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Abstract

Precise and automatic plant disease detection represent a fundamental research topic.
Indeed, traditional or manual disease detection can be laborious, inaccurate and time-con-
suming. In this work, a particular attention is given to automatic potato late blight dis-
ease detection. In fact, this devastating pathogen leads every year to a significant reduc-
tion in potato yields. In addition, since potatoes are a major food source for many nations,
decreased production generate a real food insecurity. Therefore, considering these chal-
lenges, using advanced techniques in computer vision and machine learning allowed farm-
ers to swiftly and accurately identify disease. The main objective of this research work is
to generate a super-resolved labeled dataset (SRD) and evaluate its impact on plant disease
detection. Three states of the art object detection methods (Faster-RCNN, Detr and Yolo
V8) have been used to conduct an exhaustive evaluation on the effect of using a super-
resolved dataset to perform detection. The obtained results show that the detection of
potato late blight disease is enhanced using SRD. Training Yolo V8 model on SRD outper-
form other trained models in detecting very small lesions. In fact, training Yolo V8 on SRD
reached higher mAP, lower Loss values and a reasonable inference time, making it suitable
for real time applications.
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1 Introduction

Currently, more than 60% of yield losses in agriculture are due to plant diseases. In order
to identify plant diseases, traditional agricultural management practices use plant pathol-
ogy technique, namely methods related to the chemical analysis of the infected area of
the plant, and physical methods such as spectroscopy. These techniques obviously require
qualified people intervention and can be very expensive. So, developing automated and
low-cost plant disease detection methods becomes imperative. The majority of automated
methods proposed in the literature are based on computer vision and artificial intelligence
techniques. In fact, software-based products can perform vision-based tasks with greater
accuracy than human experts. The main objective of automatically detecting plant dis-
ease is to rapidly and accurately diagnose plant disease. This process involves capturing
images of plants (plants leaves), analyzing them and then providing a diagnosis. However,
vision-based plant disease detection algorithms are faced with many challenges such as
complexity of disease, lighting variations, low resolution of acquired image, lack of labeled
data (for training accurate machine/deep learning model). This article proposes to evaluate
effect of super-resolved plant disease images for early automatic and precise detection of
potato blight disease (caused by phytophthora infestans). In fact, increasing resolution of
images is an important processing step, allowed to obtain precise and reliable data, offering
advantages in several areas such as vegetation/urban detection, precision agriculture, land
use/land cover, change detection and in many other fields of computer vision applications.
The main objective of super-resolution techniques is to generate a higher resolution image
(HR) from lower resolution images (LR). In this work, a new method is developed, that
allow to accurately detect disease on plant leaf. This method involves Super-resolved plant
leaf images dataset by training EDSR model on the healthy/diseased plant leaves dataset.
Then training three recent object detection models in order to detect late blight disease on
plant leaf diseased images, using standard and super-resolved dataset.

2 Related works

Detecting diseases of plant leaf from images use traditional image processing technique
and advanced one. Traditional classical image processing technique analyze visually
observable patterns seen on the plant. Segmentation-based methods determine the differ-
ence in the color, texture and shape of the affected area, by dividing plant leaf image into
different regions then analyzing each region for signs of disease. These methods can also
be used to identify the type of disease present, as well as to monitor the progression of the
disease over time. Dey et al. [1] describe the process of capturing images of the leaves, pre-
processing the images to remove noise and enhance contrast then implement Otsu thresh-
olding-based image processing for segmentation of leaf rot diseases in betel vine leaf.
Features extraction methods involves extracting various features from plant leaves images.
These features can then be used as input of classification algorithms to classify plant as
healthy or diseased. The authors in [2] select the most relevant features using fuzzy feature
selection technique (Fuzzy curve and Fuzzy surface) to improve classification accuracy.
Advanced techniques mainly use deep learning architecture. Neural networks models
can be trained on a large dataset of plant leaves images to learn the features that differenti-
ate healthy and diseased plants. The model can then be used to make prediction on new
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plant leaves images. Figure 1 shows the required steps for automatic identification of plant
diseases using machine/deep learning approaches.

A summary of most recent proposed approaches for automatic plant disease classifica-
tion and detection are shown in Table 1.

From Table 1, we can observe that deep learning-based technique model outperform
segmentation, feature extraction and classification techniques. Segmentation based tech-
niques present a smaller computational complexity but don’t consider low contrast and
defaults illumination of acquired image, so hardly achieve good plant disease detection
results.

