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Abstract
One of the most severe cancers worldwide is Colorectal Cancer (CRC), which has the third-
highest incidence of cancer cases and the second-highest rate of cancer mortality. Early
diagnosis and treatment are receiving much attention globally due to the increasing inci-
dence and death rates. Colonoscopy is acknowledged as the gold standard for screening CRC.
Despite early screening, doctors miss approximately 25% of polyps during a colonoscopy
examination because the diagnosis varies from expert to expert. After a few years, this miss-
ing polyp may develop into cancer. This study is focused on addressing such diagnostic
challenges, aiming to minimize the risk of misdiagnosis and enhance the overall accuracy of
diagnostic procedures. Thus, we propose an efficient deep learning method, DeepCPD, com-
bining transformer architecture and Linear Multihead Self-Attention (LMSA) mechanism
with data augmentation to classify colonoscopy images into two categories: polyp versus
non-polyp and hyperplastic versus adenoma based on the dataset. The experiments are con-
ducted on four benchmark datasets: PolypsSet, CP-CHILD-A, CP-CHILD-B, andKvasir V2.
The proposed model demonstrated superior performance compared to the existing state-of-
the-art methods with an accuracy above 98.05%, precision above 97.71%, and recall above
98.10%. Notably, the model exhibited a training time improvement of over 1.2x across all
datasets. The strong performance of the recall metric shows the ability of DeepCPD to detect
polyps by minimizing the false negative rate. These results indicate that this model can be
used effectively to create a diagnostic tool with computer assistance that can be highly helpful
to clinicians during the diagnosing process.
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1 Introduction

In this world of modern medical science, cancer is still a nightmare, and Colorectal Cancer
(CRC) is one of them. According to the World Health Organization’s (WHO) Global Cancer
Observatory studies, in 2020, there were 1.9million CRC diagnoses worldwide [1]. There are
1.06 million men and 0.86 million women among them. The mortality rate is 48.41% in men
and women, 48.37% in men, and 48.46% in women [2]. Colorectal polyps are anomalous
tissues that begin as a growth in the innermost lining of the colon or rectum. This benign
growth is known as a polyp, which may progress into CRC over the years [3]. The colon’s
healthy inner lining cells are susceptible to DNA alterations that cause them to spread out of
control. In most cases, CRCwas identified at later ages (particularly in people older than 50).
Nevertheless, it can be seen at any age. After 45 years of age, a screening test is required for
the diagnosis of CRC [4]. It is necessary to give careful attention to diagnosing the disease.
As a result, it will open a hopeful door for the patient to avail of the best possible treatment
if the condition is detected early; in turn, the patient’s survival chance may increase [5–
7]. CRC can be prevented by identifying suspicious tissues through early diagnosis using
standard methods and regular screening [8]. There are five stages of CRC. The structure and
characteristics of polyps will differ in shape, size, spread area, and appearance in each stage
[9]. As the stages progress from 0 to 4, cancer spreads to other body parts; hence, the survival
rate decreases [10].

Colonoscopy (Fig. 1 illustrates a visual explanation of colonoscopy) is the primarily
used diagnostic tool to detect colorectal polyp [11, 12]. A colonoscopy (real-time video
examination) examines the large bowel and rectum. A significant chance of survival exists
when malignant growths are found early and removed, which can lower the mortality rate
[13, 14]. Colonoscopy is a procedure in which a flexible tube comprising a light and camera
at one end is inserted into the below part of the patient’s body and moved to the colon.
The physician will monitor the procedure using a screen, and any suspicious polyps will
be removed if found [15]. However, in colonoscopic examinations, approximately one of
every four polyps may not be correctly identified, which can be influenced by factors such
as the physician’s experience level [16]. It has been reported that approximately 22-25%
is the miss rate of polyps during colonoscopy examination due to human error [11, 17].
Examining the polyps manually is an extensive process, even if the polyp is diagnosed
correctly. This subjectivity may lead to inter-observer variability and false negatives, causing
missedor delayeddiagnoses. Therefore, a computer-assisted diagnostic system is necessary to
diagnose the condition quickly, effectively, and accurately to support physicians in shortening
the diagnostic procedure [18, 19]. In response to these challenges, we propose DeepCPD,
a transformer-based LMSA mechanism designed to offer a robust solution for accurately
distinguishing between normal and pathological conditions in a more time-efficient manner.
Adding an Acceleration layer within the Multihead Self-Attention (MSA) block enables the
model to extract global features efficiently in linear time. This enhancement substantially
improves the model’s capability to effectively capture intricate image features, achieving
an O(n) time complexity [20]. The primary objective is to elevate the sensitivity of the
diagnostic process with less training time, facilitating the identification of abnormalities at
a stage when interventions can have the most significant impact. This work is dedicated to
mitigating diagnostic challenges, thereby reducing the risk of misdiagnosis and improving
overall diagnostic accuracy.

The primary contributions of this research paper are:
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Fig. 1 Illustration of colonoscopy test. (a) to (c) demonstrate the different stages of colonoscopy examination,
and (d) is an example of a colonoscope device tip

• DeepCPD effectively incorporates a Linear Multihead Self-Attention mechanism to per-
form binary classification on the colonoscopy images as polyp versus non-polyp and
hyperplastic versus adenoma, depending on the specific dataset. This approach facili-
tates comprehensive global feature extraction from the image in a timely and efficient
manner, encompassing features at various levels, thereby enhancing the model’s perfor-
mance.

• The conventional Non-Linear Multihead Self-Attention layers in the base ViT are
replaced with Linear Multihead Self-Attention layers by adding two extra Accelera-
tion layers to simplify model training, facilitating the efficient computation of contextual
mappings for attention scores of image patches with linear time complexity.

• The combination of transformer design and attention mechanism has demonstrated its
ability to effectively handle imbalanced datasets, as confirmed through detailed experi-
mental validation.

• The generalizability of the DeepCPD model is validated by an extensive experimental
study using four different benchmark datasets such as PolypsSet (a combination of MIC-
CAI 2017, CVC-colonDB, GLRC and KUMC datasets), CP-CHILD-A, CP-CHILD-B
and Kvasir V2.

• Finally, A series of comprehensive experiments were conducted to assess the DeepCPD
model’s efficacy compared to the state-of-the-art CNN models, including DenseNet201,
ResNet-50, ResNet-152, and VGG19.

The subsequent sections of this paper are structured in the following manner: The prior
studies in this area utilising different methodologies and datasets are described in Section 2.
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The model utilised in this study is described in detail in Section 3. Section 4 portrays the
architecture and workings of the proposed model. The details about the experimental setup
and detailed analysis of the research’s findings are provided in Section 5. Lastly, the paper
concludes in Section 6.

