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Abstract
Hyperspectral Image Processing (HSIP) is an essential technique in remote sensing. Cur-
rently, extensive research is carried out in hyperspectral image processing, involving 
many applications, including land cover classification, anomaly detection, plant classi-
fication, etc., Hyperspectral image processing is a powerful tool that enables us to cap-
ture and analyze an object’s spectral information with greater accuracy and precision. 
Hyperspectral images are made up of hundreds of spectral bands, capturing an immense 
amount of information about the earth’s surface. Accurately classifying and predicting 
land cover in these images is critical to understanding our planet’s ecosystem and the 
impact of human activities on it. With the advent of deep learning techniques, the pro-
cess of analyzing hyperspectral images has become more efficient and accurate than ever 
before. These techniques enable us to categorize land cover and predict Land Use/Land 
Cover (LULC) with exceptional precision, providing valuable insights into the state of 
our planet’s environment. Image classification is difficult in hyperspectral image process-
ing because of the large number of data samples but with a limited label. By selecting 
the appropriate bands from the image, we can get the finest classification results and 
predicted values. To our knowledge, the previous review papers concentrated only on 
the classification method. Here, we have presented an extensive review of various com-
ponents of hyperspectral image processing, hyperspectral image analysis, pre-processing 
of an image, feature extraction and feature selection methods to select the number of 
features (bands), classification methods, and prediction methods. In addition, we also 
elaborated on the datasets used for classification, evaluation metrics used, various issues, 
and challenges. Thus, this review article will benefit new researchers in the hyperspectral 
image classification domain.
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1 Introduction

Hyperspectral Imaging (HSI) development traces back to the early 1970s when NASA 
started developing airborne imaging spectrometers to study the Earth’s surface. The first 
commercial HSI systems became available in the early 1990s, and the technology has since 
become more affordable and accessible. Hyperspectral imaging (HSI) captures the electro-
magnetic spectrum in detail, providing information on the physical and chemical proper-
ties of objects. It’s non-invasive and useful in agriculture, mineralogy, and environmental 
monitoring. HSI’s spectral signature identification helps understand underlying phenom-
ena. The data collected by HSI can be used to identify and distinguish between different 
materials, detect changes in the environment, monitor the health of crops, and much more. 
It measures the reflected light from an object or scene and is also known as imaging spec-
troscopy [1]. Hyperspectral imaging (HSI) is an advanced technology capable of extracting 
valuable information from images. HSI sensors capture a large number of spectral bands, 
allowing for a much more detailed analysis compared to traditional RGB imaging. This 
means that HSI sensors can provide a greater level of detail in the scene being analyzed. 
This nuanced analysis offers a more comprehensive understanding of the image, allowing 
for better-informed decision-making [2].

Hyperspectral Imaging (HSI) is the most trending approach, primarily used for analyz-
ing the earth using Remote Sensing (RS). Remote sensing gathers data on objects with-
out physical contact, using technology to measure properties like temperature and radia-
tion. It’s valuable in fields like environmental monitoring, geology, and urban planning. It 
allows the collection of spectral, geographical, and temporal data about physical objects, 
regions, or areas under inquiry; it has many applications in several aspects of earth science, 
like agriculture, geology, and environmental monitoring [3]. RGB images, consisting of 
three dimensions representing color information, were commonly used before hyperspec-
tral imaging (HSI). However, HSI captures spectral information across a range of elec-
tromagnetic wavelengths, providing a more detailed spectral profile of the object being 
imaged. HSI images are captured using multiple narrow spectral bands, which are then 
combined to create a three-dimensional data cube that contains information on the spectral 
profile of each pixel. HSI imaging is a valuable tool for a wide range of applications, from 
remote sensing to medical imaging. These color values combine RGB intensities displayed 
on a color plane. After RGB images, Multispectral Images (MSI) came into the world, 
they captured more spectral bands than RGB images. Multispectral sensors usually capture 
illumination energy contemplated from the objects over the earth’s surface. It typically has 
3 to 10 different spectral bands. Examples of bands in these sensors include visible green, 
red, blue, invisible infrared, etc. [4]. Figure 1 represents the RGB Image and Hyperspectral 
images.

Remote sensing data for hyperspectral imaging will be collected using platforms such 
as aircraft satellites, balloons, rockets, space shuttles, etc.… Spaceborne and airborne sen-
sors are most used for capturing hyperspectral images. In spaceborne images, the sensors 
will capture the images from the space station. Airborne images will be captured through 
aircraft [6]. The Airborne sensors are an Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS), Compact Airborne Spectrographic Imager (CASI), Hyperspectral Digital Image 
Collection Experiment (HYDIC), Digital Airborne Imaging Spectrometer (DAIS), Push-
Broom Hyperspectral Imager (PHI), HyMap, Airborne Prism Experiment (APEX), Mod-
ular Airborne IMAGING Spectrometer (MAIS), and UAS (Unmanned Aircraft Systems) 
[7]. The spaceborne sensors are MERIS (Medium Resolution Imaging Spectrometer), 
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HYSI(INDIA), MODIS (Moderate Resolution Imaging Spectrometer), Hyperion, Hyper-
spectral Imager, NEMO (Naval Earth Map Observer), and OrbiView-4 [8]. Details about 
sensors are given in Table 1.

The data collected from the airborne and spaceborne sensors will be reflected in spec-
tral bands, and those spectral bands will form a hyperspectral data cube. Hyperspectral 
sensors will capture images and process an image towards an exceedingly massive num-
ber of wavelengths. HSI has become an effective method to observe the earth, which can 
contribute to the total spectral specifications of an object in supplement to restricted bands 
ranging from 0.4 µm to 10 µm. It does not quickly provide the target’s position informa-
tion [9]. Every hyperspectral image has its own spatial, spectral, and temporal resolution. 
The Ground Sampling Distance (GSD) is a measure of the spatial resolution of an image, 
which determines the ability to differentiate between adjacent objects with high accuracy. 
GSD is the smallest detectable object size in ground-based hyperspectral imaging, typi-
cally ranging from 1 to 10 m [10]. Spectral resolution refers to an image’s capacity to dif-
ferentiate between various wavelengths of light, measured in nanometres (nm). Hyperspec-
tral images are a type of remote sensing imagery that contains a vast amount of detailed 
spectral information. With their ability to capture hundreds or thousands of narrow and 
contiguous spectral bands, they provide an in-depth understanding of the target object’s 
surface characteristics, chemical composition, and physical properties. This enables the 
identification of a vast array of materials and features that would be impossible to detect 
with conventional RGB imaging [11]. Temporal resolution refers to the frequency at which 
images are captured, measured in seconds, minutes, or hours. Based on the intended appli-
cation, hyperspectral images can be acquired with various temporal resolutions. For exam-
ple, hyperspectral images of crops may be captured every few days to monitor crop health 
and development. On the other hand, hyperspectral images of urban areas may be captured 
less frequently, such as once a month or once a year [12]. Figure 2 portrays the electromag-
netic radiation that is either reflected or emitted by the surface of the Earth.

