore Malay Eye Study (SiMES) are part of the Online
Retinal Fundus Image Dataset for Glaucoma Analysis and Research (ORIGA) database.
The Singapore Eye Research Institute (SERI) is the organization behind SiMES. Experts
annotated the photographs. The purpose of this dataset is to supply benchmark segmenta-
tion and classification algorithms with clinical ground truth. It generates manual segmenta-
tion for the optic disk and optic cup using a specially designed tool. In addition, it classifies
each image as either healthy or glaucomatous and offers the cup-to-disk ratio. This dataset
has been a standard in some of the most recent cutting-edge studies for the categorization
of glaucoma.

The private dataset composed of retinal fundus images of 631 infected cases and 1080
normal cases. These images have been collected from various private hospitals, after con-
sulting the ophthalmologists working there, located in the township of authors.

The given below Eqgs. 1-17 is a short mathematical representation of the features that
were retrieved

1. CDR (Cup Disc Ratio) —The eye is considered normal. The formula to calculate CDR
is:
Dia_of_Cup

Cup_Disc_Ratio = — -
Dia_of_Disc

(D

2. GLCM (Grey Level Co-occurrence Matrix) —Grey level Co-occurrence Matrix S(o, ?):
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Sm+n(k) = Zoil Z S(O, [) (4)
t=1
Ay = = X, X, S(0.0)l0g{S,,(0)S, (1)} 5)
A = =2 Y, S(0,01081S,,(0)S,(Dl0g{5,,(0)S, (1)} 6)

3. SRE (Short Run Emphasis)-

N ¢

Z % p(l,m,0)

mm ™ @)
p(0)

Here p(l,m), (I, m)™ element define the number of run with grey level [ and length m in
the image.

SRE =

5S¢ Pr
Y X pd,m,0).m*

LRE(Long Run Emphasis) — LRE = == @ ®
Pr
4. GLU (Grey Level Uniformity)—
2i.j) = 255 - 8(:) = &min ©)

max — &min

where g, and g .. correspond to the maximum and minimum gray levels respectively
and the whole range of gray levels is 255-0.

5. DDLS (Disc Damage Likelihood Scale)-
Rim_of_Width

Disc_Dam_Like Scale = —————————
Diameter_of_Disc

(10)

6. Bicoherence-
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Ey [M(WI)M(WZ)M* (wl + wz)]

e o =

c(wl,wz) =

= ’X(Wl , Wz) )ejqb(X(w] 2))

|X (Wi, wy) ‘ is a magnitude feature and e /#(X(*12)) is a phase feature. "
7. Energy-
energy = zk: 2p(l,]) (12)
i=1 j=1
8. Homogenity —
N, N, .
homop = ;;% (13)
9. Correlation-
correlation = ;Mgo tixj} Xp((;]: o-y{”x X ”y} (14)
10. Contrast-
contr = Z Z NIy (15)

i=1 j=1
11. Dissimilarity (dissi)-

dissi = Z Z li = jlpGi.j) (16)

i=1 j=I

12.  Entropy-

G-1G-1
ENTROPY = - 3 3" P(i, ) X 1og(P(i, )) an
i=0 j=0

A comprehensive collection of 36 features has been derived from the images pro-
vided. The list of features can be located in Table 3. Figure 2 explicates the diagram-
matic view of proposed prediction system for detection and classification of glaucoma.
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LO RlG/IHD/;RBI;\\CACRIMA PRIVATE
| AN

Customized Dataset of 3112 images

[ Preprocessing

‘ 36 Features Extracted }

\ 4
CRNCEN

Features Selection Using Soft-Computing Approaches

Training and Testing using Splitting Technique (70:30)

KNN Decision Tree SVM Random Forest Ensemble

Logistic
Regression
I A V)

Machine Learning Classifiers

\ 4

Sensitivity]Speciﬁcityl Precision IH-Score Accuracy Kappa { McC I AUC
2 4

i p

)

Performance Measuring Matrices

L 4

‘ Final Decision by Expert by Opthalmologist ’

Fig 2 Diagrammatic view of the proposed work for glaucoma recognition

3.2 Feature selection algorithms

This research study has selected three nature inspired algorithms, namely EPO, BFO,
and their hybrid variant, for inclusion (Fig. 3). Kindly locate the precise particulars of
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Initialize Bacteria Swarm

\ 4

¥

Evaluate Fitness

A

Y

Initialize Chemotaxis

NO

End Ch i
YES

Reproduction

End Reproduction

Elimination Dispersion

NO

Y

Start

<«

Generate the initial emperor penguins
population

«—

‘ Choose the initial parameters ’

<—

Calculate the fitness of each search agent

End Elimi

YES

Optimize Values

Flowchart of BFO algorithm

Fig. 3 Flowchart of BFO and EPO algorithm

»,

Determine the huddle boundary

A7

Calculate the temperature profile

v

Calculate the distance between emperor
penguins

v

Update the position of each search agent if
there is a better solution than previous
optimal solution

v

calculate the fitness value of update search
agents

7

-

Checking the stopping criteria >

!

Return the best optimal solution

Flowchart of EPO algorithm

the algorithms presented hereafter. The parameters and related values that were assigned
throughout the execution of the three algorithms are shown in Table 3.

Table 4 displays the parameters and the associated values used in the algorithms.
Equation (18) describes the objective function (Rastrigin Function) for each optimiza-

tion process.

fx) = Z:’zl [xi* = 10 cos(2zxi) + 10] (18)
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The hybrid BFOAEPO algorithm's pseudocode is shown below:
Step 01: Load the dataset for experimentation
Step 02: Initialize the BFOA parameters.
Step 03 : Produce a Sample Size for further study X(i=1,2,...,PopSize)(by BFOA)
Step 04: For t=1 to Max_iters
Step 05: The loops of elimination and dispersion
Step 06: Loop of reproduction
Step 07: Perform the computation on the fitness function.
Step 08: Eliminate unpromising bacteria(s).
Step 09: Update population (by EPO)
Step 10: Set the initial EPO parameters.
Step 11: Perform the computation on the fitness function.
Step 12: if (better solution is obtained) then update the current best
End if.
Update y=y+1
End For
Step 13: Return the optimal solution.

Three algorithms BFO, EPO and their hybrid are shortlisted for this study, whose details
are given below. The Table 4, shown above, depicts the various parameters and their values
assigned during the implementation of these three algorithms.