In [3, 5, 7], the authors used SVMs to classify leaf images as healthy or infected with
various types of diseases, SVMs are generally used after different features extraction steps.
However, SVMs require hand-crafted features, which can be time-consuming and limit the
model’s ability to learn complex features. SVMs are also combined with deep learning
models to recognize four types of rice diseases [11], using the strengths of both approaches
allow the authors to achieve high accuracy.

Deep learning and specifically Convolutional Neural Networks (CNNs) architecture
are commonly used in plant disease classification task. Ferentinos et al. [8] fine tune five
different CNNs architectures (AlexNet, GooLeNet, VGG-16, ResNet50, InceptionV3) on
new plant disease dataset. The authors compared their performance in terms of accuracy,

Construct the dataset: Collect plant
leaf images (Healthy/Diseased)

v
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v

Split the dataset into Training, testing and
validating sets
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Fig. 1 Automatic identification of plant disease

v

Testing and evaluating model
performance

@ Springer



Multimedia Tools and Applications (2024) 83:78469—78487

78472

S)oseIEp pojudwSne pue [eurSLo
ur sfopowr Surures] Jojsuen) o) paredwod sonfea 1say3Iy
%166 o3e[[IAIUR[] 9} PIASIYDE AIMIAIYIIE JONIUSIYJH JO S[9polll g pue ¢ 1202- [€1] ‘T8 10 BV
UONBOYISSE[O JOJ Pasn SI poyjowt
JNAS "SeIned) g/ ] 0 SuIpes] [auueyd I0[0d Yord WOIf

%596 QIM[NOTISE [eaI YY) WOIJ PIJI[[0 sagewr 619 PJOBIIXD AI8 SAINJEo] 4 ‘pasn aIe sooeds J0[00 JUAISHIP T  [Z1] 1207 — Te 10 BARISBALIYS
NAS snjd anyesy doop pue Suruesd|

%8E°86 9SBASIP 9011 JO $adA) Inoy Jo safewlt pEY-uo 7E6S JIojsuen) SuISn payNUAPT 9Ie SASLASIP Jea[ 9011 Jo sadA) mog 0202Z- [11] Te 10 Ayres
pasodoid
sem (NNDQ-]A) JIoMmIau [eInou [eUONJOAUOD PIseq-XLIjeut

%71°06 SOSBISIp Jea[ 1BayM ISJUIM JO SaSewl pajuawsne 097°c8 oY) Sunousp (NND) JI0MIoU [EINAU [RUOTIN[OAUOD PAYTUN Y 6102 [01] Te e Z ‘ury

%L’ L6 SQABQ[ 931) OSURIA ) Jo sagewll ()L0] SQSBASIP Jeo] oSurwW AJIJUIPI 0] pasn SI NND JoAe[nnur v 6102 [6] ‘T8 12 y3urg
(DDA PUE 18OJI0AQ) ‘PONOTS00D UG L MO PUXI[Y

%€S°66 o3ewr g4,8°¢/.8 Jo aseqeiep uadQ  1OUXI[Y) S[opow NND Surures] doop 2ay usamieq Jurredwo)) 8102 [8] "Te 10 sounuardg
IOYISSE[d JNAS UO PIseq S[opow 21y} Ures) 0}

%06 oSe[[IA Jue[d SUONBUIQUIOD JIAY} PUE ‘SOINJEOJ 9INIX9) ‘SAINJeaf IN0J0d SuIsn) [£] 810 — 'Te 10 mey]

syue[d oyewo) ur sysad pue sasISIP
10919p 03 (ASS) PU® ‘(NDA-) -NND-Y-19158d) S1010939p
%€8 wey woij sagewt )00S 21y} Yym paulquiod yoeoidde poseq-Surured[-dosp Sursupn (L102) [9] ‘Te 12 soyuong
UOTJBOYISSE[O dSSB[I-)I[NUI 10] Pasn
uay) ST NAS 2Imxa) pue adeys I0[0d :pIJIRNXI IR SAINJLIY
JO $91103918D 921 ], ‘UONLIUAWSIS J0J SULIAISN[D SUBIW-Y]

%08 Jeo[ 2011 Jo soSewr parnides gz poseq SuIpag) opronuad Jursn pauriofIad ST UONORIIXS SAINTLA,] (L102) [S] T8 30 nedelerg
saseasIp 9z pue saroads doxd