Fig. 1  a RGB Images, b Hyperspectral Images [5]
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In hyperspectral imaging, a band refers to a collection of wavelengths that are detected by 
the hyperspectral sensor. Unlike traditional RGB imaging, hyperspectral sensors can capture 
hundreds or even thousands of bands, providing a highly detailed and nuanced scene analysis 
[13]. A hyperspectral image consists of several bands, each containing information about a 
specific range of wavelengths. For instance, one band may capture information about the 
red wavelength range, while another may capture information about the green wavelength 
range. For example, Visible bands are sensitive to the colors that we see with our eyes. 
Near-infrared (NIR) bands are sensitive to the amount of reflected sunlight, ranging from 
400–700 nm (nm). Shortwave infrared (SWIR) bands are sensitive to the water content of 

Table 1  Explanation of hyperspectral sensors

S. No Reference Sensor Introduced year Number of 
Spectral 
bands

Operating 
wavelength 
range(nm)

Image

1 [16] Reflecting Optics  
System Imaging  
Spectrometer (ROSIS)

1992 115 430-860

2 [17] Airborne Visible/ Infrared 
Imaging Spectrometer 
(AVIRIS)

Mid-1990 224 400-2500

3 [18] Hyperspectral Imaging 
Camera (HySI)

2018 32 400-950

4 [19] Compact Airborne Spectro-
graphic Imager (CASI)

1988 288 400-900

5 [20] Hyperspectral Digital 
Imagery Collection 
Experiment (HYDICE)

1994 210 400-2500

6 [21] HyMap - 126 400-2500

7 [22] Moderate Resolution  
Imaging Spectra radiometer 
(MODIS)

1999 36 400-1440

8 [23] Hyperion 1998 220 357-2576

9 [24] Compact High-Resolution 
Imaging Spectrometer 
(CHRIS)

2001 19 400-1050

10 [25] Headwall II Nano- 
Hyperspec

2014 270 400-1000
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materials, ranging from 700–1300 nm. Midwave infrared (MWIR) bands are sensitive to the 
temperature of materials, ranging from 1300–2500 nm. Longwave infrared (LWIR) bands 
are sensitive to the heat emitted by objects, ranging from 2500–5000 nm. By analyzing the 
information obtained through hyperspectral imaging, researchers can gain insights into the 
composition, properties, and conditions of materials in the scene [14].

Hyperspectral imaging creates spectral bands by dividing the light from the scene into 
its constituent wavelengths. This can be accomplished using prisms, which refract light 
based on wavelength, or diffraction gratings, which diffract light based on wavelength. 
Whispering Gallery Mode (WGM) resonators are microcavities that capture and circulate 
light multiple times. The resonant wavelength of a WGM resonator depends on its size and 
shape, which can be used to create a filter that permits only light of a specific wavelength 
to pass through. Once the light is dispersed into its wavelengths, a detector array captures 
it. The detector array consists of numerous individual detectors, each sensitive to a differ-
ent wavelength of light. The detector array records the light’s intensity at each wavelength, 
creating a hyperspectral image cube [26]. The representation of spectral bands are shown 
in Fig. 3.

A hyperspectral data cube is a 3D dataset that captures the spectral reflectance of every 
pixel in a scene. It is created by a hyperspectral sensor, which captures scene images at 
numerous wavelengths. Hyperspectral sensors can be mounted on aircraft, satellites, or 
even handheld devices. Using a prism or diffraction grating, light is divided into wave-
lengths. Each sensor element then detects a different wavelength of light. After capturing 
multiple images of a scene, the process of stacking these images together creates a 3D data 
cube. Every pixel in this cube holds a unique representation of a moment captured in time. 
The x and y dimensions hold the spatial coordinates, while the z dimension encapsulates 
the essence of the captured light wavelength. In other words, the cube provides a compre-
hensive view of the scene in three dimensions, combining both spatial and spectral infor-
mation. The hyperspectral datacube is shown in Fig. 4. Hyperspectral data cubes are large 
and intricate datasets that provide abundant information about the scene. The data gath-
ered can be employed to accurately detect and visually represent diverse substances such as 
minerals, plant life, and bodies of water. Moreover, hyperspectral data cubes are employed 
to keep track of environmental changes like deforestation and pollution [28]. The following 
are the steps involved in creating a hyperspectral data cube:

Fig. 2  The source of remote 
sensing image capturing is taken 
by [15]
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Step 1: Collect images of the scene at numerous wavelengths using a hyperspectral sen-
sor.
Step 2: Calibrate the images to eliminate any sensor noise or artifacts.
Step 3: Geo-reference the images to associate them with a known coordinate system.
Step 4: Stack the images together to create a 3D data cube.
Step 5: Process the data cube to remove atmospheric effects and enhance the signal-to-
noise ratio.

Fig. 3  The representation of 
spectral bands [27]

Fig. 4  Hyperspectral data cube 
[29]
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In the field of hyperspectral imaging, a spectral signature represents a definitive and 
unmistakable pattern of light that an object or material emits or reflects at varying wavelengths. 
It works like a fingerprint, enabling materials to be identified and classified in hyperspectral 
images. Hyperspectral sensors excel in capturing hundreds of spectral bands, enabling a highly 
detailed and nuanced analysis compared to traditional RGB imaging. By scrutinizing the spectral 
signatures of various pixels in a hyperspectral image, scientists can gain insight into the materials 
present in the scene, including their composition, structure, and temperature. Several factors 
influence spectral signatures, including the material’s composition, structure, surface texture, and 
illumination conditions. For instance, different vegetation types have distinct spectral signatures 
due to their varying pigments and leaf structures. Similarly, minerals of different types exhibit 
different spectral signatures owing to their disparate chemical compositions [30] (Fig. 5).

Hyperspectral Imaging (HSI) technology is an advanced imaging technique that comprises 
hundreds of spectral bands, which can be confidently utilized across various fields. These fields 
include environmental monitoring, military surveillance, urban planning, precision agriculture, 
seed viability studies, pharmaceuticals, biotechnology, oil and gas, medical diagnosis, thin 
films, and forensic science [31]. Detailed information about each application will be explained 
in section 3 We can use hyperspectral images for classification and prediction. In classification, 
we can classify the land cover and so on. In the medical field, we can classify various types of 
tumors, blood cells, etc. By using prediction methods, we can predict deforestation, etc. The 
characteristics of RGB, multispectral, and hyperspectral imaging are listed in Table 2.