Novel nature-inspired optimization algorithms include the Bacteria Foraging Optimization
Algorithm (BFO) [70, 71]. Tensile flagella propel the real bacteria during foraging. Flagella
help E.coli forage by falling or swimming. Each flagellum pulls on the cell while spinning
clockwise. Thus, the flagella move independently and the bacteria tumbles less, but in a dan-
gerous environment, it tumbles often to find a nutritional gradient. Bacteria move swiftly by
rotating flagella counterclockwise. Bacteria use chemotaxis to migrate toward a food gradient
and avoid unpleasant conditions in the algorithm above. In friendly environments, pathogens
spread. When they have enough food, they expand and break in the middle to make an identi-
cal clone at the right temperature. Passino added a replication event to BFO algorithm because
to this. Chemotactic development may be disturbed by environmental changes or an attack,
and a group of bacteria may travel or join the swarm. An elimination-dispersal event in a real
bacterial community kills all germs or disperses a subpopulation into a different location [70,
71]. BFO algorithms parameters are displayed in Table 5.

The mathematical equations used in the algorithms are as follows

L A())
) = ——— (19)
VAW AG)
N((k+1,1,m) = N(k, I, m) + AG)u() (20)

o

2
i h j
BCC(N, N(k, [, m)) = Z [_rattractexpl <xattract Zs <Nd - Nij) )]

J=1

0 i 2 @2n
+ Zl _]’llrepellamexp1 (xrepellant 25 (Nd - N]d) >]
j=
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F(j,k,1) = F(j,k,m, 1) + Bcc(R, N (k,1,m)) (22)

0
0 =7 (23)
The emperor penguin is one of the largest, with male and female being similar in size.
Emperor penguins have black backs, white bellies, golden ear patches, and grayish-yel-
low breasts. The emperor penguin’s wings are a fin when swimming. Emperor penguins
walk like people. The Antarctic winter can reach - 60 °C, but they live their entire lives
there and are known for reproducing. Their distinctive feathers and body fat shield them
from cold winds, but in extreme cold, they must congregate. During mating season, each
female penguin lays one egg, which a male take. After egg transfer, females will seek
up to 80 kilometers at sea. The eggs survive because male penguins keep them warm in
their brood pouches. When a female emperor penguin returns to the nest after two months
in the ocean, she vomits food for the babies to eat and care for. Emperor penguins are
great swimmers and divers. The pair often hunt and forage. Only these creatures survive
Antarctic winter by huddling. A mathematical model was created by dividing emperor
penguin huddling into four stages. Emperor penguins randomly construct huddle bounda-
ries. Second, they calculate their surroundings’ temperature. Third, the method simpli-
fies emperor penguin exploration and exploitation by computing penguin distances. Th
approach decide the effective mover is best and recalculate the huddle’s boundaries by
rearranging the emperor penguins. Discovering the best mover is the goal of this math-
ematical approach. Huddles are on 2D polygonal L-shaped surfaces. The EPO algorithm
was devised to combat this huddling [72].

The steps of EPO algorithms are as follows

Step 01: Generate the Emperor Penguins Population

Step 02:Set Initial Parameters such as Maximum Iterations, Temprature, A,C
Step 03: Calculate the fitness values for all search agent

Step 04:Determine the Huddle Boundary for Emperor Penguins Using:

R=Vp (24)
w=p+i (25)
Step 05:Calculate temperature profile (7emp "' ) around the Huddle using:
VA (26)
Temp' < | Temp ———2—
l// - Ziter
0 , if Rx>1 (27)
Temp = ;
1, if Rx<l
Step 06: Compute the distance between the emperor penguins using:
Dis,, = Abs (51(2).131(;5) —cl.Pl, (xl)) (28)
Step 07:Update the position of Emperor Penguins
P1,,(x1+1) = PI(x)—0.Dise (29)

Step 08: If any emperor penguin goes beyond the Huddle Boundary improve its position.

Step 09:Calculate the fitness values for each search agent and update new optimal solution position
Step 10:If Stopping Criteria met STOP else Goto Step 28

Step 11:Return Best Emperor Penguins/Optimal Solutions
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The mathematical equations applied in the algorithm are as follows Let y defines the wind
velocity and S be the gradient of y.

S =Ay (24)

Vector R is combined with y to generate the complex potential al

AF =y +jR (25)
where j denotes the imaginary constant and AF is an analytical function on the polygon
plane.

The temperature profile around the huddle A’ is computed as follows:

A/ — <A _ MaXimumiteration ) (26)

y= MaXImumiteration

0, if Radius > 1
A= 27

1, if Radius < 1

Here y define the current iteration, Maximumy, ., represents the maximum number of
iteration. A is the time for finding best optimal solution in a search space.

Dis,, = Abs(k<ﬂ).l‘@ - Hm) 28)

where Dis,,, shows the distance between the emperor penguin and best fittest search agent.
y shows the current iteration. A1 and c1 are used to avoid the collision between neighbors.

k() defines the social forces of emperor penguins.

Al = (Mov X (A' + Poly_grid(Acc)) X Random()) A (29)
Poly_grid(Acc) = Abs(1-T,,,) (30)

Poly_grid(Acc) defines the polygon grid accuracy by comparing difference between
emperor penguins and random function Random().

¢1 = Random() @31

K(AT) = (Ve - e-x)2 (32)

where e defines the expression function. f and [ are control parameters for better
exploration.
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The hybridization of Bacterial Foraging Optimization (BFO) and Emperor Penguin Optimization (EPO) for
feature selection in medical image processing is as follows.

1. Initialization:

o Initialize populations for both BFO and EPO with random solutions. These solutions represent
different subsets of features.

2. Bacterial Foraging Optimization (BFO) Phase:

o Evaluate the fitness of each bacterium in the BFO population using a fitness function based on
the selected features.

o For each bacterium, perform reproduction steps:

= Select a random bacterium from the population.
= If'the fitness of the selected bacterium is better than the current one, update the
current bacterium's position to move towards the better solution.
3. Emperor Penguin Optimization (EPO) Phase:

o Evaluate the fitness of each couple in the EPO population. Couples represent different subsets
of features.

o For each couple, perform a mating process involving swapping features.

=  Evaluate the fitness of the new couple after the swaps.
= Ifthe fitness of the new couple is better than the original, update the couple in the
population.
4. Discharge Mechanism (EPO):

o Evaluate the fitness of each penguin in the EPO population.

o Sort the EPO population based on fitness.

o For penguins in the worst-performing part of the population, apply a discharge mechanism to
update their features. This mechanism might involve random changes or other strategies to
explore new solutions.

5. Combining Solutions:

o After completing both BFO and EPO phases, compare the best solutions obtained from each
algorithm.

o Select the solution with the better fitness as the final solution.