%G€° 66 a3e[[IAJUR]d  $] AJUSPI 0) PauTel SI IOMIOU [RINAU [BUONN[OAU0D dodp Y [#] 910T — 'Te 30 KyueyoN
uoneIyISSe[d

JIOJ Pasn SI SUOTOUNJ [QUIY JUIPIP YIIM wyiLIoS[e (JNAS)
auryoew 103994 11oddng “josqns amjed) rewndo ue AJnuopt
0) pokordud 218 SJUSWAINSEIW OLI)AWO0IT JWOS Juow3as
%06 S93ew Jes] 0JBWIO) PAJOAJUI )07 YOBS 10} pareard 10idrIosop pue pajuswidas st agewr indur yoeq [€] STOT -'Te 30 Teay[ON

UOIS10a1g/K0BIND0Y josereq uondrrsaq STeOA- S10UINY

UOI109)ap puk UOTEIYISSe[d aseasIp jueld onewoine 10y sayoeordde pesodoid jueder jsowr Jo Arewrung | ajqel

pringer

Qs



78473

Multimedia Tools and Applications (2024) 83:78469-78487

BLI9)ORq pue snduny 1oj saseasip juefd
ay) AJISSe[O 0} JOpIO Ul POYIoW () S JTWeuAp pue [opout

%S°66 J0(QIUB[d  YTOMIU [BINSU 1] sanbruyde) 2oua[oIuT [RIOYTIE A1) SUIS) €202- [81] 'Te 10 Isemereg
‘romod reuoneindwod Surkrea A[pim yim suwioped
arempiey uo uonerado Jurqeus ‘QIMONNs JI0mJu AY) [o1
-uod A[restwreuAp o3 93e3 Jurunid dSrwreukp € Jo uondnponul
KI0)STY TBAA-931Y]) B JOAO SISBISIP pUB SHI0M)SU [BINSU [RUOIIN[OAUOD JO AovIndde Sunsooq
%16 21 Jo 12101 ® aim sdoId Inoj J0J S19SBIRp JO UONI[[0D a3y aaoxdur 0] poyjowr uonezielowered-a1 e Jo uonisodoid €20z- [L1] TR NI
%001 93e[[IA Jueld -
%66 1JoseIep 9SeasI(] JeT o1y - uoneoyIsse[d aseasip jue[d oy 1oy payudworduwr
%86 1JoSBIEP UOTJBOYISSE]D) 1SNy 1By - U99q JABY JOWLIOJSUBI], UOISIA pue NN JO UOTJRUIqUIOD Y/ 2202- [91] Te 10 ueyIOg
saewr Jeoy Jued
pardde oy 03 sjaqe] ssefd 1adoid 9yeo0[[e 0) PazI[NN SI JAYIS
-SB[o paseq (IN'TH) QuIyoew SUTUIEd] SWANXS pue WIrIos[e
(0d3) 19zmundo urnduad Joxadwa jo asn ayy £q pazrwundo
are s1ooweredrodAy oy :pawrtojrad st (NNDNINO) JHom
%86 pauonuaw JON -JoU [EINAU [BUOIIN[OAUOD PIsEq-YIOMION J[IQOIA [ewndQ  zz0g- [ST] ‘Te 10 JewnyuImysy
NND 991 (iim pajerodioour are sonpowt
%LTS Poqueld  NVD Juareyip ‘pasodoid st J10m1oU UOT)O)OP UOTIN[OAURI], 2202-[+1] e 10 Sueyz
UOISIOIJ/ARINOoY 1aseIRQ uonduosaq sIeaA- s1oyIny

(ponunuoo) | sjqey

pringer

As



78474 Multimedia Tools and Applications (2024) 83:78469—78487

precision and recall and found that VGG-16 achieved the highest accuracy. When fine-
tuning a pretrained model, the weights of the model are updated during training on a new
dataset. By doing this, the new model can benefit from the feature extraction capabilities of
the pretrained model. Fine tuning a pretrained model has been shown to improve accuracy
and reduce the amount of time and resources required for training. Ashwinkumar et al. [15]
propose a modified CNN-based model and introduce a new optimization technique called
emperor penguin optimizer (EPO), to prevent overfitting and improve the generalization
performance of the model. Their method outperforms other CNN-based model in terms
of both accuracy and computational efficiency. Zhang et al. [14] improved CNN network
by adding two generative networks models and use a modified Vision transformer network
(ViT) to improve CNNS ability to capture global feature as a branch network. The model
has a low inference speed but achieve high precision. Borhani et al. [16] compared between
a simplified version of the ViT model, a CNN-based model and the hybrid model which
included the combination of the CNN and ViT. Higher accuracy was achieved by ViT
based model, however, an improvement in speed prediction was attempt by combining the
attention blocks with convolutional blocks. Recently, a deep neural network based on an
automatic pruning mechanism is developed to enable high-accuracy plant disease detection
even under limited computational power was proposed by Liu et al. [17]. Sarawast et al.
[18] proposed (Modified-MDNN) algorithm by using DSURF(Dynamic-SURF) features
and also shows the comparative analysis between DNN and MDNNN performance.