Fig. 5  Spectral signatures of soil, vegetation, and water [30]
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Hyperspectral imaging is a highly advanced technology that uses a range of wavelengths 
of light to capture detailed information about the composition of a land surface. It can identify 
and classify various types of vegetation, soil, water bodies, and man-made structures with 
great accuracy. This makes it a valuable tool for analyzing and monitoring land use and land 
cover changes over time, which can aid in making informed decisions related to environmental 
management and resource planning. It captures detailed images by using various light 
wavelengths and allows for informed decision-making in various applications like urban 
planning, crop monitoring, and natural resource management. Hyperspectral imaging offers 
detailed information on the spectral signatures of diverse materials, which can be effectively 
leveraged to develop machine learning algorithms for the accurate classification of various land 
cover types. Within hyperspectral imaging, there exist several methods for LULC classification. 
One of the most frequently used techniques is the utilization of a spectral library, which 
represents a database containing the spectral signatures of diverse materials. To classify pixels 
into different land cover types, a plethora of machine learning and deep learning algorithms are 
employed. These algorithms compare the spectral signatures of the pixels with those present 
in the spectral library [32]. Another standard method is using machine learning algorithms 
trained using labeled training data. Labeled training data is a set of pixels manually classified 
into different land cover types. Once the LULC classification model is trained, it can classify the 
pixels in new hyperspectral images. The LULC classification map generated as a result can be 
effectively employed to identify and map different types of land cover present within the scene. 
LULC classification in hyperspectral imaging is an advancing field with new applications being 
constantly discovered. It has several applications in today’s world, such as identifying areas of 
fields that are stressed or diseased, tracking the spread of invasive algae blooms in lakes and 
rivers, mapping urban areas, identifying areas for development, and mapping forests, wetlands, 
and other natural resources [33].

The significance of Hyperspectral Imaging (HSI) is it is a valuable tool for extracting useful 
information from images. However, HSI has several challenges that need to be addressed, it 
produces a large amount of data, making it challenging to store, process, and analyze them. The 
spectral signatures of materials can vary depending on factors like illumination, atmospheric 
conditions, and surface roughness. This can make it difficult to identify and classify materials 
in HSI images accurately. Labeled data is crucial for training machine learning models to 
identify and classify materials in HSI images. Unfortunately, acquiring labeled HSI data can 
be difficult and expensive. Many of the algorithms used to process and analyze HSI images are 
computationally intensive. This makes it challenging to use HSI in real-time applications [34].

In recent years, numerous review articles have been published regarding the classification 
of Hyperspectral Images. Articles such as, [35] present a comprehensive and confident analysis 
of machine-dependent technologies and deep learning methods that are most effective in 
hyperspectral image classification. A thorough review of the literature provides valuable insights 

Table 2  Characteristics of RGB, multispectral, and hyperspectral imaging

Characteristics RGB Multispectral Hyperspectral

Number of spectral bands 3 4–10 Hundreds to thousands
Spectral Resolution Low Medium High
Spatial Resolution Typically high Typically high Variable
Applications Photography, videography Remote sensing, envi-

ronmental monitoring, 
agricultural

Research, commercial 
applications in a 
wide range
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and conclusions that are essential for researchers to understand the intricate relationship between 
machine learning and hyperspectral imaging. The authors in [36], explore the potential of 
combining hyperspectral imaging with deep learning to solve tasks across various application 
fields while highlighting potentialities and critical issues related to the development trends. 
In [3], this review offers a comprehensive and confident analysis of deep learning techniques 
used for hyperspectral image classification. It provides an in-depth evaluation of the strengths 
and weaknesses of the most widely used classifiers and presents reliable quantitative results for 
easy comparison. As a result, this review presents a definitive understanding of deep learning 
techniques for hyperspectral image classification. And also, the authors in [37], the article 
delves into the application of Convolutional Neural Networks (CNNs) for the classification 
of Hyperspectral Images (HSIs). A comprehensive analysis is conducted, comparing the 
efficacy of four distinct CNN models in capturing both spectral and spatial features, as well as 
their combination. Furthermore, the article provides insightful recommendations for future 
enhancements that could elevate the performance of these models. After conducting our 
research, we have found that numerous review articles exist regarding the classification of 
Hyperspectral Images (HSI) in a broad sense. Regrettably, none of these articles have delved 
into a comprehensive analysis of the complete HSI processing workflow. This workflow 
encompasses Hyperspectral Image acquisition, Hyperspectral data cube generation, Pre-
processing, Feature Extraction, Band Selection, Classification, Prediction, benchmark datasets, 
and quality metrics. We aim to address this gap in research by providing a single, detailed article 
covering all aspects of the HSI processing workflow. Here, we are giving the complete details 
about the various sensors used for hyperspectral image acquisition, the methods involved in the 
pre-processing of the acquired hyperspectral image, feature extraction methods, band selection 
methods, classification methods, prediction methods, various benchmark datasets with their 
complete details, and quality metrics are elaborated. By reading our review paper, researchers 
can understand all the steps involved from image acquisition to prediction with quality metrics.

1.1  Inclusion criteria for paper selection

The process of reviewing studies involves selecting and pre-processing literature that meets 
the defined selection criteria. This initial step is crucial in ensuring that the review is based 
on relevant and appropriate studies. To ensure the best possible outcome, a thorough and 
methodical approach was employed, involving a series of steps to carefully evaluate and 
determine the suitability of the literature at hand.

Step 1: To begin our research, we conducted a thorough search of various digital portals, 
including ACM, IEEE, Springer, Elsevier, and Wiley, to identify the most appropriate 
journals and conferences for our study. We examined numerous studies published in 
different journals and conference proceedings to ensure we met our selection criteria. 
We searched for studies in several prominent journals such as IEEE Transactions on 
Geoscience and Remote Sensing, IEEE Geoscience and Remote Sensing Letters, IEEE 
Transactions on Image Processing, IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, Computational Intelligence and Neuroscience, 
Remote Sensing Letters, Remote Sensing, Sensors, International Journal of Remote 
Sensing, Remote Sensing of Environment, arXiv preprint arXiv, International Journal of 
Applied Earth Observation and Geoinformation, Communications & Signal Processing, 
Ieee Access, among others. Our thorough search ensured we had access to a broad range 
of relevant studies and publications for our research.
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Step 2: To carry out a comprehensive review of hyperspectral imaging, we conducted a 
thorough search for relevant studies spanning from 2001 to February 2023. We utilized 
a range of keywords including hyperspectral imaging, remote sensing, hyperspectral 
image classification, hyperspectral image prediction, hyperspectral imaging applica-
tions, hyperspectral image land use and cover classification, as well as hyperspectral 
image feature extraction and band selection. We then examined the abstracts of the iden-
tified papers to extract concise and relevant clusters while disregarding any irrelevant 
studies.
Step 3: During this step, we assessed a group of studies that were chosen in the previ-
ous step. We conducted a thorough analysis of the studies and used clustering analysis 
to narrow down the selection. After examining the introduction and conclusion of the 
studies that were selected in the previous step, we decided which ones to include in this 
review. Finally, we excluded any studies that did not meet our criteria.

1.2  Exclusion criteria for paper elimination

Conducting a systematic literature review is a crucial step in gaining a thorough understanding 
of the current trends, challenges, and future research areas in a particular field. In our review 
of hyperspectral imaging, we established specific criteria to ensure that only primary research 
papers that met our standards were included. We categorized the papers based on their 
datasets, years of publication, application areas, deep learning techniques, and features used. 
Our search for relevant studies was comprehensive, and we looked through various journals 
and conference proceedings from digital portals like ACM, IEEE, Springer, Elsevier, Wiley, 
and others. We excluded studies that were not written in English, did not have the domain 
in their title, or did not meet our specific criteria. Our primary focus was to identify how 
hyperspectral imaging techniques are being utilized in different domains. Our comprehensive 
analysis of the available literature on hyperspectral imaging has yielded insightful findings 
regarding the current state of research and the trajectory it is taking.

