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Abstract
Unsupervised video anomaly detection approaches often demand complex models and sub-
stantial computational resources for effective performance. In contrast, we introduce a
supervised and end-to-end trainable deep learning approach that leverages both performance
and computational efficiency by harnessing frame-level annotated data. The framework
begins with the utilization of an Inception encoder network in the initial stage to learn
feature representations. Notably, the Inception network’s proficiency in capturing intricate
and high-level features in frames seamlessly extends to the analysis of video data. By using
these extracted features, the model excels in identifying deviations from learned patterns,
making it highly adept at detecting anomalies in video sequences. The subsequent stage
involves a sequence of fully connected layers followed by a classifier that is responsible for
classifying input frames as either normal or anomalous based on the extracted features. To
thoroughly validate this methodology, extensive experiments are carried out on widely used
benchmark datasets. These evaluations involved comprehensive comparisons with contem-
porary approaches in the field. The experimental findings consistently validate the efficacy
and efficiency of the proposed approach, underscoring its outstanding accuracy in identify-
ing anomalies. Additionally, the approach operates with significantly reduced computational
overhead, rendering it an appealing solution for real-world applications that demand timely
and precise anomaly detection.

Keywords Video surveillance · Inception encoder · Supervised learning · Anomaly
detection

1 Introduction

In recent times, urban areas have witnessed a proliferation of surveillance camera installa-
tions aimed at capturing a wide array of real-time occurrences. The vast reservoir of video
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data amassed from these installations has underscored the need for technology that not only
identifies objects and their activities but also excels at detecting rare and peculiar anomalies
or suspicious behaviorwithin extensive volumes of data. The rapid and accurate identification
of such anomalous events or objects holds the potential to enhance security measures, opti-
mize operational processes, and facilitate informed decision-making for businesses. Video
Anomaly Detection (VAD) has garnered increased attention within the realm of computer
vision. Its significance lies in its applications, particularly in the domain of surveillance,where
it plays a pivotal role in automatically identifying anomalies, thereby enhancing safety and
security in various settings such as airports, traffic management, shopping complexes, and
educational institutions.

The challenge in video anomaly detection arises from two intertwined factors: (i) the need
to consider the contextual information when identifying anomalies [1], and (ii) the scarcity
of abnormal training data. To illustrate these factors, let’s consider a simple comparison:
running on a regular street, which is considered normal, versus running inside a bank or
any government organization, which is considered abnormal. This reliance on context leads
to an expansive array of potential anomaly scenarios. However, collecting ample training
data for various anomaly types presents a formidable challenge. Gathering video examples
for certain types of anomalies, especially those involving potentially harmful or unethical
situations, is impractical. As a result, the dependence on contextual information complicates
the acquisition of adequate abnormal training data, making it a formidable task.

Video anomaly detection can be approached through various architectural paradigms,
including reconstruction-based [2–5], prediction-based [6–8], and classification-based
approaches [9–11]. In reconstruction-based methods, the primary objective is to reconstruct
the input data, typically frames or sequences, using an autoencoder or a similar architecture.
An autoencoder comprises an encoder network that compresses the input data into a lower-
dimensional representation (latent space) and a decoder network that attempts to reconstruct
the original input from this latent representation. During training, the model learns to min-
imize reconstruction errors. Anomalies are detected when the reconstruction error exceeds
a predefined threshold. Reconstruction-based methods assume that anomalies deviate sig-
nificantly from normal data and will result in higher reconstruction errors. However, these
approaches typically suffer from a drawbackwherein themodels they rely on, such as autoen-
coders or Generative adversarial networks (GANs), necessitate retraining when introduced
to new sets of normal training videos [12].

Models centered on predictions concentrate on anticipating forthcoming frames within a
video sequence by relying on the information from the preceding frames. These architectures
use recurrent neural networks (RNNs), GANs, or hybrid architectures to make predictions.
Throughout the training process, the model acquires the capability to precisely predict the
subsequent frame or event.When an anomaly occurs, it disrupts the regular temporal progres-
sion, causing prediction errors to increase. These methods detect anomalies by monitoring
these prediction errors, often using thresholds or other anomaly-scoring mechanisms.