6. Iteration:

o Repeat the entire process for a predefined number of iterations or until convergence criteria

are met.
7. Output:

o The final output is the selected subset of features that optimizes the performance of the

algorithm based on the given fitness function.

The hybridization of BFO and EPO combines the exploration capabilities of BFO with the mating and swap
mechanisms of EPO.

3.2.1 Time complexity of EPO

1. Population initialization process requires O(n X d) time where n indicates the population
size and d indicates the dimension of a given problem.

2. The fitness of each agent requires O(Maxiteration X n X d) time where Maxiteration is
the maximum number of iteration to simulate the proposed algorithm.

3. The function S () requires O(N) time where N defines the social forces of emperor
penguins for better exploration and exploitation.

4. Steps 2 and 3 is repeated until the termination criteria is satisfied which needs O(k) time.
Hence, the total complexity of Steps 2 and 3 is O(n X Maxiteration X d X N). Therefore,
the overall time complexity of EPO algorithm is O(k X n X Maxiteration X d X N).

@ Springer



Multimedia Tools and Applications (2024) 83:77873-77944 77923

3.2.2 BFO time complexity

The time complexity of BFO algorithm can be presented O(P X (Q X R X T x (L + W)
+ D) + N)). In the given expression P means iteration number for elimination dispersal.
Q shows reproduction iteration time,R describe the number of chemotaxis activity, T is
the bacterial number, L is the calculation time for fitness function, W represent the time
complexity for chemotaxis operations based on evaluation method, D represents the com-
putation time for reproduction process and N shows the computation time for elimination
dispersal module.

3.2.3 Hybrid BFOAEPO algorithm time complexity

The overall computational complexity of Hybrid of bacterial foraging optimization algo-
rithm and emperor penguins optimization is O(Max Iteration X N* 4+ (1 X p X t X f)). The
complexity depends on maximum iteration, elimination and dispersion, reproduction, fit-
ness function computation and elimination bacteria for the BFO, additionally including the
updating of EPO computational complexity.

4 Results and discussion

The primary objective of utilizing nature-inspired computing techniques is to reduce the
initial set of extracted features so as to precisely classify subject fundus retinal images into
two distinct classes. The aforementioned reduced features will subsequently be employed
as input for various ML classifiers. A comprehensive process of twelve distinct tests has
been conducted, employing all three algorithms. All experiments possess a common objec-
tive function. Within the confines of a particular experimental setting, the population size
exhibits a range spanning from 5 to 20, with incremental intervals of 5. This population’s
performance is evaluated after a number of iterations, from 100 to 500, in increments of
100. The attributes (features) of the case with the lowest objective function value are cho-
sen, and then this case’s attributes are sent to the classifier. The remaining four instances
are excluded from further analysis. The computed findings have been aggregated and are
displayed in Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18. The findings generated
by the EPO algorithm are presented in Tables 6 and 7. Tables 10 and 11 have been allo-
cated for the purpose of displaying the outcomes produced by the BFO algorithm, while
Tables 14 and 15 have been specifically designated for showcasing the outputs obtained by
the hybrid algorithm. The tables (Table 6, 10, and 14) display and record the occurrences
in which the minimum fitness value is observed within the five sub-experiments. The data
for Table 7 is collected from Table 6, where the minimal objective value and the solution
with the highest value created for each performance evaluation indicator are shown (by
applying different ML classifiers). So, as the solution(s), we have prepared two tables from
all the tests conducted under the canopy of one nature inspired-computing algorithm (for
example, Tables 8 and 9 are comprised of all the experiments conducted under the EPO
algorithm). Table 9 (as well as Tables 13 and 17) indicates the maximum value generated
for each performance metric. Thus, Tables 9, 13 and 17 demonstrate the maximum values
generated for various metrics by the EPO algorithm, BFO method, and hybrid algorithm,
respectively. Table 8 (as well as Tables 12 and 16) illustrates the best values provided for
various performance measures when the number of features picked has the smallest count
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(in the case of EPO). Consequently, Tables 8, 12, and 16 illustrate the best values generated
for various performance measures when the number of selected features had the lowest
count (in the case of the EPO, BFO, and hybrid algorithms, respectively). The computed
results are graphically represented in Figs. 4, 5 and 6. The respective confusion metrics are
depicted in Figs. 4, 5 and 6 respectively.

One of the most common applications of the DeLong test is to compare the area
under the receiver operating characteristic curves (AUC) of two different models. The
p-value that is obtained from the DeLong test is something that is used in order to deter-
mine whether or not the difference in AUC between the two models is statistically sig-
nificant. In the experiment, p-value statistical testing was also performed. In the context
of machine learning, accurately calculating the standard deviation can be a helpful way
to assess the variability or consistency of model performance over several runs or data-
sets. Achieving accuracy in the standard deviation is one way to do this. Along with the
computation of various ML performance metrics, standard deviation and p-value(two-
tailed test) have also been performed.

4.1 Experiment results generated through the EPO algorithm

The best confusion matrices produced by the four tests through EPO algorithm are
shown in Fig. 4

-300
-250
- 200
- 150
-100
- 50
0 1 0
(a) Experiment 1:Random Forest (b) Experiment 2 :KNN
- 300
250
200
150
- 100
- 50
0 1 0
(c) Experiment 3:Support Vector Machine (d)Experiment 4:Random Forest

Fig.4 Confusion Matrix of accuracy obtained by best classifier on split methodology (a) Least cost
0.82390 and PS 5 5 (b) Least cost 0.87603 and PS 10 (c) Least cost 0.78808 and PS 15 (d) Least cost
0.80926 and PS 20
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Fig.5 Confusion Matrix of accuracy obtained by best classifier on splitting approach, (a) With least cost
of 0.81045 ( PS 5), (b) With least cost of 0.85425 (PS10), (c) With least cost of 0.82395 ( PS 15), (d) With
least cost of 0.75206 (PS 20)

4.2 Results computed after applying the splitting approach to the BFO algorithm
in different experiments

The best confusion matrices produced by the four tests through BFO algorithm are
shown in Fig. 5.

4.3 Experimental results computed with features returned by the hybrid algorithm

Tables 12, 13, 14, and 15 depicts the results generated through the proposed and imple-
mented hybrid approach with population size 5 to 20 with variation of 5.

The best confusion matrices produced by the four tests through hybrid approach are
shown in Fig. 6.

The Table 18 presents the final best results from three different perspectives. The first per-
spective showcases the best results achieved for a customized dataset. The next perspective dis-
plays the best generated results using our proposed approach for a private dataset. Lastly, the
results generated through our approach for a public dataset are shown in the last perspective.