Our review article’s contribution is providing a fundamental understanding of hyperspectral 
imaging for researchers. This paper thoroughly discusses the specific approaches employed at 
each level, from the image capture stage to the accuracy validation step of the hyperspectral 
image classification process. The essential structure and potential framework for hyperspectral 
image classification are explained briefly. In addition, the paper sheds light on some notable 
challenges and promising directions for the field. It underscores the need for developing 
sophisticated techniques capable of addressing the high complexity and dimensionality of 
hyperspectral data, while also highlighting the importance of creating robust methods that can 
effectively handle noise and other artifacts present in hyperspectral images.

This review paper is structured in a manner that allows for clear and concise presenta-
tion of information. The organization of the paper will be explained in the following sec-
tions, providing readers with a comprehensive understanding of the content to be covered: 
Section 2 gives the related work from existing hyperspectral image classification and pre-
diction models. Section 3 elaborates on the various applications of hyperspectral imaging. 
In Section 4, we explain the different pre-processing techniques that are utilized for satel-
lite and medical images. Section  5 elaborates on the feature extraction algorithms. Sec-
tion 6 expands the feature or band selection methods. Section 7 illustrates hyperspectral 
image classification approaches. Section  8 demonstrates hyperspectral image prediction 
techniques. Section  9 picturizes the benchmark databases used. Section  10 qualifies the 
metrics used for calculating the classification accuracy. Section 11 gives the open issues 
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and challenges. Section 12 discusses the hyperspectral image classification existing meth-
ods and their performance. Section 13 concludes the article.

2  Related works

This section reviews existing Hyperspectral Image Classification (HSIC) and Prediction 
papers. We have divided the literature into the following: classification and prediction; in 
classification again, we divided Traditional Machine Learning and Neural Networks; in 
Traditional Machine Learning, we divided into supervised, unsupervised, and semi-super-
vised classification methods. In neural networks, we again divided into Traditional Neural 
Networks and Deep Learning. And then into a Convolutional neural network. Table 3 pro-
vides a comprehensive summary of various supervised classification techniques that have 
been used for Hyperspectral image classification, Table 4 provides a literature review of 
existing methods based on unsupervised classification techniques for Hyperspectral image 
classification, Table  5 offers a comprehensive literature review of semi-supervised clas-
sification techniques. Additionally, Table 6 provides a thorough examination of attention-
based classification techniques for the same. Moving forward, Table 7 delves into methods 
based on CNN classification techniques, while Table 8 presents a literature review of pre-
diction techniques for Hyperspectral image classification.

In [38], the article provides a detailed overview of the current pansharpening techniques 
used in the fusion of hyperspectral and panchromatic images. It examines the various categories 
of pansharpening techniques and offers an evaluation of the advantages and limitations of 
existing methods. A highly effective technique for merging high spatial resolution images 
with low-resolution images, using a state-of-the-art Fuzzy and Gyrator Transform (GT) based 
image fusion method is proposed in [39]. It uses a Genetic Algorithm to tune the required 
fuzzification parameters and maximizes the overall entropy. Quantitative analysis shows that 
the proposed method has better structural detail, spatial resolution, and spectral information. A 
model for restoring visibility in hazy remote sensing images is proposed, which is constantly 
being improved and developed [40]. The proposed image restoration model is built on a 
fusion-based transmission map, a hybrid constraint-based variational model, and a dynamic 
differential evolution to optimize the control parameters. Through rigorous testing on 50 
synthetic benchmarks and 50 real-life remote sensing images, the model has demonstrated 
superior performance when compared to other existing restoration models.

A robust and efficient classification methodology that seamlessly integrates Principal 
Component Analysis (PCA), Local Binary Pattern (LBP), and Back Propagation Neural 
Network (BPNN) is presented in [41]. This cutting-edge approach ensures superior accuracy 
and reliability in classification tasks. It is tested on three publicly available hyperspectral 
datasets and achieves satisfactory accuracy. The classification of hyperspectral images is 
often hindered by a lack of labeled data. To address this challenge, researchers have recently 
introduced a deep hybrid multi-graph neural network (DHMG) in [42], This novel approach 
employs two distinct graph filters, a dense network, and a GraphSAGE-based network to 
refine the graph features. Extensive experimentation has demonstrated that the DHMG model 
outperforms current state-of-the-art models. The proposed method leverages the wavelet 
transform to extract both spatial and spectral information, resulting in an effective solution 
for hyperspectral image classification. The extracted information is then fused and used to 
classify the images via a Support Vector Machine (SVM) classifier [43]. Experiments show 
that this method is effective compared to conventional approaches. In [44], the authors present 
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an innovative hybrid classifier for hyperspectral images that employs the Bat Algorithm (BA) 
to optimize the Convolutional Neural Network (CNN) architecture. The resulting BAT-CNN 
classifier is tested on three different hyperspectral datasets and has demonstrated superior 
accuracy compared to the standalone CNN classifier. This new approach shows great promise 
in advancing the classification of hyperspectral images and has the potential to significantly 
improve the accuracy of remote sensing applications.

In [45], authors proposed CM-CNN, a new 3D convolutional neural network, for hyper-
spectral image classification. CM-CNN achieved a stable Kappa coefficient, confusion 
matrix accuracy above 95%, and almost no obvious classification errors. A two-stage learn-
ing algorithm for the classification of hyperspectral images was proposed in [46]. The algo-
rithm optimizes classification results through Kernel Singular Value Decomposition-Mul-
tiple Kernel learning and Conditional Random Field. The authors in [47], proposed a novel 
hyperspectral image classification algorithm and introduced a hyperspectral sky imaging 
dataset. The dataset is augmented using multiple clustering, leading to higher pixel clas-
sification accuracy. Gradient boosting methods outperformed benchmark algorithms. A 
complementary Integrated Transformer Network (CITNet) for the classification of hyper-
spectral images in [48]. After conducting experiments with CITNet, it was found that the 
utilization of Conv3D and Conv2D to extract shallow semantic information, along with the 
implementation of a channel Gaussian modulation attention module to enhance secondary 
features, led to improved classification performance. The present study introduces a novel 
algorithm, namely Class Information-based Principal Component Analysis (CI-PCA), that 
aims to enhance hyperspectral image classification [49]. To create a CI-PCA image, we 
need to choose particular pixels or regions for training purposes for each defined class. 
Afterward, we compute the Principal Component Analysis (PCA) for each class’s training 
data individually. Finally, we merge the PCA results of each class to form the ultimate CI-
PCA image. The efficacy of this method has been proven with the utilization of two genu-
ine hyperspectral datasets. In [50], a novel approach to vegetation classification has been 
introduced, called DCKELM-SPATIAL. This technique utilizes a deep composite kernel 
extreme learning machine that leverages spatial feature extraction, employing the Gabor 
filter and super-pixel density peak clustering method to generate a fresh set of spatial com-
posite kernels. Empirical findings have demonstrated that this strategy surpasses numerous 
traditional and sophisticated methods in terms of classification precision.