2 Related works

The examination of medical images holds immense importance in the realm of modern
medicine. Even today, healthcare professionals face challenges in effectively interpreting and
comprehending diagnoses from these images. The importance of deep learning gained the
researcher’s attention here. Deep learning-driven Computer-Aided Diagnosis (CAD) tools
can assist medical professionals during the diagnosis phase, resulting in faster diagnoses.
Consequently, deep learning has gained significant popularity in medical imaging .̧ There
are numerous studies conducted on this topic. This section summarises many such studies
previously carried out on various datasets using feature-based and deep learning techniques.

In a recent study, Farah Younas et al. [15] introduced an ensemble deep learning classi-
fication model for colorectal polyp classification based on colonoscopy images. The initial
step involved pretraining base classifiers, including GoogLeNet, Xception, and Resnet50,
on the ImageNet database. Subsequently, a suitable combination of weights was determined
through a grid search, and these weights were assigned to individual base classifier models to
construct a weighted-average ensemble model. Alqudah et al. [21] presented an approach for
CRC classification employing various machine learning algorithms, including support vector
machine (SVM), artificial neural network, K-nearest neighbor (KNN), quadratic discriminant
analysis, and classification decision tree (DT). This method utilizes features extracted from
3D Gray Level Cooccurrence Matrix matrices within three distinct color spaces: RGB, HSV,
and L*A*B color spaces. A VGG16-based computer-aided diagnosis system was recently
created by Ying-Chun Jheng et al. [22] to detect different colon polyps. The authors acquired
and made use of a private dataset from a hospital. They used a set of approaches for data
augmentation on the training set of data to improve the model’s performance. Saraswati
Koppad et al. [23] put forward an approach to analyze CRC gene characteristics of healthy
and cancer patients. These genes can be taken as a measurement for CRC. This method
employs three publicly accessible gene expression datasets from the GEO database and six
distinctmachine learningmethods, including naiveBayes classifier,Adaboost, random forest,
ExtraTrees, logistic regression, and XGBoost. Random forest outperformed other algorithms
among these.

YingSu et al. [24] proposed amodel that utilized gene expression profiling data to diagnose
colon cancer and determine its staging. Initially, genemoduleswere chosen, and characteristic
genes were extracted using the least absolute shrinkage and selection operator algorithm
and then integrated to distinguish between colon cancer and healthy controls using random
forest, SVM, and DT. Furthermore, colon cancer staging was determined by leveraging
differentially expressed genes associated with each stage. Subsequently, a survival analysis
was also conducted. Several methods have been used to screen CRC in patients, such as fecal
occult blood test, flexible sigmoidoscopy, and colonoscopy.Each technique has its drawbacks.
Recent studies show that using microbiome analysis to detect CRC is a better option than
using the current approaches for CRC screening. M Mulenga et al. [25] developed a deep
learning model with stacking and chaining techniques as an alternative for augmentation and
data normalization of microbiome data from stool samples of the patients. This suggested
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deep learning model is paired with rank transformation and feature selection to enhance the
CRC’s prediction task performance. Here, the experiment uses three microbiome datasets
that are openly accessible. Devi Sarwinda et al. [26] conducted a study using ResNet models
like ResNet-18 and ResNet-50 on colon gland images to categorize colon glands as benign
or malignant. ResNet-50 can perform better than ResNet-18, according to the authors. They
used the Warwick-QU public dataset. The researchers performed a contrast-limited adaptive
histogram Equalization image preprocessing task to get more accurate images of this dataset.
The classification of CRC using a deep neural networkmodel from the gut microbiota in stool
samples was another project that M Mulenga et al. [27] proposed. It would include feature
extension and data augmentation. The authors employed two publicly accessible CRC-based
microbiome databases. The method transfer learning is used by CP Tang [28] in a study
to identify colon polyps and presented a method for computer-aided polyp detection. The
authors used Faster-CNN, R-FCN, and Single Short Detector along with three other network
structures, such as ResNet-50, ResNet-101, and Inception V2. R-FCN with ResNet-101 had
the best outcome out of the group. Recently, deep learning produced excellent results in the
domain of medicine for effectively diagnosing various diseases.

A study was conducted by CM Hsu et al. [29] to identify colorectal polyps and classify
CRC.The authors experimentedwith alternative input data in placeofRGB images.Grayscale
images were created by the authors using RGB images. CNN model is used to detect and
classify polyps. The datawas collected from the public datasetCVC-ClinicDBandone private
hospital. The researchers discovered that when the size of the polyp image is less than 1600
pixels, the accuracy in classifying and detecting polyps diminishes. A novel technique for
classifying and localizing CRC in whole slide images (WSIs) simply with global labels was
developed by Changjiang Zhou et al. [30], e.g., malignant or normal, by leveraging different
models for deep learning. The experiment showed that ResNet performswell. The researchers
also presented a new approach to classifying normal and cancerous tissues utilizing three
frameworks: image-level, cell-level, and a combination of two. The experiment was carried
out on two histopathology image datasets:WSI images of CRC from three different hospitals,
along with histopathology images of CRC sourced from the cancer genome atlas. Paladini
et al. [31] conducted a study on CRC tissue phenotyping to identify CRC usingWSI pictures
in the past. The authors completed this study by introducing Mean-Ensemble-CNN and
NN-Ensemble-CNN, two ensemble techniques. The four pre-trained models ResNet-101,
ResNet-50, InceptionV3, and DenseNet-161 are combined in these methods. The Kather-
CRC-2016database and theCRP-TPdatabase are the twopublic datasets used in this research.
This study was a multiclass tissue classification. In a prior study, Liew et al. [32] proposed a
novel technique to classify colonic polyps using modified ResNet-50 architecture as a feature
extractor and then applied Adaboost ensemble learning as the classifier. Using three publicly
accessible datasets-Kvasir, ETIS-LaribpolypDB, and CVC-ClinicDB, the authors performed
binary classification to distinguish between polyps and non-polyps. These three datasets are
combined after selecting two classes from the Kvasir dataset.

Earlier, Mesejo et al. [18] developed a framework for doing virtual biopsies of lesions that
classify lesions into three categories: hyperplastic, serrated adenomas, and adenomas lesions.
The authors extracted 3D images of the lesions using the SfM algorithm and then employed
white light and narrow-band imaging to enhance the features of the lesions as needed for
SfM. In a study by Ruikai Zhang et al. [33], CNNwas used to create a fully automated system
for diagnosing and classifying colorectal polyps. This system learned basic CNN properties
from two public datasets unrelated to medicine. The authors made use of the available PWH
database. In a previous study, Xiaoda Liu et al. [34] introduced a deep CNN model called
faster-rcnn-inception-resnet-v2 for classifying polyps and adenomatous lesions. The authors
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used a private dataset for this work. In a recent study, Nisha J.S et al. [35] developed a Dual-
path CNNmodel to detect polyps through an image enhancement technique on three datasets,
CVC-clinicDB, CVC-colonDB, and Etis-Larib, and the authors achieved high performance
onCVC-colonDB.Krushi Patel et al. [36] researched various deep learningmodels to classify
the polyps into hyperplastic and adenomatous. The authors used six CNN models and five
different colonoscopy datasets to carry out their study. The VGG19 model outperformed the
other models in that group.