It is important to note that the performance of all machine learning proposed methods
depends on the diversity of the dataset used for training and testing the model. In fact,
the dataset should be diverse and representative of the type of desired disease recogni-
tion. Increasing diversity of training dataset is necessary especially when large datasets
aren’t available. This process is performed by data augmentation. Shorten et al. [19] make
a survey on different data augmentation technique proposed in the literature. They present
existing methods for Data Augmentation (color space augmentations, geometric transfor-
mations, kernel filters, mixing images, random erasing, feature space augmentation, Noise
injection, Adversarial training, neural style transfer), promising developments, and meta-
level decisions for implementing Data Augmentation.

3 Methodology

In this section, we describe the proposed methodology to perform plant disease detection.
We firstly super resolve dataset using enhanced deep super-resolution network architecture
(EDSR) and then perform detection and recognition steps using Faster R-CNN, YoloV8
and Detr models. A short description of super-resolution concept, EDSR architecture,
Faster R-CNN, YoloV8 and Detr architectures is given below.

3.1 Super-resolution

Super-resolution methods use information from several different images (multi-image
super-resolution (MISR)) or only one image (single-image super resolution (SISR)) to
create one upsized image. Three categories of SISR approaches can be distinguished:
reconstruction-based approaches, use a priori information to recover the HR images;
interpolation-based approach that reconstruct HR images using existing pixels to interpo-
late missing pixels, learning-based approaches use dictionary pairs of training and testing
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images to predict HR images [20]. The recent developments in deep learning have fur-
nish many tools to resolve SISR problem. Several deep learning architectures like CNNss
[21], Residual CNNs [22] GANSs [23] and DNNs [24] have been proposed to reconstruct
high resolution image from low resolution image. Multi-image super-resolution approaches
expect to reconstruct high-resolution details using multiple low-resolution images of the
same scene (acquired from the same or different sensors). Deep learning based MISR
methods achieved satisfactory results [25, 26] but depends on the fidelity of the training
datasets. Optimization-based iterative MISR methods solve the problem in the spatial and
frequency domains [27]. In frequency domain, multiple images are combining with sub-
pixel displacements to enhance resolution. Due to difficulties to use a priori knowledge as
regularization, many spatial domain MISR techniques were proposed. These include the
maximum likelihood (ML), the maximum a posteriori (MAP), and the projection onto con-
vex sets (POCS) [28, 29].

3.2 Edge enhanced deep super- resolution network

A particular attention is given to SISR learning methods. Recent comparative studies [30,
31] identified the Enhanced deep super-resolution network architecture (EDSR) proposed
by Lim et al. [32] and the Enhanced super-resolution generative adversarial networks
(ESRGAN) proposed by [33] as competitive approaches in the field of super-resolution
task. While ESRGAN architecture is well- known for its capability to reconstruct fine
details and textures and enhance perceptual quality, it may introduce artificial details which
is undesirable in the domain where precision and accuracy are imperative. Furthermore,
ESRGAN is a GAN based model that requires carful training process (leading to a signifi-
cant challenge when computational resources are limited). In contrast, the training process
in EDSR architecture is simple, it requires only a single loss function to optimize. EDSR
architecture is relatively intuitive and represents an optimization of super resolution resid-
ual network architecture (SRResNet) [34]. Unnecessary modules are removed to simplify
the network. In fact, it requires only a single loss function to optimize. The authors in [32]
found that removing Batch normalization allow to save 40% of memory usage during train-
ing compared to SRResNet. Moreover, EDSR enhance image resolution while maintaining
high fidelity to the original image (Better PSNR and SSIM values compared to ESRGAN
super-resolution results). This is crucial in plant disease identification context where accu-
rate representation of vein patterns, disease lesions and edges are essential.