The authors in [51], To address the common concerns of overfitting and excessive param-
eters in deep learning models for hyperspectral image classification, a team of researchers 
has proposed the Hybrid Fully Connected Tensorized Compression Network (HybridF-
CTCN). This innovative network has been shown to achieve state-of-the-art classification 
performance with a minimal number of parameters. An advanced K-means hyperspectral 
classification algorithm that confidently portrays the significance of bands through variance 
coefficients and integrates inter-class information to achieve optimal clustering at a global 
level is proposed in [52]. A spectral-spatial classification method for homogeneous regions 
in hyperspectral images, based on locality-constrained joint-sparse and weighted low-rank, 
to enhance classification accuracy [53]. Other classification methods are outperformed by 
this one in terms of accuracy. In [54], through the application of self-supervised masked 
image reconstruction, the researchers have successfully improved transformer models for 
hyperspectral remote sensing imagery. Their insightful findings indicate that modifying the 
architecture of the vision transformer can yield significant enhancements in the accuracy 
of land cover classification tasks. It is noteworthy that the transformer model surpasses 
randomly initialized transformers and 3D convolutional neural networks by an impressive 
7–8%, even when only a mere 0.1–10% of the training labels are accessible.
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Hyperspectral image classification has proven to be an invaluable tool in categorizing 
land use and cover, contributing greatly to the fields of land management, urban planning, 
and environmental studies. The literature has discovered that machine learning and deep 
learning approaches such as SVM, CNN, RF, SOM, KNN, SAM, LSTM, and Attention 
models are the most effective methods for carrying out this classification process. These 
methods have been found to have the highest accuracy, consistency, and robustness. They 
can handle complex data sets and distinguish between different spectral signatures of land 
cover types. Figure 6 shows the taxonomy of hyperspectral image classification and Fig. 7 
shows the existing models comparison for hyperspectral image classification.

3  Applications of hyperspectral imaging

According to [131], Hyperspectral imaging technology is utilized in various applications 
to solve real-world problems. Hyperspectral imaging is a remote sensing technique that 
captures data across numerous narrow, contiguous wavelength bands. Thanks to its high 
spectral resolution, researchers can identify and classify objects with exceptional precision. 
This technology has a wide range of applications, including:

 1. Agriculture: HSI classification finds application in various agricultural areas such 
as crop mapping, pest and disease detection, stress detection, and yield estimation. 
Crop mapping using HSI helps to create accurate maps of different crop types like 
corn, soybeans, wheat, etc. This information can be utilized to manage crops more 
effectively and increase yields. HSI can detect and identify pests and diseases in crops, 
which helps farmers take early measures to control them before they cause significant 
damage. HSI can also help to detect stressed crops, for instance, crops facing drought, 
nutrient deficiencies, or salinity. This knowledge can assist farmers in identifying and 
addressing issues before they lead to reduced yields. Finally, HSI can estimate crop 
yields, which can be used to plan for harvest and market crops more effectively [1].

 2. Seed viability study: Hyperspectral imaging (HSI) is a valuable tool to study seed 
variety in several ways. One potential benefit of utilizing spectral signatures is the 
ability to identify different seed varieties accurately. This can aid in ensuring seed 
quality and selecting the most suitable seed variety for planting purposes. Another 
one is, that HSI can be used to assess the quality of seeds by analyzing their spectral 
signatures. This enables the identification of damaged, diseased, or immature seeds. 
Lastly, HSI can predict seed germination by analyzing their spectral signatures, which 
is helpful for crop yield optimization and planning planting [132]. As HSI sensors are 
becoming increasingly affordable and portable, they are expected to be used in more 
innovative and exciting ways. HSI is a powerful tool for studying seed variety and can 
potentially revolutionize the farming industry [133] (Fig. 8). For Example, the Corn 
seed monitoring using hyperspectral Imaging is shown in Fig. 8 (a) Original Image, 
Fig. 8 (b) Partial least squares discriminant analysis, Fig. 8 (c) Binary Image.

 3. Biotechnology: HSI is a versatile technology employed in several ways in the biotech-
nology field. Some key areas where HSI is being utilized are drug discovery, disease 
diagnosis, and monitoring. HSI can be used to diagnose and monitor various diseases, 
including cancer, Alzheimer’s disease, and Parkinson’s disease. It can also identify 
tumors and track their growth over time. [135].



 Multimedia Tools and Applications

1 3

Fig. 6  The taxonomy of hyperspectral image classification
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 4. Eye Care: Eye care is an emerging field that utilizes hyperspectral imaging technology 
to improve eye disease detection, diagnosis, and treatment. According to [136], doctors 
can accurately identify and classify objects due to their high spectral resolution. Early 
detection of subtle changes in the eye is crucial to prevent vision loss caused by 
conditions like glaucoma, diabetic retinopathy, and age-related macular degeneration.
HSI is used to track the progression of eye diseases over time, enabling doctors 
to adjust treatment plans and monitor the effectiveness of treatment. It can also 
guide surgeons during ophthalmic procedures, such as cataract surgery and retinal 
detachment repair, which can improve the accuracy and safety of surgery. Figure 9 
shows the Fundus examination of both eyes and it was documented with ultrawide 
field imaging, color fundus photography, and fundus autofluorescence imaging using 
hyperspectral imaging.

 5. Food Processing: Hyperspectral imaging technology is used for food processing to 
enhance food processing operations’ safety, quality, and efficiency. According to [137], 
Hyperspectral imaging can detect foreign objects, such as metal, plastic, and glass, in 
food products, improving food safety and preventing consumers from getting sick. It 
can assess the quality of food products by measuring factors such as ripeness, fresh-
ness, nutritional content, and chemical composition. This information can improve the 
quality of food products, reduce waste, and ensure food safety. Also, Hyperspectral 

Fig. 7  Existing model com-
parison for hyperspectral image 
classification

Fig. 8  Corn seed monitoring using hyperspectral Imaging (a) Original Image, b Partial least squares discri-
minant analysis, c Binary Image [134]
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imaging can sort and grade food products based on their quality and other characteris-
tics, improving the efficiency of food processing and ensuring that consumers receive 
high-quality products (Fig. 10).

 6. Environmental Monitoring: Using hyperspectral imaging, using hyperspectral imag-
ing technology to monitor the environment for changes or disturbances. According to 
[138], Hyperspectral imaging can be used to monitor various environmental factors 
such as air and water quality, land cover, vegetation and soil health, geological hazards, 
natural disasters, and climate change.

 7. Forensic Science: In [139], Forensic science using hyperspectral imaging involves 
using hyperspectral imaging technology to collect and analyze evidence from crime 
scenes and other forensic settings. To detect the bloodstains, even in low-light con-
ditions or on dark fabrics. HSI can enhance the visibility of fingerprints, even on 

Fig. 9  Fundus examination of both eyes, documented with ultrawide field imaging, color fundus photogra-
phy, and fundus autofluorescence imaging [136]

Fig. 10  Sliced Braeburn apple detection [137]
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complex surfaces like metal or plastic. It can also detect gunshot residue and other 
evidence related to firearms. Hyperspectral imaging can detect and identify drugs and 
explosives, even in trace amounts. To analyze fibers from clothing or other materials, 
which can help to link suspects to crime scenes. HSI can detect documents, such as 
handwriting and ink analysis, to provide substantial evidence in forgery or fraud cases 
[140] (Fig. 11).