Classification-based approaches employ supervised or semi-supervised learning to clas-
sify each frame or sequence as normal or anomalous. In supervised settings, labeled data
with annotations indicating anomalies are used for training. The model learns to discrimi-
nate between normal and anomalous data, typically using CNNs, RNNs, or more advanced
architectures. Classification-based methods are versatile and can handle complex scenarios
with well-defined anomaly labels. In this study, we present a supervised method that relies
on the Inception architecture to classify frames as either normal or anomalous. Notably, our
approach emphasizes a straightforward architectural design while maintaining efficiency in
computational resource usage. The main contributions are summarised as follows:
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a) To address the challenge of video anomaly detection within a deep neural network, an
end-to-end trainable feature extractor based on the Inception encoder is introduced. This
feature extractor effectively captures visual features that can be accurately classified by
the classifier.

b) Through extensive experiments conducted on three datasets, the proposed framework
demonstrates competitive performance when compared to state-of-the-art techniques.

c) We performed diverse ablation experiments, encompassing cross-dataset evaluations and
assessments on datasets with noise and perturbed patches. This thorough analysis illus-
trates the capacity of our approach to generalize and remain robust, offering substantial
confirmation of the method’s effectiveness.

Thepaper’s organization is presented in the followingmanner: InSection2, an examination
of prior research on video anomaly detection is presented, followed by Section 3, which
delves into the specifics of the proposed model. The experimental configuration, outcomes,
and insights about the suggested architecture across diverse datasets are elaborated upon
in Section 4. Finally, Section 5 encapsulates the key conclusions derived from the study’s
outcomes.

2 Related work

In the literature, three distinct approaches have been identified for addressing the challenges
in the video anomaly detection task. The first prevalent approach, as observed in works
such as [2, 3, 5, 13–16], treats anomaly detection as an unsupervised method. These meth-
ods do not rely on any labeled data and are designed to detect anomalies solely based on
the characteristics of the data itself. For instance, Hasan et al [2] leveraged spatial convo-
lutional autoencoder to learn hand-crafted features for detecting anomalies. Chong et al [3]
introduced a spatio-temporal convolutional autoencoder coupled with ConvLSTM to directly
model input data for anomaly detection. To tackle sparse coding challenges,Mondal et al [13]
employed mean optical flow as contextual information to capture global anomalies. Ganda-
pur et al [14] introduced an end-to-end deep learning model combining Bi-GRU and CNN
to detect and prevent criminal activities. Their approach extracts spatial, temporal, and local
motion features, employs a focused bag approach, and utilizes a ranked-based loss for pre-
cise classification. In [15], Amin et al integrated quantum computing into CNN architectures
for video anomaly detection. They introduced two unique architectures, the deep CNN and
Javeria quantum CNN, to effectively address challenges such as occlusion, sparse anoma-
lous events, and camera movements. Additionally, Park et al [16] introduced a lightweight
autoencoder model using patch transformations to improve the learning of normal features
by generating irregular patch cuboids within normal frame cuboids. To enhance the feature
extraction and reusability authors in [5] introduced a novel ResNet-based architecture with
long-short skip connections to extract spatial information and optical flow network formotion
information. Despite the advantages, these unsupervised frameworks require complex archi-
tectures to extract spatiotemporal architectures which in turn consumes more computational
resources and thus increases train and inference times. To balance both performance and
computational complexity, researchers have explored both semi-supervised and supervised
approaches.

Secondly, in semi-supervised learning, the training dataset may have incomplete or noisy
labels. Instead of precise frame-level annotations, we might have higher-level annotations,
video-level annotations, or labels indicating the presence of anomalies in a video without
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specifying their exact locations. Authors in [17] used an unsupervised auto-encoder network
in conjunction with the weakly supervised regression model to extract representative features
from normal video clips, enhancing the discriminative characteristics between normal and
abnormal events. Multiple instance learning (MIL) is frequently utilized in weakly super-
vised methodologies. For instance, [18] pioneered an approach based on MIL, considering
a video as a "“bag” comprising numerous “snippets” treated as individual instances. They
applied a ranking loss within the MIL framework to enhance the differentiation between
the highest-scoring instances in positive and negative bags. Building upon this framework,
Zhu et al [19] further improved it by incorporating motion-aware features. Moreover, Zhong
and colleagues [20] tackled the problem of Voice Activity Detection (VAD) by treating it
as a challenge that involves clean data labeled with noise. They employed a graph convo-
lution classifier to capture temporal contexts. Weakly supervised methods may struggle to
provide precise anomaly localization within frames or clips and handle diverse and com-
plex anomalies due to weak annotations, potentially leading to false positives or missed
detections.