3.3 Region-convolutional neural network (R-CNN)

Region with CNN features (R-CNN model) are a popular object detection and localization
framework developed by Ren S et al. [35]. R-CNN architecture involves three modules.
The first generates category-independent region proposals. The second extract features
from each proposed region using pretrained CNN. The last module ensures object clas-
sification and bounding box regression. R-CNN suffers from several limitations such as
slow inference speed, high memory consumption and multistage training. These limitations
have motivated the development of optimized version of R-CNN such as Fast-R-CNN [36],
Faster-R-CNN [37] and Mask-R-CNN [38]. Fast R-CNN uses a single CNN to extract fea-
tures from the entire image and then generates region proposals from the feature map. Fast
R-CNN model consists of a single-stage compared to three stages in R-CNN. Fast R-CNN
samples multiple ROIs from the same image by using a new layer called ROI pooling that
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extracts equal-length feature vectors from all proposals. This makes Fast- R-CNN detection
model faster and more efficient. Faster R-CNN is an extension of fast R-CNN. The archi-
tecture of Faster R-CNN consists of 2 modules:

— Region Proposal Network (RPN) is built for generating region proposals.
— Fast R-CNN is used for detecting objects in the proposed region

3.4 Detection transformer model (Detr)

Detr perform prediction and generate the final set of detections by combining a common
CNN with a transformer architecture. The authors in [39] propose to resolve object detec-
tion task as a set prediction problem and use transformers and bipartite matching loss. Detr
object detection model uses self-attentional transformers to process input images, producing
a fixed set of detection directly, without using proposal networks (RPNs) and non-maximum
suppression. It is important to note that the transformer architecture used in Detr is compu-
tationally intensive and training large Detr models consume a large amount of memory.

3.5 You only look one model (Yolo)

Yolo detection model [40] addresses object detection as a single-stage, end-to-end process.
It uses a simple deep convolutional neural network to detect objects in the image. The input
image is divided up into a grid of cells. The grid size is typically determined by the architec-
ture of the YOLO model. After that, Yolo predicts bounding boxes that contain the objects
found in each grid cell. The bounding box values ((x, y) coordinates of the box’s center, width
(w), and height (h)) are relative to the cell’s size. A confidence score is then added to each
bounding box to indicate the presence of an object. A class probability is also assigned using
SoftMax activation. Only the most confident bounding box with high probability are selected.
This model has 24 convolution layers. 4 max-pooling layers, and 2 fully connected layers.
1*#1 convolution followed by 3*3 convolution are used to reduce number of channels. Yolo
predicts multiple bounding boxes for each grid cell and filters them based on their confidence
score and overlap with the anchor box. There are several versions of Yolo, the most recent
one being YoloV8 [41]. YoloVS8 architecture focuses on performance and speed achieving
cutting-edge results on a number of benchmarks. YoloV8 predicts the center of an object
directly instead of predicting the offset from predefined anchor boxes. This is called anchor
free detection and allows reducing the number of box prediction. YoloV8 uses Mosaic aug-
mentation (stitching four images together) and augments images during training online. At
each epoch, the model sees a slightly different variation of the images it has been provided.

3.6 Proposed method

The proposed method was tested on potato plant leaf to detect Late Blight disease. Model
detection training process was release using the plant leaf images taken from the popular
PlantVillage dataset (https://www.kaggle.com/datasets/emmarex/plantdisease). Figure 2
displays examples of potato plant leaves images. Figure 2(a) shows a healthy potato plant
leaf, while Fig. 2(b), (c) and (d) show various forms of late blight lesions on potato plant
leaves.
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(b) (d)

Fig.2 Healthy and diseased potato plant leaves images. (a) Healthy potato plant leaf, (b), (¢) and (d)
infected potato plant leaves

In order to diversify and increase the training set, the potato plant leaf (Healthy and
diseased) dataset was firstly augmented using geometric and color space transforma-
tions. A pretrained EDSR model for transfer learning was then used to upscale images
by factor 4x. The evaluation of the effect of super-resolution on plant leaf disease detec-
tion is doing by training three object detection models with transfer learning on the two
datasets (Standard Dataset (SD) and super-resolved dataset SRD). Typically, training
Faster-RCNN, Detr and Yolo V8 object detection models requires input images to be of
a specific size for optimal processing. In this work, the Standard dataset contain potato
plant leaves images (healthy and diseased) of size 256 X256. The Super-resolved dataset
contain potato plant leaves images (healthy and diseased) upscaled to 1024 x 1024. The
Super-resolved dataset (SRD) and the standard dataset (SD) are then split into training
set (70%), testing set (20%) and validation set (10%). The block diagram of the proposed
method is depicted in Fig. 3.