4.4 Discussion and analysis

The proposed solution encompasses the utilization of three distinct algorithms: BFO,
EPO, and a hybrid approach that amalgamates the functionalities of both algorithms. The
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Fig.6 Confusion Matrix of accuracy obtained by best classifier on splitting approach, (a) With least cost
of 0.81865 (PS 5), (b) With least cost of 0.88075 (PS 10), (c) With least cost of 0.76834 (PS 15), (d) With
least cost of 0.83461 (PS 20)

objective of these algorithms is to minimize the initial feature set that will be inputted into
various ML classifiers, with the aim of classifying the subject fundus images into two dis-
tinct categories. A comprehensive investigation of twelve distinct tests has been adminis-
tered, utilizing all three methodologies. All experiments possess a common objective func-
tion. Within the confines of a particular experimental setting, the population size exhibits
a range spanning from 5 to 20, with increments occurring at intervals of 5. Through a
methodical modification of the number of iterations, ranging from 100 to 500, with incre-
ments of 100, the performance of the population is evaluated. The properties, which are also
known as features, of the instance that exhibits the lowest value of the objective function
are then sent to the classifier. The study does not include and does not take into account
the other four occurrences. The information in the aforementioned tables indicates that a
minimum of 4 features may be collected and a maximum of 28 features. As a result, the
level of feature reduction might be as high as 88.88% (4 out of 36) or as low as 22.22%. The
timing of an execution must be determined by taking into account two different viewpoints.
The main focus is on demonstrating the length of iteration for nature inspired computing
methods, followed by an examination of the time needed for developing and testing machine
learning models. The first six ML classifiers have qualities that are commonly associated
with classical techniques, while the seventh one composition combines aspects from the first
six. A variety of measures, including accuracy, sensitivity, specificity, and precision, as well
as the F1-Score, Kappa-Score, Matthews Correlation Coefficient (MCC), and Area Under
the Curve (AUC), are used to assess classifier performance. Each of these metrics plays a
pivotal role in the prognosis of human diseases based on medical images. The simultaneous
observation of all these computations within a single research study is infrequent.
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The accuracy of our model refers to the ratio of correct predictions to the total number
of predictions made [10]. The determination of the accuracy rate involves the division of
the count of accurate forecasts by the overall count of predictions. The metric of accuracy
holds significant importance as a performance indicator, and our findings in this regard
are noteworthy. By combining the hybrid algorithm with the Random Forest classifier, a
remarkable accuracy rate of 96.55% was attained. The hybrid case exhibits the lowest accu-
racy rate of 89.180%, followed by the BFO case with an accuracy of 85.902%, and the EPO
case with an accuracy of 87.065%. The proposed method demonstrates a notable degree of
precision. The concept of sensitivity holds significant importance in the context of meas-
urement, specifically in relation to the test’s capacity to effectively identify individuals who
genuinely suffer from the disease. The sensitivity of a medical test, also referred to as the
"detection rate" in clinical contexts, pertains to the ratio of individuals who yield positive
test results for a particular illness among those who genuinely possess the ailment. A diag-
nostic test with a sensitivity of 100% will accurately identify and categorize every individ-
ual with the specific condition as positive. According to the EPO analysis, the sensitivity
results reveal that RF exhibits the highest score of 0.8974. In a similar vein, the sensitivity
score for BFO is recorded as 0.92187. In regard to the hybrid models, the utilization of a
decision tree methodology results in the attainment of the highest sensitivity score, specifi-
cally 0.934780.

The notion of specificity pertains to the capacity of a diagnostic test to effectively dis-
cern individuals who do not manifest any symptoms and are in a state of optimal health.
The concept of "specificity" refers to the proportion of individuals who do not have a par-
ticular disease and obtain a negative result when tested [14]. A positive outcome suggests a
high probability of the presence of the condition. A test with perfect specificity would cor-
rectly identify all individuals who do not have the condition by producing a negative result,
while a test with imperfect specificity would conclusively demonstrate the absence of the
sickness. As the efficacy of this strategy can be seen in the range of values acquired, the
criteria of creating specificity is of the biggest significance and must be properly taken into
consideration. The range of EPO, when taking into account the random forest (RF), spans
from 0.9029 to 0.99401. The range of BFO values spans from 0.88745 to 0.98466. The
hybrid method, taking into account RF, exhibits a range of values spanning from 0.91616
to 0.99376. As a result, a specificity rate of 90% was achieved in all scenarios, with the
random forest algorithm demonstrating superior efficiency as a classifier. The F1-score is
determined by taking the harmonic mean of accuracy and recall, resulting in a well-bal-
anced evaluation metric for the classifier. The Fl-score is a performance measure com-
monly employed in the evaluation of classification models. It is designed to assess accu-
racy by considering the impact of both false positives and false negatives. The combination
of EPO-RF yields a maximum Fl-score value of 0.91001, while the BFO combination
achieves a maximum F1-score value of 0.9215. Additionally, the hybrid-RF configuration
achieves a maximum F1-score value of 0.9386. Precision is the ratio of correctly identified
positive cases to all the cases that are identified as positive [73]. It is feasible to accurately
ascertain the prevalence of glaucoma among individuals. Moreover, the degree of precision
has a direct influence on the quantity of significant data points. It is crucial that we exercise
caution in commencing treatment for a patient who, according to our theoretical frame-
work, displays symptoms suggestive of glaucoma but does not manifest the actual patho-
logical state. The precision values for EPO, BFO, and the hybrid approach are 0.98387,
0.9722, and 0.98876, respectively, at their maximum values.

Each diagnostic threshold is accompanied by a corresponding set of sensitivity and
specificity values. In order to construct a Receiver Operating Characteristic (ROC) curve,
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the dataset was utilized to plot pairs of data points, with the x-axis representing specific-
ity and the y-axis representing sensitivity [74]. Both the computation of the AUC and the
examination of the characteristics of the ROC curve can be utilized to evaluate the discrim-
inative capacity of a specific test. As the curve gradually approaches the upper left corner
and the area beneath it expands, the test demonstrates enhanced discriminatory capacity in
discerning between afflicted and non-afflicted states. The integral of the curve, which is a
dependable indicator of the effectiveness of the test, can assume values within the range
of 0 to 1. The non-selective region of a test is characterized by an area of 0.50, whereas
an ideal diagnostic test exhibits AUC of 1. The AUC is a widely accepted measure uti-
lized for assessing the diagnostic precision of a given test. Furthermore, we have computed
the AUC scores, which exhibit favourable outcomes in this specific context. The combina-
tion of the EPO algorithm and the RF classifier yielded AUC scores ranging from 0.8764
to 0.9698. In a similar vein, the BFO algorithm demonstrated AUC scores spanning from
0.9010 to 0.9763, whereas the hybrid algorithm, incorporating the RF classifier, exhibited
AUC scores ranging from 0.9078 to 0.9799. As the value approaches 1.000, the quality of
the output increases. The hybrid technique stands out among the classifiers due to its exten-
sive performance range, reaching a maximum value of 0.9799. However, the Random For-
est classifier demonstrates superior performance in relation to the AUC metric. The results
encompass a range of important parameters, such as ROC curves for each instance, confu-
sion metrics, and calculations of MCC and Kappa scores for each experiment.