 8. Thin Films: Thin films in hyperspectral imaging refer to thin layers of materials that 
possess unique optical properties that can be used to manipulate light in various ways, 
such as reflecting, transmitting, or absorbing light at specific wavelengths [142]. HSI 
is used to create filters that can be used to select or block specific wavelengths of 
light. This can be useful for applications such as hyperspectral microscopy, where it 
is crucial to image specific chemical species or structures. Thin films can coat optical 
components, such as lenses and mirrors, to enhance performance. For instance, anti-
reflective coatings can be used to minimize glare and improve image quality. Also, thin 
films can be used to create sensors that can detect and measure specific wavelengths 
of light. This can be useful for environmental monitoring and food safety inspection 
[143].

 9. Oil and Gases: Hyperspectral Imaging (HSI) effectively detects, identifies, and 
quantifies oil and gas in various environments. HSI can directly detect oil and gas by 
identifying their unique spectral signatures. For example, oil and gas have characteristic 
absorption bands in the infrared region of the spectrum. HSI can indirectly detect oil 
and gas by identifying features associated with oil and gas deposits. HSI works by 
analyzing reflected light from the surface of the earth at many different wavelengths, 
creating a detailed spectral signature that can help to identify subtle changes in 
vegetation, surface temperature, and other environmental factors that may be indicative 
of the presence of oil and gas deposits. HSI can also be used in various oil and gas 
exploration and production applications such as mapping oil spills, monitoring pipeline 
leaks, and identifying potential drilling locations [144].

Fig. 11  Representation of ATM explosion and its spectral signatures [141]
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 10. Cancer Diagnosis: Hyperspectral Imaging (HSI) detects, identifies, and 
characterizes cancer cells and tissues. HSI can detect and identify cancer cells and 
tissues in various ways, to detect cancer cells and tissues by identifying their unique 
spectral signatures. For instance, cancer cells often have different absorption and 
scattering properties than normal cells. HSI can indirectly detect cancer cells and 
tissues by identifying features that are associated with cancer. For example, HSI can 
be used to identify changes in blood flow, tissue oxygenation, and other cellular and 
physiological processes that can be indicative of cancer. HSI has various applications 
in cancer diagnosis, such as identifying cancerous tissue margins during surgery, 
monitoring tumor progression and treatment response, and identifying biomarkers 
for early cancer detection [145]. Hyperspectral imaging for medical applications are 
represented in (Fig. 12).

 11. Animal Detection: Apart from the applications discussed above, animal detection 
applications are also most attractive, which use various input modalities, namely RGB 
image [145, 147], thermal image [148], unmanned aerial images [149], unmanned 
ground images [150, 151], and hyperspectral images. Hyperspectral imaging uses are 
increasing daily, not only in animal detection and classification but also for animal 
food quality, remote animal health monitoring, and animal disease detection etc., HSI 
is also used in the poultry form sector.

Fig. 12  Hyperspectral imaging in medical applications [146]
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4  Pre‑processing

Hyperspectral image pre-processing is a crucial step in any hyperspectral imaging workflow, as 
it prepares the images for further analysis and enhances the accuracy and reliability of the results. 
Hyperspectral imaging also requires pre-processing, which includes removing noise, correcting 
atmospheric effects, and reducing data dimensionality. In hyperspectral image pre-processing, 
we have separate techniques for medical and satellite images. Fig. 13 details the pre-processing 
techniques involved in hyperspectral imaging. 

1. Pre-processing Techniques for Hyperspectral Satellite Images: Hyperspectral satel-
lite image pre-processing, Atmospheric Correction (AC), Radiometric Correction (RC), 
Geometric Correction (GC), and Dimensionality Reduction (DR) are used.

a. Atmospheric Correction (AC): Atmospheric correction is a crucial process that 
eliminates the atmospheric effects on the spectral signatures of materials in an 

Fig. 13  Pre-processing techniques
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image. Atmospheric gases and particles can distort spectral signatures in images 
through light absorption and scattering. To ensure the accuracy and reliability of 
remote sensing data, it is crucial to understand atmospheric conditions and apply 
appropriate correction techniques. Accurate identification and classification of 
materials in the image is essential for hyperspectral imaging, and atmospheric cor-
rection ensures that researchers can achieve this without any hindrance [152]. In 
hyperspectral imaging, several techniques can be used for atmospheric correction. 
One commonly used method is the Radiative Transfer Model (RTM). An RTM is 
a computer model replicating the light path through the atmosphere. The model 
estimates the amount of light absorbed and scattered by the atmosphere, allowing 
researchers to eliminate these effects from the image. Another method used for 
atmospheric correction in hyperspectral imaging is to use a reference spectrum. 
A reference spectrum is a spectral signature of a known material, such as a white 
reference panel. Researchers compare the spectral signature of a pixel in the image 
to the reference spectrum to estimate the amount of light absorbed and scattered by 
the atmosphere and remove these effects from the image [153].

  Atmospheric Correction (AC) is used for quantitatively estimating the water 
surface reflectance. Also, it can be utilized to determine the absorptions of the 
numerous water constituents concluded by an inversion algorithm. The AC’s aerosol 
types are enlarged from 12 to 80 [5]. The wavelengths used for the AC are when the 
water leaving radiance is expected to be zero. It has remained the designated near-
infrared meant at comparatively clear waters, and the shortwave infrared designed 
for exceedingly turbid and SWIR bands is not available. AC is a vast source of error 
correction in hyperspectral remote sensing, with the external assets even lower than 
perfect circumstances [154]. Also, Fig 14 displays the improved repossessions with 
contiguousness correction shown in red, the improved repossessions starved of 
adjacency correction in orange, and the standard retrievals in blue. The light grey 
spectra represent the flying levels.

b. Radiometric Correction (GC): Radiometric correction, a crucial step in hyper-
spectral imaging, transforms Raw Digital Numbers (DNs) of image pixels into 
physical units, such as radiance or reflectance, inspiring a deeper understanding 
of the imaging process. The RDNs of the image pixels are influenced by sev-
eral factors, including the sensor gain and offset, the solar irradiance, and the 
atmospheric conditions [155]. Radiometric correction in hyperspectral imaging 
can be done through various methods. One widely used method is to employ a 
calibration equation. This equation establishes a relationship between the RDN 
values of the pixels in an image and the radiance or reflectance of the materials 
in the image. A reference panel with a known radiance or reflectance is typically 
used to derive the calibration equation [156]. It has been observed that SAR 
data calibration is an effective method of obtaining essential radar backscatter 
information for RC. To resolve the Digital Elevation Model (DEM) for the radar 
backscatter image, the superiority of any radiometric terrain correction is mas-
sively dependent [157]. Also, Fig. 15 (a) shows the original image, and (b) gives 
the radiometrically corrected image of the AHI (Airborne Hyperspectral Imager) 
made in China. It is a non-combatant remote sensor; this will focus more on the 
quantifiable reclamation of surface geophysical constraints. The AHI sensor has 
a spectral range of 400 to 1000 nm.
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Fig. 14  Results of Atmospheric correction [154]