Choose Dataset Standard Annota.ting objects
&Performe Data Dataset (SD) of interest
augmentation

\4

Super-resolve dataset on
healthy/diseased plant leaf images [~

Super-resolved

Split the dataset into
Dataset (SRD)

Training and testing
sets

! ! ¥

Training/Validation Training/Validation Training/Validation
Faster-R-CNN model Detr model Yolo V8 model
v

Evaluating models performance
on testing sets

Fig. 3 Block diagram of the proposed method
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4 Experiments and results
4.1 Hyperparameters and setting

All training experiments were run on a machine with 10 GB RTX 3080 GPU, 10th genera-
tion i7 CPU, and 32 GB of RAM. Faster R-CNN, Detr and YOLOVS training process are
performed on PyTorch framework. The learning rate is set to 0.0001 and the batch size to
8 with Adam optimizer. The smooth L1 is used for bounding box regression tasks. In this
work, Faster R-CNN use ResNet50 as backbone network [39], region proposal consists of
convolutional layers followed by fully connected layers and use the feature map coming
from the backbone network as input. Detr use the ResNet-101 architecture as the back-
bone network [42] and incorporates deformable convolutions networks (DCN). Yolo V8
use CSPDarkNet as backbone network [43]. The size of SD and SRD datasets is 918 before
data augmentation process and 2204 after data augmentation process.

4.2 Metrics evaluation

The quality assessment of super-resolution results is generally performed using PSNR and
SSIM metrics. It describes the similarity between the predicted (upscaled) image and the
ground truth image.

e Peak signal to noise ratio (PSNR)

The PSNR is calculated using the Mean-Square-Error (MSE) of the pixels and the max-
imum possible pixel value (MAX) as follows [44]:

MAX (x,y)* )

PSNR(x,y) = 10.log < MSE (x,y)

e Structural Similarity Index Measure (SSIM)

The SSIM measure the similarity between two images. SSIM is designed to improve
PSNR metric, which have proven to be inconsistent with human eye perception.

2.x.5+ C)QR.0y+Cy)

SSIM = >
(()_c) + () + C1> + (o2 +02+Cy)

X
C, = (k,L)* and C, = (k,L)* are two variables used to stabilize the division with weak

denominator; and L represents the dynamic range of the pixel values. The common values
for k; and k, are 0.01 and 0.03, respectively [45]

The evaluation of object detection results, in our case Late Blight disease detection is
doing by calculating some metrics [46]. The detection results are compared to the manually
labeled data (ground truth annotations) to determine how accurately the detection method
performed.

where o,, o, are the variance of x and y respectively, o,, is the covariance of x and y.

e Precision/Recall
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Precision measures the proportions of correctly predicted bounding boxes among all
predicted bounding boxes.

TP

Precision = ———
TP + FP

Recall measures the proportion of correctly predicted bounding boxes among all ground
truth bounding boxes.

TP

Rcall = ———
TP + FN

e mean Average Precision (mAP50-95/mAP 50)

mAP 50-95 refers to the mAP computed over a range of intersection over Union (IoU)
thresholds from 0.5 to 0.95. IoU measures the overlap between the predicted bounding
boxes and the ground truth bounding boxes. To compute mAP 50-95, the precision and
recall values are calculated at each IoU threshold within the range.

mAPS50 refers to the mAP at IoU threshold of 0.5 mAp 50 is used as a standard bench-
mark to evaluate the performance of object detection models. It provides a measure of
how well the model can detect objects with a reasonable level of overlap with the ground
truth.
_ Area of Overlap

loU = -
Area of Union

AP is calculated across a set of IoU thresholds for each class k and then take the average
of all AP values.

k=n
mAP = 1 Y AP,
A

AP, is the AP of class and n the number of classes.
e Training/validation loss box

The training and validation loss is usually used to diagnose the model’s performance
and identify which aspects need tuning. Training and validation Loss Box measure the dif-
ference between the predicted bounding box coordinates and the ground truth bounding
box coordinates. Common loss functions include mean squared error and smooth L1.

4.3 Results and performance analysis

Figure 4 shows an example of potato plant leaf infected by late blight disease. Figures
(a) and (b) shows the original images. Figure (c) and (d) shows the corresponding super-
resolved images (Upscaled image by factor x 4).