In recent work, Chung Ming Lo et al. [37] developed the FEViT model, an ensemble
classifier of ViT and KNN, and equipped it as a classifier in ViT rather than a multilayer
perception layer to perform binary classification. Some of the clinically based numerical
features are integrated and then served to the classifier with the image features obtained
by ViT. Similarly, Mohamed et al. [38] suggested a vision transformer-based multiclassi-
fier for CRC histological images. Before being processed by the transformer, the authors
underwent various preprocessing procedures on the dataset. A publicly available benchmark
dataset named CRC-5000 has been utilized to assess the model. Wang et al. [39] proposed an
innovative self-supervised learning approach termed semantically-relevant contrastive learn-
ing. Their methodology involves a hybrid model integrating a CNN and a multi-scale Swin
Transformer architecture to classify histopathology images. Hussein et al. [40] suggested a
DeepPoly method that uses DoubleU-Net for polyp segmentation and a vision transformer
for binary classification. Using a fine-tuned vision transformer, the DeepPoly approach clas-
sifies the segmented polyps as hyperplastic or adenoma. Both private and public datasets are
utilized for this study after annotation.

From the literature studies, it has been understood that most of the previous studies were
conducted using different CNN algorithms in combination with other techniques; most of
them are complex in nature and require high training time. The excessive down-sampling task
performed on images by some of the methods results in a loss of information. As a result, the
models miss several tiny polyps. Hence, a new approach is necessary to detect colon polyps
from the images. Comparatively, fewer studies have been conducted on the classification
task utilizing transformer-based models, especially within CRC. Furthermore, the majority
of these studies have centered aroundCRChistological images rather than directly addressing
colonoscopy images. Colonoscopy images hold a pivotal role in the initial diagnosis of col-
orectal conditions. Conversely, CRC histological images are typically employed for in-depth
analysis of the condition, offering detailed insights into tissue structures and abnormalities.
Empirical evidence derived from these studies has consistently demonstrated the superiority
of vision transformers over traditional CNN models in classification performance. However,
a significant gap in research focused on enhancing CRC detection using colonoscopy images
still needs to be addressed. Additional investigations and studies are warranted to harness the
potential of transformer-based models in improving the accuracy and effectiveness of CRC
detection from colonoscopy images.

3 Vision transformer (ViT)

Typically, in computer vision, the attention mechanism is either employed directly on CNN
or with some changes to the design of the CNN. An elementary ViT can attain a performance
level of 4.6 times more resilient than the top-performing transfer learning models based on
CNN [41]. ViT is a transformer architecture working based on the attention mechanism [42,
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43]. The three components that make up the transformer encoder are Layer Normalization
(LN), Multi-Head Self Attention Layer (MSA), and Multi-Layer Perceptrons Layer (MLP).

The self-attention mechanisms used in natural language processing inspired using ViT
in computer vision tasks, notably in image classification [44, 45]. The attention mechanism
helps to capture features of the image at the lowest level of abstraction. ViT has undergone
pretraining on ImageNet-21k, which contains 14 million images in 224×224 resolution and
21,000 classes. ViT divides the images into visual tokens by splitting the image into patches
of the same size and feeds the series of their linear embeddings into a Transformer encoder
along with positional encoding. The sequence of linear embeddings also has a particular
learnable token prepended to it. Following that, the transformer uses the attention method
to produce a series of output tokens. The output value of the learnable token is fed into a
classification head connected to the encoder’s output and is implemented by MLP, which
produces a classification label depending on the state.

4 Proposedmethod

The system workflow of the proposed model is given in Fig. 2. There are three major phases
in the proposed model. The first phase is to increase the data size which is necessary to avoid
the challenges associated with less data during training. The second phase is preprocessing
the data, which includes resizing and normalizing procedures. In the third phase, a thorough
exploration of the proposed model and its architecture is provided, offering detailed insights
into the process of classifying colonoscopy images into binary categories. These three phases
are described in more detail in subsequent subsections.

Fine tuned ViT

Rotate

Flip

Dataset

Polyp label

Predicts MLP

Linear projection layer

Transformer encoder

MLPClass label

CLN
pos+patch

Predicts

Shear

Skew
Training set with

labels

Testing set

Trained model

Trained model

(F = R→A)

Resize into
224x224

Rescale into
[0,1]

Normalize
into [-1,1]

Resize into
224x224

Rescale into
[0,1]

Normalize
into [-1,1]

Fine tuned ViT

Fig. 2 System workflow of the proposed method for colorectal polyps detection
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4.1 Data augmentation

The quality and size of the training data have a significant influence on the deep learning
model’s performance. However, one of the most prevalent problems that deep learning faces
is inadequate data. A deep learning model performs better if the dataset is large and sufficient
[46]. Data augmentation is applied to address this issue, which generates new data samples
from the existing ones by combining multiple mathematical operations, which is stated in
(1).

F(x) : R → A; x ∈ {rotation, shearing, f li pping, skewing} (1)

Where F(x) is the transformation function that performs augmentation, x is the transfor-
mation set, R is the training set of the original dataset, and A is the augmented set of R. Thus,
the artificially generated training set is shown in (2).

R′ = R ∪ A (2)

Where R′ represents the entire training set, including both the original training set and the
augmented set, which is created through a sequence of distinct geometric transformations,
including rotation, shearing, flipping, and skewing, these four geometric transformationswere
selectedwith consideration for the characteristics of the dataset. The rotation transformation is
appliedwithin an angle range spanning from -90 to +90 degrees. For the shear transformation,
the parameters are configured to shear the images by a maximum angle of 20 degrees to the
left along the x-axis and a maximum angle of 20 degrees to the right along the x-axis. The
flipping operation is employed to flip the colon images horizontally or vertically. Lastly, a
skew transformationdistorts the images towards randomcorners. Eachof these four geometric
transformations is executed with a probability of 0.5 on the datasets.

Data augmentation is performed only on the CP-CHILD-B and Kvasir V2 datasets since
these have less number of samples. Performing different augmentation techniques with x on
the training set of the datasets resulted in the generation of 10000 images overall (7352 for
polyp class and 2648 for non-polyp class) in CP-CHILD-B and 10000 images overall (4964
for polyp class and 5036 for non-polyp class) in Kvasir datasets.