Fig. 15  a Original image, b Corrected image of radiometric correction [157]
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c. Geometric Correction (GC): Geometric correction is a process used in hyperspec-
tral imaging to rectify geometric distortions in the image. These distortions may 
arise due to various factors, such as the sensor platform, the Earth’s curvature and 
rotation, and atmospheric refraction. Hyperspectral imaging relies on geometric 
correction to ensure the hyperspectral image aligns accurately with other geospatial 
data, such as satellite imagery and maps [158]. It decreases the terrain displacement 
and helps advance the image’s positional accuracy. It is a technique to correct an 
image’s errors and increase quality [159]. Also, Fig. 16. Represents the difference 
between before and after geometric correction.

d. Dimensionality Reduction (DR): While hyperspectral imaging requires a careful 
balance between spectral band reduction and the retention of crucial information, 
dimensionality reduction techniques can be utilized to achieve this objective effec-
tively. Hyperspectral images often contain hundreds or thousands of spectral bands, 
making them computationally challenging to analyze [160]. Therefore, dimension-
ality reduction is essential to simplify the data and facilitate efficient analysis. In 
dimensionality reduction, we have the following methods: IPCA, ICA, and t-SNE 
etc., Independent Component Analysis (ICA) is a powerful statistical technique 
that efficiently segregates data into its independent components—signals that are 
impervious to further simplification. ICA is commonly utilized in hyperspectral 
imaging to extract essential features hidden within the data [161]. Incremental Prin-
cipal Component Analysis (IPCA) is a technique for reducing the dimensionality 
of a dataset. The technique allows for the updating of principal components as new 
data is added. This is different from traditional batch Principal Component Analysis 
(PCA), which calculates all principal components of a dataset together. IPCA is 
useful when dealing with large datasets that cannot be processed simultaneously. 
It enables the calculation of principal components using smaller subsets of data, 
thereby reducing memory requirements and computational complexity [162]. t-SNE 
(t-distributed Stochastic Neighbour Embedding) is another dimensionality reduc-

Fig. 16  Geometric correction (a) Before and (b) After geometric corrections [159]
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tion technique commonly used for data visualization. Visualizing high-dimensional 
datasets can be a complex task. Fortunately, there is a technique that can simplify 
this process. t-SNE is a valuable tool that reduces high-dimensional datasets into 
a low-dimensional space, such as a 2D or 3D space, making it easier to visualize. 
By mapping similar data points in high-dimensional space to nearby points in low-
dimensional space, while mapping dissimilar data points to distant points, t-SNE 
allows for a more efficient and effective visualization process. In other words, t-SNE 
allows for the visualization of complex data by projecting it onto a simpler, more 
understandable space. This technique is useful for identifying clusters or patterns 
in complex datasets, such as those found in hyperspectral imaging [163].

2. Pre-processing techniques for medical images: After collecting the raw medical image 
data, pre-processing techniques will be used. The pre-processing techniques for medical 
images are normalization, noise and band reduction, calibration, and spectral correction.

a. Image Calibration (IC): Dark and white reference images are obtained when the 
images are captured in the operation theatre. White references are acquired when 
the camera light is on. And the dark references are acquired by possession of the 
shutter of the camera. The calibrated image is denoted as I

C
,

  The raw input image, referred to as RI, is accompanied by two reference images 
- the white reference image, denoted as WR, and the dark reference image, repre-
sented by DR [164].

b. Noise and Band Reduction: As soon as the image is calibrated, the band reduction 
is carried out to eliminate the extremely noisy bands that are useless owing to the 
sensor’s poor performance. It will remove the bands from lower to higher bands 
[165].

c. Spectral Correction: Spectral correction is used to correct the spectral noise from 
the image. A spectral-corrected picture has been produced using a correction matrix 
to multiply the signal.

  Here, IC is calibrated hyperspectral cube’s single band. The correction matrix is 
denoted by SCM, where an individual band is a group of virtual band spectral cor-
rection constants [166].

d. Data Normalization: It reduces the brightness levels caused by the light illumina-
tion. Normalization coefficients remain the spectral signatures’ RMS value (Root 
Mean Square).

(1)IC = 100 ×
RI − DR

WR − DR

(2)ISC = IC × SCM

(3)c
�
i, j
�
=

�∑B

k=1
(IC[i, j, k])

2

B

(4)INorm
[
i, j, k

]
=

ISC[i, j, k]
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  Here, ISC is denoted as the spectral corrected cube with the dimensions R ×C × B 
(Rows ×Columns × Bands ) [166].

5  Feature extraction

Extracting features is the method of recognizing and isolating significant features from 
data. Features are data bits that can be utilized to portray or differentiate between various 
information focuses. Feature extraction is crucial in many machine learning assignments, 
such as classification, regression, and clustering. Hyperspectral imaging employs feature 
extraction to extract features from the spectral signatures of pixels in an image. These 
features can then be utilized to recognize and classify materials in the image or identify 
environmental changes [167]. In the context of machine learning, the Hughes phenome-
non refers to a situation where classification accuracy is severely reduced due to the high-
dimensional properties of a few training samples. This phenomenon is a well-recognized 
challenge in the field of artificial intelligence and can cause significant problems in cer-
tain applications. Therefore, researchers and practitioners need to be aware of this issue 
and take appropriate measures to mitigate its impact.

Additionally, processing high-dimensional data eventually uses up computing 
resources and takes up space in data storage, according to the "curse of dimensional-
ity" hypothesis [168]. Classifying hyperspectral images using Feature Extraction (FE) 
is challenging because of spectral unmixing, characterized by high intra-class inconsist-
ency and inter-class resemblance. Nevertheless, Feature Extraction can help overcome 
these issues. Feature extraction methods categorized into three types are supervised FE 
method, unsupervised FE method, and semi-supervised FE method. These are used to 
extract the hyperspectral images’ features [169]. Figure 17. represents the feature extrac-
tion methods.

Fig. 17  Feature extraction 
techniques
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1. Unsupervised Feature Extraction: these are used to extract the features from data without 
using labeled data. This is different from supervised feature extraction, which requires 
labeled data to extract features pertinent to a particular task. Unsupervised feature extraction 
is frequently used in hyperspectral imaging since it can be challenging or impractical to 
acquire labeled data for all the materials present in a hyperspectral image. Unsupervised 
feature extraction can extract features representing different materials in the image, even 
if the materials are unknown [168]. There are two primary types of unsupervised feature 
extraction techniques: Principal Component Analysis (PCA) and Independent Component 
Analysis (ICA). PCA determines the most significant variations in the data and projects 
the data in these directions. In contrast, ICA dissects the data into independent components 
that are as statistically independent as possible [170]. In the world of machine learning, 
three crucial techniques stand out: t-distributed Stochastic Neighbor Embedding (t-SNE), 
Autoencoder, and Generative Adversarial Networks (GANs). t-SNE allows for high-
dimensional data to be condensed into a low-dimensional space while still maintaining the 
data’s similar structure. Autoencoder is a specific type of neural network architecture that 
teaches itself to reconstruct input data from a lower-dimensional representation. Finally, 
Generative Adversarial Networks (GANs) are complex neural networks that comprise a 
generator, which creates new data similar to the training data, and a discriminator, which 
distinguishes between real and generated data [171].