5 Comparison with the current best practices

Table 19 provides an evaluation of the proposed technique compared to the current state-
of-the-art glaucoma prediction approaches. This comparison table demonstrates the effi-
cacy of the applied method in identifying glaucoma relative to earlier research. This table
shows strong evidence that the suggested method is reliable and good at classifying fun-
dus pictures. Compared to earlier research, the used method is up to 96.55% accurate at
finding glaucoma. As with other measures, the performance’s sensitivity and specificity
are also both auspicious. When compared to the other 20 methods indicated in Table 19
that were published in or after 2018, our performance displays excellent results. In a few
instances, our approach, which leverages nature inspired computing and ML techniques,
has exhibited superior efficacy when compared to deep learning (DL) methodologies. In
a few situations, however, the datasets against which the other techniques were tested may
vary. In our case, multiple datasets have been analyzed to determine the generalizability of
our proposed method, as we have worked on them to assess the performance of the previ-
ously disclosed strategy.

In this discussion about how our study compares to other research, our results have been
compared to those of the fifteen studies listed in Table 16. This has allowed for a thorough
look at the topic. The use of DL algorithms for the evaluation of the characteristics of the
OC and OD has received significant attention recently in the field of glaucoma research.
A plethora of studies have been published in this field. According to researchers, delays
in treatment can be attributed to the time-consuming manual input required from ophthal-
mologists in conventional methodologies, specifically the need for measurements of disc
and cup sizes during screening. Hence, it is crucial to enhance the progress of more effec-
tive and accurate diagnostic instruments for the detection of glaucoma. The practical and
efficient identification of glaucoma can be achieved through the utilization of automated
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techniques. The evaluation of the OD and OC plays a crucial role in the diagnosis of glau-
coma. The primary aim of the proposed methodologies is to achieve precise segmentation
of the OD and OC from a fundus image. The dataset utilized in the study comprised 101
Drishti GS1 images and 650 ORIGA images [75]. The process of segmenting OD and OC,
along with calculating the CDR and evaluating the four sections of the neuro-retinal rim
(NRR), was conducted. The researchers exhibited an accuracy rate of 76.42%, a sensitivity
rate of 0.799, and a specificity rate of 0.738. In contrast to the findings of previous studies,
our results exhibit a higher level of performance across all three metrics. The authors of
[76] presented an effective approach for segmenting the OC and OD using semi-supervised
conditional generative adversarial networks (GANs). The performance evaluation of the
proposed method was carried out using two datasets: ORIGA, which comprises 650 fundus
images consisting of 168 eyes with glaucoma and 482 eyes without glaucoma, and REF-
UGE, which consists of 400 fundus images including 40 eyes with glaucoma and 360 eyes
without glaucoma. As the training set for their study, the researchers have chosen a dataset
that consists of 300 fundus images with precise annotations. Out of the available options, a
total of 30 images can be attributed to individuals diagnosed with glaucoma. The remain-
ing images have been assigned to the testing set. The accuracy values for the ORIGA and
REFUGE datasets were determined to be 76.57% and 82.78%, respectively. The sensitivity
values for the ORIGA and REFUGE datasets were calculated to be 0.7273 and 0.7, respec-
tively. Furthermore, the specificity values for the ORIGA and REFUGE datasets were
determined to be 0.8041 and 0.7, respectively. The overall specificity was calculated to be
0.956. In the following study [77], the authors presented two sophisticated glaucoma detec-
tion techniques that employed deep learning methodologies. The M-Net is a multi-label
segmentation network that combines the segmentation of an OD and an OC. The U-shaped
convolutional network of M-Multi-scale Net was utilized to generate a segmentation prob-
ability map. This network incorporates a side-output layer to facilitate the learning of dis-
criminative representations. The assessment of glaucoma risk was performed by employing
the vertical CDR, which was obtained through the segmentation of the optic disc and cup.
The second network employed in the study is known as the disc-aware ensemble network,
abbreviated DENet. The network successfully integrates the local optical disc region with
the deep hierarchical context of the global fundus image. The DENet algorithm provides a
glaucoma detection result without requiring the use of image segmentation techniques. The
researchers used the Singapore Chinese Eye Study dataset, which includes 1676 images
and 46 cases of glaucoma, along with the ORIGA dataset. Additionally, a dataset derived
from a population-based study was incorporated, encompassing 5783 eye images, with
113 eyes affected by glaucoma and 5670 eyes classified as normal. The obtained outcomes
encompass an accuracy rate of 84.29%, a sensitivity rate of 0.8478%, and a specificity rate
of 0.8380%. Upon comparing our findings with this particular strategy, we have observed
that our outcomes have been significantly superior. The utilization of a lightweight, deep
architecture for the detection of glaucoma has been documented in a study, demonstrating
its ability to carry out segmentation and classification tasks [46]. The training and testing
procedures involved the incorporation of a combined total of 2482 images from the ORIGA
dataset and other datasets that were deemed relevant. After that, the above networks were
used to make a glaucoma assessment system that gives a clear diagnosis of glaucoma, a
range of morphological measurements, and segmentations of relevant anatomical parts. In
relation to the classification metrics, the obtained outcomes encompass an accuracy rate of
87%, a sensitivity value of 0.85, and an AUC score of 0.93. Upon conducting a compara-
tive analysis between our endeavors and the findings of this study, it becomes apparent that
our results exhibit a similar level of excellence.
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The system under consideration initially employed a DeepLabv3+ architecture for the
purpose of segmenting the optic disc region. Nevertheless, the encoder module was later
replaced with several deep CNNs [78]. The experts used three ways to put things into
groups: (1) transfer learning, (2) learning the feature descriptors using SVMs, and (3)
putting together groups of approaches that came from (1) and (2). The researchers’
research study involved a thorough analysis of five different datasets, including REF-
UGE, ACRIMA, ORIGA, and additional datasets. These datasets collectively encom-
passed a total of 2787 retinal images. The study’s findings indicate that a combination of
DeepLabv3+ and MobileNet proves to be the most efficacious method for segmenting
the OD. The integration of various methodologies demonstrated superior performance
compared to current approaches in the classification of glaucoma. The achieved accuracy
scores were 97.37%, 90.00%, 86.84%, and 99.53%, with corresponding AUC ratings of
100%, 92.06%, 91.67%, and 99.98%.The empirical study [79] employed DL-based tech-
niques to achieve two primary objectives: the segmentation of the OD and OC and the
classification of glaucoma. REFUGE provides the general public with unrestricted access
to an extensive compilation of data that is currently unparalleled in its breadth and depth.
The dataset consists of a thorough compilation of 1,200 fundus images, along with pre-
cise segmentations and clinical glaucoma labels. The researchers encountered limitations
in their ability to provide data pertaining to precision and specificity. Nevertheless, a
sensitivity value of 0.9752 was successfully determined. The absence of certain crucial
elements, such as precision and specificity, in the discourse is noteworthy, particularly in
light of the fact that our findings surpass the suggested ones. The authors proposed the
utilization of an enhanced UNet++ neural network for the simultaneous segmentation of
the OD and OC, with the region of interest (ROI) serving as the foundation, as suggested
in a previous study [80]. The calculation of the cup-to-disc ratio was performed using the
segmentation outcomes. When the increasing field of view (IFOV) feature was added,
the goal was to get all the textural properties, statistical features, and other hidden image-
based data. Subsequently, the most suitable feature combination is selected from a com-
prehensive set of all feasible feature combinations. In order to mitigate the problem of
imbalanced training data, the adaptive synthetic sampling technique is subsequently
employed. The development of the gradient-boosting decision tree (GBDT) classifier
was specifically focused on its application in glaucoma screening. Experimental results
using 650 images from the ORIGA dataset show that the algorithm suggested in this
study exhibits glaucoma screening performance. The algorithm achieves a sensitivity of
0.894%, an accuracy of 0.843%, and an AUC of 0.901. Upon conducting a comparative
analysis between our findings and the outcomes of the aforementioned study, it becomes
evident that our results exhibit a superior level of quality. This study presents a novel
methodology for classifying glaucoma, employing a solitary deep CNN [82]. A determi-
nation was made to choose a combined total of 10,658 photographs from the subsequent
sources: Refuge 24, Origa 25, LAG 26, Drishti-GS127, sjchoi86-HRF 28, HRF 29, and
ODIR 30. The attained accuracy of 95.3%, sensitivity of 0.841, and specificity of 0.958%
fail to exceed the performance of our suggested approach. The fundus image underwent
processing using a CNN consisting of 18 layers, which was constructed and trained. The
objective of this procedure was to identify and extract the distinctive characteristics that
are present within the image. The model’s architecture comprises a fully connected layer,
two max-pooling layers, and four convolutional layers. The use of a two-stage tuning