4.2 Preprocessing

Data preprocessing is a crucial step inmedical imaging tasks and inmany other fields of image
analysis.Medical image data often come in various forms andmay exhibit characteristics such
as varying dimensions, noise, and inconsistencies. Therefore, standardizing and preparing
the colorectal datasets before feeding into the proposed model is essential to ensure that the
model can effectively learn and make accurate predictions.

The preprocessing pipeline applied to the proposed model encompasses resizing, rescal-
ing, and normalization procedures. The dataset comprises colonoscopy images of varying
dimensions, necessitating the transformation of colon images into the correct input format
for training with the proposed model. Initially, every image in the dataset undergoes resizing
to achieve a uniform size of 224 × 224 pixels, aligning with the standard size required for
generating patches from the input images. Subsequently, rescaling is executed, which maps
the pixel values from their original range of [0, 255] to the normalized range [0, 1]. This
rescaling operation is accomplished by dividing the pixel values by a rescaling factor of
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1/255. Finally, the normalization step is applied to the RGB channels of the images using the
specified mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5) using (3). Consequently,
the resulting pixel range is standardized to [-1, 1].

In = (Ic − Mc)

SDc
(3)

Where In is the normalized image, Ic is the pixel value of the input’s RGB channel, Mc is
the mean value of the RGB channel, and SDc is the standard deviation of the RGB channel.

4.3 DeepCPD

The proposed model uses ViT as the foundational architecture for image classification,
integrating two additional Acceleration layers to enhance training efficiency, subsequently
leading to fine-tuning with colonoscopy datasets. This fine-tuning process enhances the
model’s ability to distinguish between colonoscopy images. The initial weights of Deep-
CPD are set using pre-trained ViT weights, and the classification layer is modified with
specific hyperparameters optimized for the characteristics of colonoscopy datasets. Figure 3
visually depicts the proposed model architecture in detail. The model processes the input
image by dividing it into non-overlapping fixed-size patches of 16× 16. Subsequently, these
patches are vectorized, resulting in a 1D patch representation after flattening, as described in
(4), (5), (6), (7) and (8).

Is = h × w × c ie, Is = (224 × 224 × 3) (4)

Ps = Ph × Pw ie, Ps = (16 × 16) (5)

Np = (h × w)

Ph × Pw
ie, Np = 196 (6)

Ti = (Np, Ph × Pw × c) ie, Ti = (196, 16 × 16 × 3) (7)

...................
patches
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16

  3 (rgb)

Linear Projection layer for flattened image patches

+
1

768

...................+
2

768 768
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Patch embeddings

Positional embeddings

                       CLN token
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...................
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Fig. 3 System architecture of the proposed method for colorectal polyps detection (on the left) and a detailed
view of the design of the modified encoder block in the transformer (on the right)
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I ip ∈ R
Ph×Pw×c → I ip ∈ R

1×Ph×Pw×c ie, I ip[1 × 16 × 16 × 3] (8)

Where Is stands for the size of the image, h stands for the image’s height, w stands for
the Image’s width, c stands for the number of RGB channel, Ps stands for the patch’s size,
Ph stands for the Patch’s height, Pw stands for the patch’s width, Np stands for the number
of Patches, Ti denotes the transformed input, while I ip represents the reshaped 1D vector
of each patch. Following the conversion of the input image into a 1D patch representation,
a linear projection layer is used to map each of these patches to D (1 × 768) dimensional
patch embeddings. The entirety of patch representations undergoes this linear transformation,
producing the vector Z . This vector Z functions as the feature vector for the image patches
and is formally represented in (9).

Ip ∈ R
Ph×Pw×c → Z ∈ R

N×D (9)

Equations (10) and (11) are the mathematical operations involved in the linear projection
layer:

I ip ∈ R
1×Ph×Pw×c · W ∈ R

D×Ph×Pw×c = I ipW = Zi ∈ R
1×D ie, Zi [1 × 768] (10)

In this step, the reshaped 1D patch is multiplied with a weight matrix W to produce
Zi , which is the patch embedding of each patch from the linear projection layer, where
i = 1, 2....196. Such 196 patch embeddings are obtained. This process is done for all patches
as given below,

Ip ∈ R
N×Ph×Pw×c · W ∈ R

Ph×Pw×c×D = IpW = Z ∈ R
N×D ie, Z [196 × 768] (11)

Since Zi is represented as a 1×768 long vector, the patch embeddingmatrix Z is 196×768 in
size. Transformers lack a built-in mechanism that considers the "order" of patch embeddings.
The order of the image patches in the image can significantly change its meaning, so a
method for letting the model guess the order of the image patches is necessary. By using the
positional embedding method, add a unique position to the linear projection of each patch
in the form of vectors, which is mentioned in (12). The proposed model is thus aware of
the patch sequence’s order throughout training. At this stage, before feeding the colorectal
image patches to the encoders, the proposed model introduces a learnable class token CLN
to the patch embeddings. The final feature vector corresponding to the CLN token is used by
the MLP head for classification.

Z0 = [XCLN ; Zi ∈ R
1×D] + Epos, Epos ∈ R

(N+1)×D ie, Z0[197 × 768] (12)

The patch embeddings and positional embeddings are merged into vector space during
training. The embeddings exhibit significant similarity to their nearby position embeddings,
especially those sharing the same column and row. The patch embeddings are now 197×768
in size. Subsequently, the series of embedded patches Z0 is fed into the transformer’s archi-
tecture comprising 12 identical encoders. The LMSA and MLP blocks comprise most of the
transformer encoder’s structure, which is depicted on the right side of Fig. 3. To simplify
model training, the input undergoes normalization using layer normalization, followed by
two Acceleration layers inside the LMSA block. Furthermore, a residual connection is also
employed after each block. The Acceleration layers incorporate two matrices, AK

l and AV
l ,

to simplify the calculation of attention scores for patch embeddings, reducing the complexity
from O(n2) to O(n) [20]. Equations (13) and (14) describe how the transformer encoder’s
entire encoding process works.

Z ′
l = LMSA(LN (Zl−1)) + Zl−1 ie, l = 1......12, Zl−1 = Z0.....Z11 (13)
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Zl = MLP(LN (Z ′
l)) + Z ′

l ie, l = 1......12 (14)

Here, l represents the encoder number. Z ′
l and Zl are the feature vectors generated by

LMSA and MLP layers in each encoder, respectively. The process outlined in (13) is subdi-
vided and defined independently, with detailed explanations using (15), (16), (17) and (18).
Three parameters, query (Q), key (K ), and value (V ) are used by the LMSA layer of the
transformer’s attention mechanism to find dependencies among several patches of the input
image.