A zoomed-in patches of the original image and super-resolved one are displayed in
Fig. 4. The PSNR and SSIM value are mentioned at the bottom of figure (c). From the
obtained results, we can see that the EDSR architecture allow a good preservation of high
frequency details and achieve a high SSIM and PSNR values.
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(b) (c) PSNR=31.31/SSIM=0.8834

Fig.4 Infected potato plant leaf: (a) Example from SD dataset, (¢) Example from SRD dataset

Table 2 summarizes the obtained automatic detection results. Each model was run for
50 epochs. Performance assessment of the proposed method is performed by comparing
mAP, Precision and Recall of the six trained models:

— Train and validate Faster-RCNN on SD and SRD
— Train and validate Detr on SD and SRD
— Train and validate Yolo V8 on SD and SRD

From Table 2, it can be observed that training detection models on super-resolved data-
set (SRD) improve the detection results. In fact, Faster-RCNN SRD, Detr SRD and Yolo
V8 SRD achieve high mAP at 0.5 IoU threshold compared to Faster-RCNN ND, Detr SD
and Yolo V8 SD. Yolo V8 SRD model outperform all the other trained models in term of
mAP, precision and Recall.

The performance of the proposed methods is also performed by analyzing the training
and validation process for the six models, represented by mAP 50-95 validation curves
(Fig. 5) and by Training/Validation Loss Box curves (Fig. 6).

Table 2 Performance comparison Model mAP 50

of the six detection models Precision Recall
Faster-RCNN SD 0.76 0.71 0.69
Faster-RCNN SRD(Ours) 0.84 0.81 0.82
Detr SD 0.75 0.69 0.67
Detr SRD (Ours) 0.82 0.77 0.80
Yolo V8 SD 0.88 0.84 0.86
Yolo V8 SRD (Ours) 0.94 0.90 0.88

@ Springer



78481

Multimedia Tools and Applications (2024) 83:78469-78487

(s1n0)
ayS-S6-0SdVYW ———

dS-S6-05dVW ==

0s

sysod3y
og 0c o1

G6 05 dew™uouepi|ea -gAO|OA

syood3y
0s Or 0€ O0r O1

(sino) a¥s
-G6-05dVW ——

as
~§6-0SdVW ——

G6 0§ dew™uonepijea siaq

T0
0
€0
7’0
S0
90
L0

(s4n0) a¥s
-56-0GdYW ——

4s-S6-05dVW ——

G6 0§ dew™uouepijeA-NNDY-1931se4

T0
0
€0
0
S0
90
L0
80

0s

soAInd uorsioald a3eroae uesly ¢ ‘b4

pringer

A's



78482 Multimedia Tools and Applications (2024) 83:78469—78487
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Fig.6 Loss curves for training and validation data

For Faster- RCNN SD, after the last epoch, the mAP (50-95) is 0.58 but this is not
the mAP for the best epoch. The model achieves the best mAP after epoch 32 where
the mAP is 0.6. We observe that best mAP(50-95) for the other models are not achieved
at last epoch. Indeed, the mAP (50-95) for Faster RCNN SRD is 0.63 at epoch 35, 0.6
for Detr SD at epoch 27, 0.62 for Detr SRD at epoch 29, 0.71 for Yolo V8 at epoch 32
and finally 0.76 for Yolo V8 at epoch 30. The best mAP (50-95) is achived by Yolo
V8 SRD model. The models trained and validated on SRD achieve better mAP(50-95)
overall.

Figure 6 shows training / validation Loss Box, they are visualized together on a graph
for the six models.
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All the models perform good localization of the object (in our case detecting late blight
disease on potato plant leaf). In fact, the training loss box and validation loss box both
decrease, converge to a low value and stabilize at a specific point. However, the lower
value of Training/Validation Loss Box is attempted by Yolo V8 models: 0.055 for train-
ing on SD dataset, 0.047 for validation on SD dataset, 0.045 for training on SRD dataset
and 0.031 for validation on SRD dataset. The training results can be further optimized
using more powerful hardware, that allow using larger batch sizes and improve conver-
gence (Fig. 6).