technique is advised for the purpose of determining an appropriate batch size and initial
learning rate. The network evaluation was performed utilizing several databases, namely
DRISHTI-GS1, ORIGA, RIM-ONE2 (version 2), ACRIMA, and large-scale
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attention-based glaucoma (LAG) databases. The DRISHTI-GS1, RIM-ONE2, ORIGA,
LAG, and ACRIMA databases exhibited overall accuracy rates of 86.62%, 85.97%,
78.33%, 94.43%, and 96.64%, respectively. Through the utilization of the ACRIMA data-
base, the approach put forth in this study demonstrated a sensitivity value of 0.5806 and
a specificity value of 0.9244. The findings of our study exceed the previously docu-
mented results, encompassing both our own dataset and the ACRIMA dataset. A better
deep learning-based custom UNET++ model [83] was created by the researchers to pre-
dict glaucoma. It does this by using a new segmentation technique to separate the OD
and OC. The application of the Dhristi dataset led to improved presentation on a
restricted dataset. The development of the segmentation-specific model involved the uti-
lization of a modified loss function and the implementation of hyperparameter tuning
techniques. The loss function that has been recently developed successfully addresses the
problem of class imbalance caused by the limited dimensions of the optic nerve head. To
classify a set of 650 ORIGA images as either glaucomatous or non-glaucomatous, the
ISNT criteria’s clinical feature was employed. The proposed methodology successfully
distinguishes between images displaying indications of glaucoma and those that do not,
achieving a 96% success rate by identifying pertinent clinical characteristics. The sensi-
tivity and specificity values obtained were 0.87 and 0.81, respectively. After conducting
a comparative analysis of our empirical investigation with other relevant studies, it
becomes apparent that our findings outperform theirs across all three criteria. The meth-
odology employed in this study entailed the implementation of an automated system uti-
lizing the Deep CNN architecture known as Glaucoma Network (G-Net) [84]. The utili-
zation of this system was implemented to discern between the OD and OC within retinal
fundus images. The proposed methodology employs a dual neural network architecture
with the objective of segmenting the optic disc and cup. The model achieved a segmenta-
tion accuracy of 95.8% for disc segmentation on a dataset consisting of 50 fundus
images. Additionally, the model demonstrated an accuracy of 93% for cup segmentation.
The methodology utilized in this research entails the concurrent operation of two neural
networks, which yield segmentation accuracies of 95.8% and 93.2% for OD and OC,
respectively. The accuracy, sensitivity, and specificity attained for the DRISHTI data set
are 95.03%, 0.7379, and 0.8623, respectively. The obtained results exhibit a resemblance
to our own research findings. This research paper introduces the application of the Grey
Wolf Optimized Neural Network (GWO-NN) as a diagnostic tool for glaucoma. During
the preprocessing phase, the input image is subjected to multiple steps. Initially, the
image undergoes a conversion process to grayscale. Subsequently, the process of noise
reduction is executed through the use of an adaptive median filter (AMF). Subsequently,
the process of image normalization is implemented. The process of feature extraction
was performed by utilizing GLCM features, which were derived from the image’s energy,
contrast, homogeneity, and correlation. Furthermore, the researchers employed SURF,
HOG, and global features in their study. The extracted features comprised variance,
mean, and standard deviation. The subsequent step involves the implementation of the
classification procedure using the GWO-NN algorithm. The approach that was presented
demonstrated an accuracy rate of 93.103%, a sensitivity rate of 0.916778, and a specific-
ity rate of 0.94117. By comparing our proposed strategy to the suggested work, we can
see how well our method works for both selecting features using a nature inspired com-
puting approach and classifying them using machine learning classifiers. The results of
our study clearly indicate a higher level of performance when considering all three com-
parable metrics. In addition, it is important to acknowledge that the authors of the afore-
mentioned study [63] have not made the training and testing datasets accessible to the
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public.This next study suggests that glaucoma can be found in fundus photographs by
using image channels (ICs) and the DWT [85]. After the process of scaling the input
images, the resulting outputs consist of the red channel (RC), green channel (GC), blue
channel (BC), and grayscale (GS) images. Using the second-level (SL) discrete wavelet
transform (DWT) makes it possible to improve and separate four different types of
images into subband images (SBIs) that can be looked at separately. After that, the most
important parts were taken out one by one from each of the sub-band images (SBIs) that
were created using the DWT. Summation, normalization, and a numerical value assign-
ment combine the extracted features from the RC, GC, BC, and GS images. The robust
properties are incorporated into the least squares support vector machine (LS-SVM)
classifier. The dataset employed for analysis was the RIM-1 dataset. A Zernike moment
feature, seven Hu’s invariant moment features, six Chip histogram features, thirteen basic
texture features derived from GLCM, fourteen Haralick texture features, twenty-two
advanced GLCM features, and seven grey level run length matrix (GLRLM) features
were extracted from the dataset. These are based on the number of grey-level runs for
different lengths. Combining the characteristics from the red channel (RC), green chan-
nel (GC), blue channel (BC), and grayscale (GS) images produced the composite image
C-RGBGs-IF. The use of 10-fold cross validation resulted in the C-RGBGs-achieved IF
exhibiting an accuracy of 84.95%, a sensitivity of 86%, and a specificity of 83.85%. After
conducting a comprehensive comparison between our research findings and the existing
empirical evidence, it is apparent that our findings demonstrate a higher level of poten-
tial. The authors [47] introduced a new methodology for the detection of glaucoma,
employing FAWT to divide the pre-processed images into multiple sub-band images.
The ReliefF and sequential box-counting (SBC) techniques were subsequently utilized to
extract a variety of entropies and features derived from fractal dimension (FD). The
aforementioned features encompass Kapur entropy (KE), Renyi entropy (RE), Yager
entropy (YE), and the FD feature. In addition, Fisher’s LDA was implemented to assess
the obtained feature values. The categorization of glaucoma stages was performed by
employing the LS-SVM classifier, which utilized the higher-rank features. The evalua-
tion of the proposed method involved the utilization of a total of 941 images sourced
from the glaucoma datasets RIM-ONE, ORIGA, DRISHTI, and HRF. The efficacy of the
suggested methodology was assessed through the implementation of tenfold cross-vali-
dation. The findings demonstrate a classification accuracy of 93.4%, a sensitivity of 0.94,
and a specificity of 0.8784. The findings presented exhibit a lower level of quality in
comparison to our own results, as they were acquired through the utilization of a split-
based approach with a ratio of 70:30. The study conducted by the authors focused on the
retrieval of GIST, a method based on Gabor filters that extracts textural characteristics
from fundus images, as well as pyramid histograms of oriented gradients (PHOG) fea-
tures. These features were extracted from preprocessed fundus images. The authors
employed these features in order to obtain a comprehensive shape description of fundus
images [27]. The acquired attributes were assessed and selected by PCA to identify the
most essential features. The classification of images into two categories, infected or nor-
mal, was performed using a SVM classifier. The assessment was carried out on a sample
of sixty images, comprising both Drishti-GS1 and HRF images. The researchers’ method
yielded an accuracy of 83.4% and an AUC value of 0.88. Neither of these statistics meets
the level of success that our planned technique enabled us to achieve. The calculation of
sensitivity and specificity has not been performed.
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If we examine the full description of the studies included in Table 19 that is pro-
vided above, we can observe that our study is distinct and superior in many aspects
to the vast majority of the research addressed in Table 19. It is immediately apparent
that the majority of the study has only examined OD, OC, and CDR. Other feature
classes have gotten little consideration (or no importance). However, instead of focus-
ing just on OD, OC, and CDR, our study focuses on a range of feature classes. The
great majority of researchers have also employed DL-based methods (proposing the
new model or customizing the available DL models). A few studies applying ML have
also been published. The fact that feature extraction has not been commonly used in
these studies is a fundamental component of our technique. Few studies have focused
on feature selection (sometimes referred to as feature dimension reduction), and those
that have used approaches like LDA and PCA have largely cited their results. Never-
theless, for this operation, we employed three nature computing techniques (for opti-
mal feature selection), two recently proposed, and one hybrid of these from our side.
We have also shown one of the three that is a hybrid of the other two, which suf-
ficiently displays the uniqueness, novelty, and innovation of the presented work. We
have employed a number of ML classifiers, including an ensemble of them; nonethe-
less, these classifiers are not commonly used in one work. In addition, we generated
other statistical performance evaluation indicators, including execution time. Seldom
does the analysis get published in such depth. Our method’s results for performance
evaluation metrics like accuracy, sensitivity, specificity, Fl-score, and AUC are bet-
ter (in almost all ways) than those of almost all previous research. This shows that our
approach works in highly impressive fashion.