The third category of methods belongs to supervised learning, where models are trained
on datasets encompassing both normal and anomalous video sequences, with each frame
or segment labeled as either "normal" or "anomalous." Despite achieving remarkable accu-
racy in anomaly detection, these supervised approaches often face a significant challenge
in acquiring a substantial amount of labeled training data, a process that can be both costly
and time-intensive [21]. Nevertheless, supervised methods offer distinct advantages, deliv-
ering precise predictions and high accuracy. Furthermore, they demonstrate efficiency by
demanding lower computational resources and less time compared to unsupervised methods.
Particularly in scenarios with a well-defined and consistent anomaly type, the deployment
of these supervised models in real-time applications emerges as a practical and effective
solution.

In their work [22], Zhou et al proposed a novel approach for abnormal behavior detection
in crowded scenes, integrating anomaly detection with spatial-temporal CNN. Additionally,
Hinami et al [23] introduced a unified framework that combines generic and environment-
specific knowledge to address joint abnormal event detection and recounting. The authors
of [24] presented a feed-forward neural network leveraging features from Local Binary
Patterns (LBP) and employing K-means labeling for abnormality detection. LBP features
are extracted and utilized in the neural network, relying on characteristics labeled using K-
means clustering. Ma et al [25] proposed a partially supervised method for video abnormal
event detection and localization, utilizing only normal samples for training. This approach
employs variational autoencoders (VAE) to constrain hidden layer representations of normal
samples to a Gaussian distribution, enabling the identification of abnormal samples with
lower probabilities within this distribution. In their work [10, 26], the authors introduced a
supervised approach to improving the efficiency of detecting abnormal events/objects using
transfer learning approach.They employedpre-trainedmodels likeVGG16andMobileNetV2
as feature extractors, integrating a fine-tuned network to classify the input video frames as
normal and anomalous.

3 Ourmethod

Problem statement- The concept of video anomaly detection can be formally defined as
follows:Avideo sequence denoted asυ, is given. From this sequence,we extract a consecutive
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series of n frames, represented as υ = (i1, i2, i3, ..., in). Each frame it is assigned a binary
label, b, indicating whether it is considered normal or anomalous. In our context, a label
of 0 (b = 0) signifies that the frame it is normal, whereas frames labeled with ’1’ indicate
anomalies. Our primary objective is to determinewhether the test frame it should be classified
as an anomaly or not.

Figure 1 provides a visual representation of our proposed methodology, which comprises
three integral phases. The first phase involves feature extraction using an Inception encoder.
In the second phase, the features extracted from the initial convolutional layers are trans-
formed and processed through a sequence of four dense layers. This processing typically
involves dimensionality reduction and the extraction of higher-level features. Every dense
layer utilizes a combination of weights and biases applied to input features, incorporating
the ReLU activation function to introduce non-linearities. The progression through the series
of dense layers allows the network to learn complex patterns and relationships within the
feature maps. The transformations applied by each dense layer enable the network to capture
and represent more abstract and informative features. In the final phase, the framework cal-
culates a probability distribution and subsequently classifies the input frame as either normal
or anomalous based on thresholding. Given the constraints of limited annotated data, as well
as reduced training and inference times, this approach presents an efficient solution for video
anomaly detection.

3.1 Feature extraction and anomaly detection

In the domain of video anomaly detection, feature extraction assumes a pivotal role, serving
as a fundamental step in distilling pertinent information from video frames, thereby enabling
subsequent analysis and anomaly detection. Various researchers have proposed diverse fea-
ture extraction techniques, spanning from training models from scratch, as illustrated by [11,
22], to harnessing pre-trained models, as demonstrated by [26, 27]. Furthermore, a subset
of researchers has explored the integration of inception layers or feature pyramid networks
(FPN) with pre-trained architectures [28, 29].