K A = AK
l · Zl−1; V A = AV

l · Zl−1 ie, AK
l , AV

l ∈ R
M×N (15)

The K A and V A pairs are initially calculated using the matrices AK
l and AV

l generated
by the two Acceleration layers introduced inside the LMSA block. These layers transform
the original (N × D) dimensional K and V matrices into (M × D) dimensional matrices,
facilitating the efficient computation of contextual mappings for attention scores with linear
time andmemory complexity by opting for a smaller projected dimensionM , where M < N .
The value ofM is fixed at 90 for all the encoders. Subsequently, the QKV scores are computed
by multiplying Zl−1, K A, and V A with the learnable weight matrices WQ

l , WK
l , and WV

l ,
respectively. The calculation of attention scores for patch embeddings by the LMSA block
is elaborated in (15), (16) and (17).

Q = Zl−1 ·WQ
l ; K = K A ·WK

l ; V = V A ·WV
l ie, Q ∈ R

N×DandK , V ∈ R
M×D

(16)
After calculating the dot product of Q with the transpose of K , the dimension is scaled with
the square root to avoid the vanishing gradient problem. The attention score for each patch
of the image is obtained by applying the softmax function to the, which is then multiplied
with V , which is given in (17).

A j
QKV (S) = so f tmax

(
QKT

√
D

)
V ie, A j

QKV (S) ∈ R
N×D (17)

The attention score of the image generated by one head is A j
QKV (S), j = 1, 2, 3, ...12;

LMSA has such 12 heads. The attention scores of all heads are then concatenated together
and projected through a dense layer with a learnable weight matrix W to make the output
into the desired dimension, as mentioned in (18).

LMSA(Zl) = concat(A1(Zl), A2(Zl), .....A j (Zl))W
0,W 0 ∈ R

(D×h),D (18)

A residual connection is integrated with LMSA(Zl) to obtain Z ′
l , representing the final

attention scores for the LMSA layer in the transformer encoder as described in (13), which is
produced by processing the scores of 12 self-attention heads simultaneously, each of which
can concentrate on distinct relationships between the image patches. Z ′

l is then fed into the
MLP block of the encoder architecture, which starts with a Layer normalization followed by
anMLP layer and a residual connection as described in (14). Two fully connected layers with
a GELU at the end make up the MLP layer. Z0

12 represents the feature vector extracted from
the input image by CLN token generated from the 12th encoder of the transformer, which
is used for classification purposes. The other 196 tokens are not considered since the CLN
token encapsulates a feature vector that effectively summarizes information from the entire
set of image patches. The resultant feature vector Z0

12 is the final representation of the CLN
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token from the transformer encoder, which is 1 × 768 in size, which is further normalized
by a linear layer as described in (19),

Y = LN (Z0
12) (19)

Y is the final feature vector of the colorectal imagewith attention score after normalization,
which is processed by the classification head in the final step to predict the class label of
the colorectal image. The activation function Softmax is applied to this output to produce
classification labels, Ypred = so f tmax(Y ). Ypred can be labeled as a polyp versus non-polyp
or hyperplastic versus adenoma. The Algorithm to classify colorectal images is elucidated
in Algorithm 1.

Algorithm 1 Algorithm for colorectal image classification using DeepCPD.

1 Initialize epoch,M ;
2 Apply data augmentation on images (I );
3 Apply rescaling and normalization on I ;
4 Divide I into patches, Ip ← I (Refer (4), (5) and (6));
5 Reshape patches into 1D vectors,
6 while i ≤ epoch do
7 IpW = Z ∈ R

N×D (Refer (11));
8 Add positional encoding and CLN token (Non-trainable parameters) to Z to

produce Z0;
9 Apply normalization on Zl , where l = 1, 2, ...12;

10 Generate Q = Zl−1 · WQ
l , K = K A · WK

l and V = V A · WV
l (Refer (15) and

(16));

11 Compute attention scores by one head A j
QKV (S) = so f tmax

(
QKT√

D

)
V ;

12 Concatenate attention scores of 12 heads,
LMSA(Zl) = concat(A1(Zl), A2(Zl), .....A j (Zl))W 0, where j = 1, 2, ...12;

13 Compute Z ′
l = LMSA(Zl) + Zl−1;

14 Apply normalization on Z ′
l ;

15 Compute Zl = MLP(Z ′
l) + Z ′

l ;
16 Apply Normalization on Z0

12, Y = Z0
12. Here, Z

0
12 represents the entire feature

representation of I from 12th encoder;
17 Apply Softmax on Y ;
18 end
19 Predict the label

5 Experiment results and analysis

This section begins by addressing the datasets employed in the study, detailing the experi-
mental setup for DeepCPD, and outlining the various evaluation metrics used to assess the
performance of the proposed method alongside other comparative studies. Then, a compre-
hensive analysis ofDeepCPD’s performance follows, including comparisonswith benchmark
methods and other pretrained CNN models. The discussion section concludes by providing
detailed insights into the significance of this study and acknowledging its limitations.
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d.  (i) Non-polyps  (ii) Polyps

a.  (i) Hyperplastic (ii) Adenoma

b.  (i) Non-polyps  (ii) Polyps

c.  (i) Non-polyps  (ii) Polyps

Fig. 4 Different examples of the images in the datasets. (a) is the example of hyperplastic and adenoma from
PolypsSet, (b) is the example of non-polyps and polyps from CP-CHILD-A, (c) is the example of non-polyps
and polyps from CP-CHILD-B, and (d) is the example of non-polyps and polyps from Kvasir V2

5.1 Datasets

The four benchmark datasets of colonoscopy images used in this study are PolypsSet (com-
binations of four distinct datasets), CP-CHILD-A, CP-CHILD-B, and Kvasir V2 datasets.
For examples of diverse images in various datasets, Fig. 4 depicts examples of images from
each dataset. The details of each dataset are described in the Table 1.

Table 1 Information on the
sample size of each dataset used
for the proposed study

Dataset Class wise number of samples
Original dataset Augmented dataset

PolypsSet Adenoma: 19240 –

Hyperplastic: 16741

CP-CHILD-A Non-polyp: 7000 –

Polyp: 1000

CP-CHILD-B Non-polyp: 1100 Non-polyp: 7652

Polyp: 400 Polyp: 2748

Kvasir V2 Non-polyp: 1000 Non-polyp: 5236

Polyp: 1000 Polyp: 5164
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5.1.1 PolypsSet dataset

This dataset includes the hyperplastic and adenomatous images from the KUMC dataset, the
CVC-colon DB dataset, the GLRC dataset, and the MICCAI 2017 dataset. All images of this
dataset are extracted from different frames of colonoscopy videos and labelled by Li et al.
[47].
MICCAI 2017 dataset: This dataset was released at the 2017 MICCAI GIANA Endo-
scopic Vision Challenge [48]. The training and testing set data are extracted from 18 short
colonoscopy videos and 20 short colonoscopy videos, respectively.
CVC-colon DB dataset: The dataset includes different frames from 15 colonoscopy video
sequences [49].
GLRC dataset: This dataset contains images from 76 colonoscopy video sequences [18].
KUMC dataset: The KUMC dataset contains images taken from 80 short colonoscopy video
sequences [47].
The polypsSet dataset has 35981 images of polyps with various dimensions, divided into
hyperplastic and adenomatous classes. The split between training and testing for the dataset
is 80% and 20%.