6 Advantages, limitations and future scope of the proposed work

The proposed approach demonstrates a high level of effectiveness in identifying the most
influential features necessary for confirming the presence of the disease. This approach has
the potential to be applied to any dataset in order to efficiently select features that are nec-
essary for the classification of the problem being addressed. The suggested approach not
only decreases the dimensionality of the search space but also reduces the training and
testing time of the machine learning models. Simultaneously, this approach enhances the
effectiveness of the classification models by eliminating unnecessary features. Owing to
exemplary performance of the proposed approach indicate its potential to enhance the deci-
sion-making process for medical professionals by serving as a valuable second opinion.
The presented system can also be implemented in areas with a limited number of skilled
physicians.

Here are some of the limitations of this work. Relying solely on machines may not
be suitable at this time, considering the importance placed on evidence-based medicine.
Incorporating Macula scans, as well as publicly accessible features such as intraocular
pressure (IOP) and visual test readings, would undoubtedly enhance the accuracy of the
method. This task is limited to a single customized mid-size data set. It may be worth con-
sidering seeking external validation for the proposed method using larger and more varied
data sets. There are potential benefits to be gained by increasing the sample size in the
database. In order to facilitate real-time implementation, it may be beneficial to include
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the out-of-sample data set. Utilizing sophisticated image processing and classification
algorithms can enhance the accuracy of classification. Furthermore, properties that are
not explicitly mentioned in the suggested approach may also be evaluated. Various hybrid
variations of recent nature inspired computing-based techniques are suggested. It is possi-
ble that certain algorithms may exhibit superior performance in terms of accuracy, feature
reduction, or a combination of both. We have assumed that the patient may have an eye
infection, if any. The current focus is on classification, regardless of whether or not an
individual has glaucoma. There is a lack of distinction in this work regarding the varying
stages of glaucoma infection.