The foundation of our model relies on the robust capabilities of the Inception encoder,
known for its proficiency in capturing intricate image patterns crucial for anomaly identifi-
cation. The incorporation of two Inception blocks throughout the model optimally balances

Feature extraction Classification

Probability
distribution

Fig. 1 The proposedmethodology is visually depicted through three primary stages. The first stage is dedicated
to extracting intrinsic features, followed by the second stage, which focuses on learning intricate feature
relationships. The final stage involves the output layer, where the network generates predictions
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simplicity with efficacy in video anomaly detection. These blocks play a pivotal role in
analyzing spatial relationships and feature combinations within each frame. Each Inception
block reduces the feature dimension, designed with two levels, and entails a specific com-
position as depicted in Fig. 2. The initial level of each block consists of two convolutional
layers utilizing 1×1 and 5×5 filters, in addition to a 3×3 filter Max Pooling layer. The
second level introduces a more comprehensive exploration of features, incorporating three
convolutional layers with filter sizes of 1×1, 3×3, and 5×5, each contributing to the model’s
understanding of the data. As the frame advances within the model, these Inception blocks
work collaboratively to systematically decrease the dimensionality of the feature maps. This
reduction process is fundamental in distilling the most pertinent information from the frame,
thereby preparing it for the subsequent classification phase. The Inception network can be
represented as a function fθ (it ), where θ denotes the network’s parameters. These features
are then flattened using “Flatten” layer which can be formulated as:

z0 = Flatten( fθ (it )) (1)

‘ The flattened feature vectors undergo meticulous processing through a series of dense
layers with trainable weightsw and bias b. This transformation is encapsulated by a function
hw,b(z). Let zi = hwi bi (zi−1) represent the application of a dense layer with weights wi

and bias bi to input zi−1 with activation function σ(x), where i goes from 1 to 4. Then, the
composition of these equations can be represented as:

z4 = hw4b4(z3) = σ(wT
4 · z3 + b4) (2)

In this single equation, we apply each dense layer successively to the previous layer’s
output, starting from z1 and moving through z2, z3, and finally z4. The loss function L is
calculated as the binary cross entropy loss between the predicted probabilities and the actual
ground truth labels.

L = −1

n

n∑

i=1

[yi · log(z4) + (1 − yi ) · log(1 − z4)] (3)

The decision process can be formulated using a threshold as follows:

Fig. 2 Illustration of the Inception block used for the feature extraction
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Let Panomaly represent the probability assigned to the “anomaly” class by the sigmoid layer,
and Pnormal denote the probability assigned to the “normal” class. The model computes the
likelihood of the frame it belonging to each class using the sigmoid function:

Panomaly = σ(wT
anomaly · z4 + banomaly) (4)

Pnormal = 1 − Panomaly (5)

Tomake a classification decision, a predefined threshold� is employed. If Panomaly exceeds
this threshold, the frame is categorized as an anomaly; otherwise, it is confidently labeled as
normal:

Frame Classification =
{
“Anomaly” if Panomaly ≥ �

“Normal” if Panomaly < �
(6)

This decision process utilizes the probabilities assigned by the sigmoid function to classify
the frame as either “Anomaly or “Normal” based on the predefined threshold �.

4 Experiments and results

4.1 Datasets and evaluationmetric

The UCSD Pedestrian dataset is split into two segments, namely Ped1 and Ped2, each offer-
ing unique viewing perspectives. Ped1 encompasses 34 training videos comprising 6,800
frames, and 36 testing videos comprising 7,200 frames. These videos exhibit a frame resolu-
tion of 238 × 158 pixels. Conversely, Ped2 comprises 16 training videos with 2,550 frames
and 12 testing videos with 2,010 frames. Ped2’s frame resolution is set at 360 × 240 pix-
els. In both datasets, normal scenarios feature pedestrians walking on designated pathways.
However, anomalies encompass a variety of instances, including bicycles, carts, skateboards,
pedestrians traversing grassy areas, and other vehicles.

The CUHK Avenue dataset comprised 16 training videos, each containing 15,328 frames
at a resolution of 640 × 360 pixels. Additionally, it includes 21 test sequences, each com-
prising 15,324 frames, maintaining the same resolution. This dataset predominantly portrays
individuals entering and exiting a building. It poses a significant challenge due to the pres-
ence of diverse anomalies, such as individuals tossing bags and papers, children engaged
in activities like skipping, jumping, and running, as well as instances of bags placed on the
grass.

Frames are initially extracted from the raw videos and resized uniformly to dimensions
of 224×224 pixels. To ensure consistent intensity scales across frames, the pixel values of
each frame are normalized to the [0, 1] range. Following this, frames from these datasets are
categorized into two classes: anomalies (class 1) and non-anomalies (class 0). To facilitate
effective model training and assess its performance, we divide the frames into two distinct
sets that do not overlap: the training set and the testing set, maintaining an 80:20 ratio. These
procedures ensure appropriate preprocessing and organization of the data for subsequent
analysis and experimentation. Table 1 provides additional details on these datasets.