5.1.2 CP-CHILD-A and CP-CHILD-B datasets

Images from 1600 children’s colonoscopies, ranging in age from 0 to 18 years, are included in
this dataset [50]. The images are all annotated and split into CP-CHILD-A and CP-CHILD-B
datasets. The CP-CHILD-A dataset has 8000 colonoscopy images, of which 7000 are non-
polyp, and 1000 are polyp images. The dataset includes a training set of 6200 non-polyp
and 800 polyp images and a testing set of 800 non-polyp and 200 polyp images. The dataset
CP-CHILD-B contains 1500 RGB colonoscopy images, of which 1100 are non-polyp and
400 are polyp images. The dataset comprises 800 non-polyp images and 300 polyp images
for training, as well as 300 non-polyp images and 100 polyp images for testing.

5.1.3 Kvasir V2 dataset

This dataset is prepared from the Kvasir dataset [51]. The Kvasir dataset includes eight
classes of endoscopically acquired colour images of the gastrointestinal tract that medical
professionals have annotated and confirmed. However, this study requires only two classes,
polyps and non-polyps (normal cecum), related to colorectal disease; the remaining classes
are unrelated to this study. The dataset contains images of various resolutions, ranging from
720 × 576 to 1920 × 1072 pixels. The dataset contains two versions, Kvasir version 1 and
Kvasir version 2. The proposed study made use of the latest version. The dataset’s images
were gathered from four hospitals under the Vestre Viken Health Trust in Norway, which
consists of 2000 images of polyps and non-polyps, 1000 in each class. The split between
training and testing for the dataset is 80% and 20%.

5.2 Implementation details

The proposed model is implemented on the PARAM PORUL supercomputing unit provided
by the National Supercomputing Mission with the Centre for Development in Advanced
Computing support. A GPU node comprises two Intel Xenon Gold-6248 processors and two
Nvidia V100 GPU cards. The DeepCPD is implemented using the Pytorch framework. The
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model performedwell with the hyperparameters such as theAdamoptimizer with a batch size
of 32, learning rate of 2e-5, momentum values of beta1 of 0.9 and beta2 of 0.999, and epsilon
of 1e-8. The model exhibited superior performance with a learning rate of 2e-5 compared
to 2e-6 and 2e-7 and a batch size of 32 compared with 64, while the remaining parameters
were selected randomly. The proposed model was trained five times on each dataset, and the
average of the experiments is reported in this work.

5.3 Evaluationmetrics

The efficacy of the proposed method is measured using various metrics. In view of the
imbalanced datasets used in this research, recall and precision are the primary evaluation
matrices of the suggested model. Equation (20) can be used to compute recall (Rec) and
precision (Prec).

Rec = T P

T P + FN

Prec = T P

T P + FP
(20)

In addition, the F1-score (F1), accuracy (Acc), specificity (Spec), and Matthews Corre-
lation Coefficient (MCC) metrics are computed as given in (21), (22), (23) and (24).

F1 = 2 ∗ Prec ∗ Rec

Prec + Rec
(21)

Acc = T P + T N

T P + T N + FP + FN
(22)

Spec = T N

T N + FP
(23)

MCC = (T P ∗ T N ) − (FP ∗ FN )√
(T P + FP) ∗ (T P + FN ) ∗ (T N + FP) ∗ (T N + FN )

(24)

TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False
Negative, respectively. These terms can be derived from the confusion matrix, a performance
metric used in classification problems where the output is categorized into two or more
classes.

In addition, to determine the correctness of the prediction of the classes, the AUC-ROC
curve is plotted to validate the performance of the model visually.

5.4 Performance analysis of the proposedmethod

The results and analysis of the proposed method for classifying colonoscopy images
into polyp vs. non-polyp or hyperplastic vs. adenoma are discussed in this section. This
study involved extensive experiments aimed at assessing the DeepCPD’s performance. The
DeepCPD model demonstrated remarkable performance across various metrics, including
accuracy, recall, precision, F1-score, specificity, andMCC, achieving results such as 99.90%
accuracy, 99.87% recall, 99.94% precision, 99.90% F1-score, 99.94% specificity, and a
99.81%MCC on PolypsSet, 99.60% accuracy, 98.10% recall, 99.89% precision, 98.98% F1-
score, 99.97% specificity, and a 98.74% MCC on CP-CHILD-A, 99.45% accuracy, 98.20%
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Table 2 Classification report of the proposed DeepCPD method on four different benchmark datasets

Dataset Acc (%) Rec (%) Prec (%) F1 (%) Spec (%) MCC (%) Training time

PolypsSet 99.90 99.87 99.94 99.90 99.94 99.81 1.2x

CP-CHILD-A 99.60 98.10 99.89 98.98 99.97 98.74 1.4x

CP-CHILD-B 99.45 98.20 99.59 98.88 99.86 98.53 1.3x

Kvasir V2 98.05 98.40 97.71 97.94 97.70 95.81 1.3x

recall, 99.59% precision, 98.88% F1-score, 99.86% specificity, and a 98.53% MCC on CP-
CHILD-B, and 98.05%accuracy, 98.40% recall, 97.71%precision, 97.94%F1-score, 97.70%
specificity, and a 95.81%MCC on Kvasir V2 datasets. Detailed performance analyses of the
proposed method across the four datasets are provided in Table 2, representing the average
results obtained from five experimental trials. The analysis of training time underscores the
computational efficiency of DeepCPD in contrast to the foundational ViT architecture. The
observations clearly indicate that DeepCPD, incorporating two extra acceleration layers in
the LMSA block, can compute attention scores for patch embeddings in a shorter training
time compared to the base ViT. Notably, DeepCPD’s training is accelerated by over 1.2
times compared to the base ViT. These performance metrics highlight DeepCPD’s poten-
tial to efficiently distinguish colonoscopy images, particularly its strong performance in the
recall metric, which is considered themost valuable metric in this study. This metric is crucial
because it accounts for false negative classifications, ensuring that individuals with suspected
CRC are not incorrectly categorized as non-polyp or hyperplastic cases, representing normal
colon conditions. Simultaneously, further investigations are necessary for polyp and adenoma
cases. Thus, minimizing the false negative rate is of utmost importance.