Other drawback of this study is its sole reliance on a single mid-size customized data-
set for performance evaluation. However, by applying the recommended approach to addi-
tional datasets, the study’s scope could be expanded even further. In addition, the explo-
ration of different datasets could be considered for future studies. There is potential for
expanding the range of features that can be extracted. In addition, the image was not pre-
processed in our study to eliminate blood vessels. Our objective is to analyze the impact of
this process on the ultimate classification outcome. Another important factor to consider is
the classification phase. Given our focus on achieving efficient feature selection, we found
that the evaluated classifiers needed further fine-tuning to reach their optimal performance.
We are of the opinion that incorporating multi-objective methods into our approach would
enhance our outcomes by enabling more accurate parameter tuning.

Glaucoma is a multifaceted systemic condition. Conducting a comprehensive anal-
ysis of the visual system could potentially enhance the accuracy of glaucoma diagno-
sis and prognosis. Through the utilization of cutting-edge neuro-imaging and retinal
imaging technologies, the integration of data from different visual system components
can lead to the accomplishment of this objective. For better results, future research in
this field can explore various feature selection strategies and employ different clas-
sification approaches to enhance accuracy and efficiency. In order to enhance the sys-
tem’s overall accuracy and rectify misclassifications, it is recommended that future
research explore the utilization of different features or the integration of texture,
shape, and color features. A pressing issue revolves around evaluating the efficacy of
specific features through the application of diverse statistical feature selection tech-
niques. In addition, the development of a two-phase feature selection strategy presents
an evaluation challenge and signifies a new avenue of research. The initial step of the
strategy entails utilizing classical statistical methods for selection, while the subse-
quent step involves employing soft-computing approaches for selection. Evaluating
the performance of different versions of the BFO and EPO, as suggested by research-
ers, poses yet another challenging problem. In addition, researchers are currently
developing an advanced nature inspired-based optimization algorithm with innovative
features. Thus, there is room for enhancing classification accuracy by integrating the
recently introduced algorithms more effectively with highly efficient classifiers. The
current issue can be reframed as a multi-objective problem, where the aim is to bal-
ance the selection of features and accuracy. Collaboration between ophthalmologists
and machine-learning researchers remains essential for ongoing progress. By leverag-
ing a strong blend of technical knowledge and deep industry experience, the poten-
tial for delivering highly efficient and impactful solutions is greatly enhanced. We
will also explore the performance of the suggested approach on K-fold cross valida-
tion approach. For enhanced accuracy, there is potential to expand the scope of this
work in the future by incorporating automation techniques, specifically by leveraging
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deep learning methodologies and a more extensive dataset.. Future efforts can fur-
ther enhance the current methodology by seamlessly integrating it with the graphical
user interface designed for glaucoma diagnosis. Researchers are currently develop-
ing novel optimization algorithms inspired by nature. We will also investigate this
avenue in order to identify a more efficient approach that surpasses the suggested
method. The optimization problem at hand can be expressed using a multi-objective
criterion. Additionally, a thorough review of the existing literature reveals that there
has been limited research conducted in this particular area. Therefore, the exploration
of feature selection using multi-objective criteria remains an untapped opportunity for
future researchers. In the future, the deep cooperation between artificial intelligence
and medical technology will make the datasets and clinical application rules more
standardized, and glaucoma diagnosis and prediction tools will be simplified in a sin-
gle direction, which will benefit multiple ethnic groups. In addition, it encompasses
the skill to detect and identify various eye conditions, including diabetic retinopathy,
macular edema, and retinal hemorrhage.

7 Conclusions

It is crucial to promptly identify glaucoma in order to effectively manage the advance-
ment of visual impairment. Without appropriate medical intervention, this condition has
the potential to advance and result in irreversible visual impairment. The challenging and
time-intensive nature of traditional diagnostic procedures significantly impairs the efficacy
of early detection and diagnosis of glaucoma. Moreover, a crucial task entails the iden-
tification and subsequent gathering of the most pertinent features(attributes). The main
goal of this study is to introduce an innovative and effective feature selection strategy. The
implemented strategy aims to identify the most influential features, resulting in a reduced
feature space. Additionally, it is expected to enhance the overall performance of the clas-
sification system and reduce the training and testing time of machine learning models. To
achieve the above-mentioned goals through the proposed strategy, this article provides an
in-depth of the utilization of the EPO algorithm, the BFO algorithm, and a hybrid variant
that combines both algorithms for the selection of most informative features. Based on our
current understanding, there has been limited observation of the utilization of these algo-
rithms for the detection of glaucoma. The features selected in these three algorithms are
assessed using six machine learning classifiers. The presented approach is evaluated using
benchmark fundus image datasets. Many tests have been conducted with the objective of
identifying the optimal combination of selected features using a machine learning classi-
fier. In the ideal situation, feature selection is able to achieve a remarkable rate, whereby
only few features are preserved from the initial set of features, with no significant impact
on accuracy. The performance has also been assessed using statistical measures, such as
calculating the standard deviation of accuracy and conducting a p-value(two tailed test )
test. The proposed methodology for the processing and analysis of high-resolution retinal
images demonstrates both computational efficiency and a minimal time commitment. Oph-
thalmologists may consider employing the proposed methodology as an additional tool in
the diagnostic evaluation of glaucoma. Hence, the proposed technique has the potential
to provide significant advantages in the initial assessment of individuals diagnosed with
glaucoma.
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Appendix

Figure 7 depicts the look of the receiver operating characteristic (ROC) results produced by
the EPO algorithm for all four algorithms. Figures 8 and 9 are devoted to the organization
of the ROC produced by the BFO algorithm and hybrid algorithm, respectively for all four
algorithms.
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Fig.7 Collective ROC curve of all ML classifiers with70:30 implemented approach, (a) Least cost 0.82390
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Fig.8 A ROC curve that combines the outcomes of various classifiers that use a splitting method, (a) With
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Fig.9 ROC curves of multiple classifiers combined using a splitting approach, (a) With least cost of
0.81865 (PS 5), (b) With least cost of 0.88075 (PS 10), (c) With least cost of 0.76834 (PS 15), (d) With
least cost of 0.83461 (PS 20)
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