In evaluating the effectiveness of the detection algorithm, we utilize two commonly used
quantitative metrics: the Equal Error Rate (EER) and the Area under the ROC Curve (AUC).
Additionally, for assessing classification tasks, standard metrics such as precision, accuracy,
F1 Score, and recall are utilized.
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Table 1 Dataset Statistics used for Video Anomaly Detection

Dataset #Videos #Anomalous Instance Sampling Data Partitioning
Incidents Class 0 Class 1 Train Test

Ped1 70 40 4156 4044 6560 1640

Ped2 28 12 1712 1648 2688 672

Avenue 37 47 4540 4454 7195 1799

4.2 Model parameters and running time

The Keras and TensorFlow frameworks in Python were utilized to implement the proposed
methodology. All training and testing processes are conducted on a computer equipped with
an NVIDIA GeForce GTX 1080 GPU. The average training time for the model over 20
epochs is approximately 600 seconds. During the training phase, the Binary Cross-Entropy
(BCE) loss function is employed, and the SGD optimizer is utilized with a learning rate set to
0.0001. A batch size of 8 is used, and the ReLU activation function is applied during training.

4.3 Results and analysis

We conducted a series of experiments on three datasets, and the results are depicted in
Table 2. The outcomes of our novel approach are highlighted in bold to underscore their sig-
nificance. These highlighted metrics underscore the remarkable capability of the framework
in differentiating between regular and anomalous frames across various datasets. Tomaintain
uniformity in our assessments, we utilize the same network design and training parameters
across all datasets.

In Fig. 3, a confusion matrix for binary classification of anomalies and normal data is
presented. This matrix serves the purpose of providing a comprehensive visual representation
of a classification model’s performance. From the confusion matrix, a comprehensive array
of performance metrics, such as Accuracy, Precision, Recall, and F1 score are computed

Table 2 Evaluation of AUC and EER scores in comparison with state-of-the-art studies

Methods ↓ AUC (%) EER (%)
UCSD Ped1UCSD Ped2CUHK AvenueUCSD Ped1UCSD Ped2CUHK Avenue

AMDN [30] 92.1 90.8 - 16 17 -

Spatial-temporal CNN [22]- - - 24.0 24.4 -

AL [31] 89.7 90.1 - 17 18 -

Ionescu et al [9] - 97.6 90.4 - - -

Anomaly-Net [32] 83.5 94.9 86.1 25.2 10.3 22

SIGnet [33] 86 96.2 86.8 - - -

Tian et al [34] - 98.6 - - -

Ruchika et al [11] 98.5 97.9 95.1 11 9 11.5

Mohammad et al [35] 94.2 95.1

VAD-TL [26] 98.6 99.4 95.5 4.2 2.6 8.9

Ours 98.9 99.6 98.1 3.42 1.2 1.1
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Fig. 3 Confusion matrices depicting model performance across (a) Ped1, (b) Ped2, and (c) Avenue datasets

and thoughtfully displayed in Fig. 4. These metrics offer a nuanced understanding of the
framework’s performance across various dimensions.

4.3.1 Analyzing weight distributions

The weight histograms offer valuable insights into the learned parameters of our network.
To delve into the weight distributions of our CNN layers, we concentrate our analysis on

Fig. 4 Quantitative performance metrics for different datasets
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two pivotal layers: the final convolution layer in block2 and the dense-2 layer. Figure 5
visually represents these weight distributions. A remarkable observation from these weight
distributions is their Gaussian-like characteristics. Furthermore, themajority ofweight values
cluster around zero. These findings illuminate the stability of the learning process, showcasing
the model’s ability to steer clear of extreme weight values. This stability plays a crucial role
in averting numerical instability and convergence challenges during training.

Fig. 5 Weights distributions in Inception block1_convolution layer2 (column1) and Dense layer (column2)
for three datasets
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Fig. 6 2-D t-SNE plot of features obtained from the framework for the Ped1, Ped2, and Avenue datasets,
respectively

4.3.2 Visualization of feature embeddings

The detection accuracy of a model relies heavily on how features are grouped or organized
within the target domain. We propose that our modules adapt the model and improve the
feature representation by making the grouping of features more distinguishable or separable.
To validate this hypothesis and evaluate the quality of the feature representation achieved by
our modules, we utilize t-SNE (t-distributed Stochastic Neighbor Embedding) to visualize
the extracted features from the model. Fig. 6 illustrates the t-SNE plot for the result obtained
for three datasets. By examining this plot, we can gain insights into how well our model
captures and differentiates the underlying features in the target domain.