Figure 5 illustrates the confusion matrix for each dataset, providing insights into the
number of images correctly and incorrectly classified into their respective categories. For
example, (a) in Fig. 5, it is evident that 3749 adenoma images out of 3751 were correctly
classified into the adenoma class, while 3442 hyperplastic images out of 3446 were correctly
classified into the hyperplastic class. Figure 6 graphically visualizes the AUC-ROC curves
for all datasets. These curves demonstrate that the DeepCPD distinguishes colon images
into the correct classes, consistently achieving accurate classifications for all four datasets.
The best results from five experiments are reported in both the confusion matrix and AUC-
ROC curves. Based on these findings, the DeepCPDmodel has demonstrated state-of-the-art
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Fig. 5 Confusionmatrix of the proposedDeepCPDmethod for all datasets. (a) confusionmatrix for PolypsSet,
(b) confusion matrix for CP-CHILD-A, (c) confusion matrix for CP-CHILD-B, and (d) confusion matrix for
Kvasir V2
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Fig. 6 AUC curve of the proposed DeepCPD method for all the datasets. (a) AUC curve for PolypSet, (b)
AUC curve for CP-CHILD-A, (c) AUC curve for CP-CHILD-B, and (d) AUC curve for Kvasir V2 datasets

performance by leveraging a novel approach for the image classification of colonoscopy,
showcasing its potential to advance the field.

5.5 Comparison with the benchmarkmethods

A comparative analysis is conducted to compare and evaluate the performance of the pro-
posed DeepCPD method with state-of-the-art polyp classification methods using benchmark
datasets, namely PolypsSet, CP-CHILD-A, CP-CHILD-B, andKvasir V2. This analysis aims
to showcase the effectiveness of the proposed method in comparison to state-of-the-art polyp
classification methods. In a related study, Patel et al. used a basic VGG19 model to train it
end-to-end on the PolypsSet dataset to classify the images into hyperplastic and adenoma
following preprocessing steps that involved cropping the images. The authors obtained an
accuracy of 79.78%, recall of 78.64%, precision of 78.71%, and F1-score of 78.67%. The pro-
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Table 3 Comparison of the proposed DeepCPD method with the existing state-of-the-art polyp classification
methods on four different benchmark datasets

Dataset Method Underlying architecture Acc (%) Rec (%) Prec (%) F1 (%)

PolypsSet DeepCPD ViT 99.93 99.89 99.97 99.92

Patel et al. [36] VGG-19 79.78 78.64 78.71 78.67

CP-CHILD-A DeepCPD ViT 99.80 99.00 100 99.49

Wei Wang et al. [50] ResNet152-GAP 99.29 97.55 – –

CP-CHILD-B DeepCPD ViT 99.75 99.00 100 99.49

Wei Wang et al. [50] ResNet152-GAP 99.35 97.70 – –

Kvasir V2 DeepCPD ViT 98.75 99.00 98.50 98.01

Liew et al. [32] Modified ResNet-50
with AdaBoost

97.91 96.45 99.35 97.90

vided recall, precision, and F1-scoremetrics were calculated using amacro-average approach
across the two classes, considering that the authors specified individual recall, precision, and
F1-score values for each class in their study. In another study, Wei Wang et al. [50] intro-
duced a ResNet152-GAP model based on the ResNet architecture and incorporates Global
Average Pooling in place of a fully connected layer. After applying preprocessing operations,
the model was evaluated on two separate datasets, CP-CHILD-A and CP-CHILD-B. How-

Table 4 Comparison of the proposed DeepCPD method with the state-of-the-art CNN methods on four
different benchmark datasets

Dataset Method Acc(%) Rec (%) Prec (%) F1 (%) Spec (%) MCC (%)

PolypsSet DeepCPD 99.93 99.89 99.97 99.92 99.97 99.86

DenseNet201 65.07 69.73 65.51 67.55 59.99 29.87

ResNet-50 75.19 78.04 75.24 76.62 72.01 50.18

Resnet-152 73.18 74.63 74.12 74.38 71.60 46.25

VGG19 77.59 78.18 78.70 78.44 76.95 55.11

CP-CHILD-A DeepCPD 99.80 99.00 100 99.49 100 99.37

DenseNet201 96.60 85.00 97.70 90.90 99.50 89.16

ResNet-50 99.00 96.50 98.46 97.47 99.63 96.86

Resnet-152 99.20 97.00 98.97 97.97 99.75 97.49

VGG19 99.40 98.00 98.98 98.49 99.75 98.12

CP-CHILD-B DeepCPD 99.75 99.00 100 99.49 100 99.33

DenseNet 92.50 88.00 83.01 85.43 94.00 80.45

ResNet-50 99.00 97.00 98.97 97.97 99.67 97.32

Resnet-152 99.25 99.00 98.01 98.50 99.33 98.01

VGG19 99.25 99.00 98.01 98.50 99.33 98.01

Kvasir V2 DeepCPD 98.75 99.00 98.50 98.01 98.50 97.50

DenseNet201 89.00 93.00 86.11 89.42 85.00 78.25

ResNet-50 94.25 93.50 94.92 94.20 95.00 88.51

Resnet-152 96.00 96.00 96.00 96.00 96.00 92.00

VGG19 97.00 97.50 96.53 97.01 96.50 94.00
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ever, augmentation techniques were only used for CP-CHILD-A. ResNet152-GAP achieved
an accuracy of 99.29% and a recall of 97.55% on CP-CHILD-A, while on CP-CHILD-
B, it attained an accuracy of 99.35% and a recall of 97.70%. The authors did not provide
metrics such as precision and F1-score for ResNet152-GAP. Liew et al. [32] proposed a mod-
ified ResNet50 in combination with the PCA, AdaBoost and other preprocessing techniques,
including amedian filter for noise removal of images for a colonic polyp classification system
utilizing Kvasir V2. The proposed model achieved an accuracy of 97.91%, recall of 96.45%,
and precision of 99.35%. The F1-score, although not directly provided by the authors, was
computed as the mean value of precision and recall, resulting in an F1-score of 97.90%.
On the benchmark datasets, DeepCPD outperformed the performance of all three discussed
state-of-the-art methods, except the precision value of Kvasir V2 is precisely 0.85% less than
the benchmark result. Table 3 presents a comparative analysis of DeepCPD’s performance
with existing state-of-the-art methods across all four benchmark datasets. This analysis uses
the optimal result obtained from the five experiments conducted on each dataset.