Figure 7(a)...(f) display detection results (localization of late blight lesions on potato
leaf according with their corresponding confidence) using the six trained models on
infected leaf image taken from test set. Figure 6(a)-(b) show detection results using Fast-R-
CNN-SD and Fast-R-CNN-SRD. Figure 7(c)-(d) show detection results using Detr-SD and
Detr-SRD. Figure 7(e)-(f) show detection results using Yolo V8-SD and Yolo V8-SRD. By
comparing the obtained results, we can see that training models on super-resolve dataset
enhance detection. In fact, five late blight lesions were detected using Yolo V8-SRD com-
pared to Yolo V8-SD which detect four lesions. Yolo V8- SRD detect a very small lesion
with high confidence (0.95). In addition, four late blight lesions were detected using Fast-
R-CNN-SRD and Detr-SRD compared to Fast-R-CNN- SD and Detr-SRD which detect
only three lesions.

Finally, the training and inference time of the six trained models is calculated. This eval-
uation is interesting in scenario when real-time plant disease detection and monitoring is
required.

L-Blight 0,92

(e)

Fig.7 Automatic potato late blight detection results on test image. (a) Faster-RCNN-SD detection, (b)
Faster-RCNN-SRD detection, (¢) Detr-SD detection, (d) Detr-SRD detection, (e) YoloV8-SD detection, (f)
YoloV8-SRD detection
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Table 3 shows the training time of the six trained models. According to adjusted
training parameters (previously presented in Sect. 4.1), Yolo V8 SD/SRD and Faster
-RCNN SD/SRD take the least training time. Faster-RCNN require more training time
than Yolo V8 because, Faster-RCNN model employs selective search to propose regions
and uses a CNN architecture to process these regions (which can be time consuming).
Yolo V8 combines the tasks of object classification and localization into a single stage
making the training process significantly faster. Detr achieve the longer training time
due to the large number of parameters that need to be trained and the complexity of
transformers.

Inference time refers to the amount of time it takes for a trained model to make pre-
dictions on unseen data. For more accurate assessment, the inference time is calculated
for 20 different input images (20 Standard inputs with original resolution and 20 super-
resolved input images). The obtained results, depicted in Table 4 show that the lowest
inference time is achieved by Yolo V8 SRD, 12 ms, when the model process Standard
input images and the highest inference time, 91 ms is achieved by Detr SD when the
model process Super-resolved input images. As demonstrated in previous results, train-
ing Faster-RCNN, Detr and Yolo V8 models on super-resolved dataset improve the mod-
el’s ability to precisely detect small lesions, However, processing high resolution images
lead to increasing inference time of the models. In fact, inference time of the six trained
models is higher when input images are super-resolved. From Tables 3 and 4, we can see
that using higher resolution images increase both training and inference time. Based on
all the obtained results, we can summarize that Yolo-V8 (SRD) maintain a good balance
between detection precision and inference time.

Table 3 Training time evaluation

Model Train-
ing time
(Hours)
Faster-RCNN SD 14.78
Faster-RCNN SRD(Ours) 16.37
Detr SD 22.92
Detr SRD (Ours) 24.10
Yolo V8 SD 8.42
Yolo V8 SRD (Ours) 9.10
Table 44 Average inference time Model Average inference time (Millisec-
evaluation
onds)
Standard input Super-
images resolved input
images
Faster-RCNN SD 52 65
Faster-RCNN SRD(Ours) 50 54
Detr SD 80 91
Detr SRD (Ours) 73 86
Yolo V8 SD 16 22
Yolo V8 SRD (Ours) 12 19

@ Springer



Multimedia Tools and Applications (2024) 83:78469-78487 78485

5 Conclusion

In this work, three object detection models (Faster-RCNN, Detr and Yolo V8) were
trained on two types of datasets (Standard dataset (SD) and super-resolved dataset (SRD)).
A comparison between the six trained model were conducted. The experimental results
showed that achieving a precise recognition and localization of potato late blight disease
are improved by training object detection models on super-resolved dataset. The obtained
results showed promising results in achieving high mean Average Precision (mAP). Train-
ing Faster-RCNN, Detr and Yolo V8 on super-resolved dataset (SRD) outperformed other
trained models. Using high resolution images dataset allow to detect very small lesions
on the leaves at the cost of a small increase in training and inference time. The hardware
resources and specifications must be taken into consideration, more powerful hardware
can process complex architectures or higher-resolution input images faster. Note that, to
deploy a plant disease detection model on smart device, a specialized inference engines
like TFLite or OpenVINO must be used to optimize models for specific hardware. We can
then conclude, that there is a fundamental compromise between precision and inference
time, the increased resolution can capture more details, which is important for detecting
small lesions on infected plant leaves, but it results in slower inference time and require
more computational resources. In the future, performance of the proposed method could be
evaluated and generalized to automatically detect and localize other types of plant diseases.
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