4.4 Ablation study

4.4.1 Evaluating the generalization ability of the model

I. Cross-dataset experiment In evaluating the model’s capacity to generalize and endure
domain shifts, we conduct cross-dataset testing across three diverse datasets. To visually
represent the predicted class gradients, heatmaps were employed. However, it is crucial
to note that heatmaps generated directly from the last convolutional layer highlight acti-
vated features without specific class information. In contrast, heatmaps generated using
the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm [36] add a class-
specific context by considering the gradients associated with a target class. This approach
provides a more refined visualization, aiding in the understanding of not just what the model
is looking at but also what it deems important for a particular prediction. Thus, we employed
the Grad-CAM technique to generate heatmaps, as illustrated in Fig. 7.

Analyzing the Grad-CAM heatmaps presented in Fig. 7, several key inferences can be
drawn. The visualizations in subfigures 7b and 7f highlight the regions within the input
images that significantly contribute to the model’s predictions when heatmaps are generated
using the conventional setup. Moreover, in cross-dataset scenarios, such as Ped1 → Ped2,
Grad-CAM heatmaps allow us to discern how well the model adapts its attention to rele-
vant features despite domain shifts. However, challenges arise when transferring knowledge
between datasets with distinct characteristics. For instance, as depicted in subfigures 7c, 7d,
7g, and 7h the model encounters difficulties in adapting to the unique anomalies and scenes
presented in the target dataset. This nuanced analysis, facilitated by Grad-CAM, enhances
our understanding of the model’s performance in different domains and provides valuable
insights for future improvements.
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Fig. 7 Comparison of heatmaps generated using different setups on Ped2 and Avenue datasets. (a) and (e)
depicts the original frames of the Ped2 and Avenue datasets. (b) and (f) show the GRAD-CAM heatmaps
generated by the conventional setup. (c) and (g) display the heatmaps resulting from cross-testing between
Avenue and Ped2, and Ped2 and Avenue, respectively. (d) and (h) illustrate the heatmaps produced by cross
testing between Ped1 and Ped2, and Ped1 and Avenue, respectively

To further emphasize the limitations of cross-dataset generalization, the AUC values
exhibit significant differences as illustrated in Table 3. The Ped2 → Avenue experiment
yields an AUC of 61.42, considerably lower than the AUC of 73.77 observed in the Ped1 →
Ped2 scenario. These results underscore the difficulty of applying learned anomaly detection
patterns fromPed2 to theAvenue dataset. Similarly, theAvenue→ Ped2 and Ped1→Avenue
experiments show AUC values of 59 and 58, respectively, reinforcing the model’s challenge
in generalizing across these diverse datasets.
II. Robustness to noise

Environmental challenges such as illumination fluctuations, adverse weather conditions, and
camera degradation can significantly impact model performance. To enhance our model’s
resilience in the face of these challenges, we systematically evaluate and strengthen its capa-
bilities through both adversarial testing and adversarial training. To simulate such real-world
scenarios, we introduce perturbations to the original frames in the Avenue dataset. Specifi-
cally, we manipulate pixel values by introducing Gaussian noise across a range of standard

Table 3 Cross-domain
performance when trained on
source dataset and tested on
target dataset

Training → Test AUC (%)

Ped1 → Ped2 73.77

Ped2 → Avenue 61.42

Avenue → Ped1 60

Ped2 → Ped1 71.68

Avenue → Ped2 59

Ped1 → Avenue 58
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Fig. 8 Illustration of distorted and perturbed frames in the Avenue dataset. (a) Original frame, (b) Intense rain
effect, (c), (d), (e) depict Gaussian noise with σ values of 0.3, 0.6, and 0.9 respectively, (f) Combined noise
and rain effect, (g) Perturbed patch image, and (h) Adversarial training applied to the perturbed patch image

deviations (σ = 0.3, 0.6, and 0.9) as illustrated in subfigures 8c, 8d, and 8e. Additionally,
we apply rain effect to the frames using the Automold toolkit1 as depicted in Fig. 8b. For
adversarial testing, we train the model on original frames and assess its performance on dis-
torted frames. The results are tabulated in Table 4. From the table, it can be observed that our
method demonstrates robustness when tested with frames distorted by rain and noise individ-
ually. As expected, model performance diminishes with increasing noise intensity combined
with rain. However, notably, our model consistently outperforms expectations under these
challenging conditions. These results affirm the generalizability of our approach to unseen
data characterized by noise and diverse weather conditions.