Furthermore, the DeepCPD surpasses other state-of-the-art deep learning methods on all
the datasets. Detailed results are presented in Table 4, while a visual representation of the
findings is illustrated in Fig. 7. A comparative analysis of DeepCPD against leading CNN
models has been conducted, such as Densenet201, RsNet-50, ResNet-152, and VGG19,
all of which were trained using identical methods, which involved data augmentation and
preprocessing techniques as well as utilizing transfer learning, following the same approach
used for DeepCPD. For all four CNN models, all layers except the last two layers were
set to a frozen state. Subsequently, a global average pooling layer was introduced to foster

Fig. 7 Visual analysis of DeepCPD performance against standard deep learning models using various perfor-
mance metrics
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computational efficiency and mitigate overfitting, followed by adding two fully connected
layers to improve the model’s performance. The performance of different models exhibited
minimal variations across all experiments. For instance,VGG19achieved ahigher accuracyof
77.59%, with a Recall of 78.18%, a Precision of 78.70%, a F1-score of 78.44%, a specificity
of 76.95%, and a MCC of 55.11% on the PolypsSet dataset. On CP-CHILD-A, VGG19
achieved a higher accuracy of 99.40%, with a Recall of 98.00%, a Precision of 98.98%, a
F1-score of 98.49%, a Spec of 99.75, and a MCC of 98.12%. On CP-CHILD-B, VGG19
achieved an accuracy of 99.25%, with a Recall of 99.00%, a Precision of 98.01%, a F1-
score of 98.50%, a specificity of 99.33%, and a MCC of 98.01%. On Kvasir V2, VGG19
achieved an accuracy of 97.00%, Recall of 97.50%, Precision of 96.53%, a F1-score of
97.01%, a specificity of 96.50%, and a MCC of 94.00%. On the other hand, all other models
showed relatively lower performance. In contrast, the DeepCPDmodel achieved an accuracy
of 99.93%, 99.80%, 99.75%, and 98.75% on the PolypsSet, CP-CHILD-A, CP-CHILD-B,
and Kvasir V2 datasets, respectively.

5.6 Discussion

CRC is a significant global health concern, ranking as one of the most prevalent cancers and a
leading cause of cancer-relatedmortality. CRCoften remains asymptomatic in its early stages,
leading to late-stage diagnoses when treatment options may be less effective since making
early detection and removal of these polyps crucial for preventing the progression of cancer.
Diagnosis through traditional methods, such as visual examination during colonoscopy, is
subjective and depends heavily on the physician’s expertise. This subjectivity can lead to
inter-observer variability and increase the risk of missed or delayed diagnoses. The inherent
variability in colorectal images further complicates accurate diagnosis. Conventional diag-
nostic approaches are often time-consuming, requiring careful examination of images and
data. More efficient and precise diagnostic methods are critical for timely intervention. These
challenges make it imperative to explore advanced technologies for more accurate detection.

This study designed a colorectal polyp detection model, DeepCPD, for colorectal image
classification that adopts ViT as its underlying architecture, wherein a linear multihead self-
attention mechanism replaces the initial multihead self-attention mechanism of ViT. The
model undergoes various data augmentation and preprocessing techniques to enhance the
dataset. DeepCPD’s capacity for global feature extraction through LMSA enables the capture
of extensive dependencies and inherent relationships among pixels in images. This capability
makes it particularly adept at handling the intricate patterns of colorectal polyps. Furthermore,
the integrated LMSA mechanism efficiently mitigates computational complexity, reducing
it from O(n2) to O(n) [20]. The model demonstrated strong performance when utilizing
specific hyperparameters, including the Adam optimizer with a batch size of 32, a learning
rate of 2e-5, momentum values of beta1 (0.9), beta2 (0.999), and an epsilon of 1e-8. Notably,
the model showcased superior performance when trained with a learning rate of 2e-5 in
comparison to 2e-6 and 2e-7. Additionally, employing a batch size of 32 yielded better
results compared to a batch size of 64.

DeepCPD exhibited remarkable performance, achieving an accuracy exceeding 98.05%,
recall exceeding 98.10%, and precision exceeding 97.71%, while achieving a training time
improvement of over 1.2x across all datasets. The model showcased superior diagnostic
accuracy compared to other CNN-based approaches, as evidenced by its exceptional results
on the four datasets. Although the experimentally established model has good results for the
diagnosis of colon cancer, there are still some limitations. The interpretability of DeepCPD,
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especially the complex architecture of ViT, needs careful consideration. Understanding the
decision-making process is essential to gain trust in clinical settings. Another challenge faced
in this study andothermedical research involves accessing labeled images formedical images.
Future research should emphasize enhancing the interpretability of ViT by developing meth-
ods that enable clinicians to understand and trust the decision-making process of the models.
To overcome the scarcity of labeled medical images, generating new and diverse datasets
is essential, employing techniques like Few-shot fine-grained action [52, 53]. Besides, this
study needs further improvement, such as to perform multiclassification for predicting vari-
ous stages of polyps. Collectively, these aspects contribute to certain challenges in diagnosing
and treating CRC. To address the mentioned limitations, we will continue to investigate them
in subsequent studies.

6 Conclusion

In this study, a novel deep learning colorectal polyp detection model, DeepCPD, is designed
using a transformer-based linear multihead self-attention mechanism combined with data
augmentation to classify the colonoscopy images into polyp vs. non-polyp or hyperplastic
vs. adenoma classes based on the dataset. The linear multihead self-attention mechanism
efficiently extracts pertinent features from the input image, facilitating the model to rep-
resent intricate relationships and patterns within the data. It enables the model to assign
attention weights to individual image patches, capturing extensive dependencies between
pixels and offering insights into the image patches that play a significant role in the model’s
decision-making process. This is crucial for understanding the global context and relation-
ships of different parts within the image. In contrast to non-linear multihead self-attention
mechanisms, linear multihead self-attention offers a notable reduction in computational com-
plexity, thereby elevating computational efficiency. This efficiency is notably reflected in
training times, showcasing an improvement of over 1.2x in speed across all four datasets.
DeepCPD was assessed across four diverse datasets-PolypsSet, CP-CHILD-A, CP-CHILD-
B, and Kvasir V2-yielding exceptional recall and precision results. Specifically, it achieved
a recall and precision of 99.87% and 99.94% for PolypsSet, 98.10% and 99.89% for CP-
CHILD-A, 98.20% and 99.59% for CP-CHILD-B, and 98.40% and 97.71% for Kvasir V2,
respectively, outperforming other approaches already in use. Similarly, The several exper-
iments undertaken as part of this study for the comparative analysis utilizing competing
state-of-the-art CNN methods consistently indicate that DeepCPD surpasses state-of-the-art
deep learning techniques across all performance metrics on the four datasets. The efficiency
and generalizability of the proposed DeepCPD model were substantiated through perfor-
mance evaluations on four distinct datasets, considering metrics such as accuracy, recall,
precision, F1-score, specificity, MCC, confusion matrix, and AUC-ROC. Notably, the exper-
iment results underscored the efficacy of the proposed model even in scenarios involving
imbalanced datasets. Automating the classification process through deep learning models,
such as DeepCPD, helps alleviate inter-observer variability, ensuring consistent and reliable
assessments; this is especially critical for reducing false negatives and facilitating timely
interventions. Such models can support healthcare professionals in precisely identifying and
characterizing polyps during routine screenings.
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