Introducing adversarial patches [37, 38] into video frames adds an extra layer of complex-
ity and validates the model’s robustness against adversarial patch attacks. To achieve this,
we apply a spherical patch of size 30×30 to Avenue and Ped2 frames at random locations.
Subsequent experiments involving adversarial training yield impactful results, as vividly
presented in Fig. 9. The figure reveals a notable impact on the model’s performance due to
the application of adversarial training with the introduced patch. This signifies the model’s
heightened resilience against perturbations introduced by adversarial attacks, further rein-
forcing its effectiveness in the realm of anomaly detection for video frames. subfigures 8g and
8h visually depict an example of a perturbed frame and the resulting outcome after applying
adversarial training to that image.

4.4.2 Effect of different feature extractors

To assess the effectiveness of our proposed feature extractor, we replaced our Inception
encoder with established pre-trained models such as InceptionV3, VGG16, MobileNetV2,
and DenseNet201 in the proposed framework. The experimental results, represented as AUC

1 https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
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Table 4 Real-time performance
on the Avenue dataset for frame
distortions

Method Standard Deviation (σ )
0 0.3 0.6 0.9

Baseline 98.11 - - -

Only rain 66.5 - - -

Only noise 98.11 98.11 97.06 95.2

Noise+rain 98.11 62.5 55.5 51.47

scores, are illustrated in Fig. 10 to provide a nuanced understanding of our novel feature
extractor’s impact on video anomaly detection. This comparative analysis delves into specific
metrics, highlighting themodel’s strengths and contributions across diverse feature extraction
architectures.

4.5 Unveiling training insights

Analyzing the convergence plot of training loss depicted in Fig. 11, we assess the influence
of our novel deep learning model on video anomaly detection using the Avenue dataset. This
evaluation involves a comparison with two alternative networks referenced as [11] and [26].
While the training schedules for [26] and our method remain identical, [11] utilizes an input
shape of 200 × 200. All methods undergo 20 epochs of training to unveil their respective
training tendencies. Throughout the training process, all three networks consistently exhibit
a decline in training loss, indicating convergence towards minima. Notably, our inception
encoder outperforms the other networks by demonstrating a lower training loss and supe-
rior learning efficiency. These specific architectural nuances underscore its proficiency in
effectively learning and representing complex data.

5 Conclusion

In this paper, we design a novel supervised framework for efficient video anomaly detec-
tion, which is end-to-end trainable. We have demonstrated the superiority of this approach

Fig. 9 AUC scores comparison on perturbed Avenue dataset frames with Baseline and adversarial training
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Fig. 10 Comparison of AUC scores across various feature extractors

over traditional unsupervised methods, which often require complex models and significant
computational resources. Our method leverages annotated data at the frame level, striking
a harmonious balance between performance and computational efficiency. The foundation
of our approach lies in the utilization of the Inception encoder network, which excels at
learning intricate and high-level features in video frames. This network seamlessly extends
its capabilities to video data analysis, enabling the detection of anomalies by identifying
deviations from established patterns. Our extensive evaluations demonstrate the compelling

Fig. 11 Training error convergence plots correspond to the [11, 26], and proposed networks

123



78532 Multimedia Tools and Applications (2024) 83:78517–78534

performance of our proposed method, achieving impressive AUC values of 98.9%, 99.6%,
and 98.1% on the Ped1, Ped2, and Avenue datasets, respectively. Moreover, we conduct
ablation experiments that underscore the effectiveness of our network compared to several
pre-trained models. In our pursuit of comprehensive validation, we also subject our model
to cross-dataset testing, and adversarial training on these datasets to gauge its generalization
capabilities and robustness to domain shifts. It is worth noting that while our approach may
encounter challenges when confronted with unforeseen anomalies that lack representation
in the training data, and data labeling can incur significant expenses, it excels in scenarios
where the complexity of the model and performance are pivotal considerations.
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