2. Supervised Feature Extraction: The process of supervised feature extraction involves 
identifying pertinent features from labeled data. By training a machine learning model on 
this labeled data, it can then recognize those same features in unlabeled data. This technique 
is frequently utilized in various areas such as object recognition, image classification, and 
natural language processing [172]. There are several feature extraction techniques available, 
including Linear Discriminant Analysis (LDA) and Canonical Correlation Analysis (CCA). 
LDA is a powerful method that enables us to identify linear combinations of features that 
maximize the separation between different classes. Similarly, CCA is an effective technique 
that allows us to determine linear combinations of features that exhibit a high correlation 
between two sets of data [173]. Kernel PCA, Autoencoder, and Deep Boltzmann Machines 
are three techniques that can aid in the analysis of data. Kernel PCA is an extension of 
PCA that uses a kernel function to map input data into a higher-dimensional space, thus 
making it easier to distinguish between different types of data. In contrast, Autoencoder is 
a neural network architecture that learns to reconstruct input data from a lower-dimensional 
representation. Finally, Deep Boltzmann Machines are deep neural networks capable of 
learning intricate, layered representations of input data. These techniques have considerable 
potential for application in business and academic settings, providing a means to analyze 
complex data structures [174].

a. Nonparametric Weighted Feature Extraction (NWFE): The NWFE method 
confidently employs weights to calculate weighted means for each sample. It also 
defines new nonparametric scatter matrices to generate more than L-1 features with 
utmost precision and accuracy. To define the nonparametric between-class scatter 
matrix for L classes, NWFE employs the following formula.

  Here, the lth sample from class I is indicated by x(i)
l

 , the training sample size of 
class i is indicated by Ni and the prior probability of class i is indicated by Pi [175].
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b. Linear Discriminate Analysis (LDA): According to [176], the traditional LDA 
transforms original data into a discriminative subspace by minimizing intra-
class scatter and maximizing inter-class scatter simultaneously through Fish-
er’s ratio as a generalized Rayleigh quotient. Given a pairwise set is defined as 
{
(
x1, y1

)
,
(
x2, y2

)
,…… .., (xm, ym)} . The objective function for estimating the linear 

projection matrix P in multi-class LDA is given by:

  Here, The variance or dispersion of data points between classes and within classes 
is defined by the Sb and Sw terms "between-class scatter matrix" and "within-class 
scatter matrix," respectively. By inserting the Lagrange multiplier λ, the optimiza-
tion problem in Eq. (6) can be equivalently changed to one of the SbP = �SwP , with 
the constraint of PTSwP = I . To solve the simplified optimization problem, one can 
use a technique called generalized eigenvalue decomposition (GED). The original 
Linear Discriminant Analysis (LDA) is highly susceptible to statistical degrada-
tion due to the complexity of high-dimensional noise caused by environmental and 
instrumental factors, as well as the limited availability of labeled samples. This issue 
is particularly severe when working with small-scale samples. The singularity of 
the two-scatter metrics Sb and Sw , which is prone to overfitting, is the main cause of 
degradation. The regularized LDA was presented with an extra l2-norm constraint 
on Sw , parameterized by γ, to improve generality and stability the below equation 
is useful

  By replacing Sw in Eq. (7) with the regularized Sregw  , the solution can still be found 
using the GED solver in the regularized LDA.

3. Local Binary Patterns (LBP): According to [177], LBP, or Local Binary Patterns, is a 
powerful image analysis technique that measures image texture. It works by examining 
the surrounding area of each central pixel. To begin, LBP compares the intensity of the 
central pixel to the intensity of its neighboring pixels. If the central pixel’s intensity is 
greater, it is assigned a value of 1; otherwise, it is assigned a value of 0. This generates a 
binary code that effectively summarizes the gray-level structure of the image. The LBP 
method picks particular nearby {ti}

p−1

i=0
 and central pixel tc , after taking into account a 

small circular neighborhood, denoted as P. The given equation computes the LBP

  In this case, P, R stands for the number of sample points and circle radius based on a 
neighbor set of central pixels tc , that is circularly symmetric. In case x ≥ 0 and 0 other-
wise, the neighboring pixels {tc}

P−1
i=0

 , and s(x).
4. Semi-supervised feature extraction: A widely adopted approach in data feature 

extraction is the use of both labeled and unlabeled data, commonly referred to as semi-
supervised feature extraction. This approach differs from supervised feature extraction 
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tr(PTSbP)

tr(PTSwP)
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which solely relies on labeled data and unsupervised feature extraction which only uses 
unlabeled data. By leveraging a small set of labeled data along with a vast amount of 
unlabeled data, semi-supervised feature extraction can significantly boost the accuracy 
and efficiency of feature extraction, resulting in highly reliable and efficient outcomes 
[178]. Semi-supervised feature extraction is beneficial when labeled data is scarce or 
costly. This is often the case in hyperspectral imaging, where hyperspectral images can 
be large and complex, and labeling all the pixels in the image can be challenging and 
expensive. There are several noteworthy semi-supervised feature extraction methods, 
including Linear Local Tangent Space Alignment (LLTSA), Monogenic Binary Coding 
(MBC), Locality Preserving Projection (LPP), and Maximum Margin Projection (MMP) 
[179].

6  Feature (Band) selection

In the field of hyperspectral imagery, the selection of a suitable subset of bands for a specific 
purpose, such as classification, regression, or detection, is a critical task. These images often 
contain numerous bands, some of which may be redundant or noisy, making it imperative to 
carefully choose the appropriate bands to achieve accurate results [180]. The band selection 
process is a powerful tool that unlocks the potential of hyperspectral images, improving 
accuracy and efficiency in machine learning while reducing data dimensionality. According to 
[181], this article examines six main categories of current hyperspectral band selection methods: 
ranking-based, searching-based, clustering-based, sparsity-based, embedding-learning-based, 
and hybrid-scheme-based. Figure 18 represents the existing band selection techniques.

Fig. 18  Band selection tech-
niques
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1. Clustering-Based Methods: Using a clustering-based method, the bands are confidently 
grouped into clusters, and the most representative bands from each cluster are selected 
to form the final subset. To accomplish this, the algorithm utilizes the highly reliable 
hierarchical clustering technique based on Ward’s linkage. This groundbreaking paper 
serves as the first on HSI band clustering. To enhance cluster analysis, it is crucial to 
minimize the disparities within clusters while amplifying the disparities between them. 
To accomplish this, one can utilize information measures such as MI or Kullback-Leibler 
divergence to detect and eliminate repetitive bands. This process facilitates the precise 
identification of representative bands. Numerous other clustering-based band selec-
tion algorithms have been suggested in the literature, providing a range of options for 
improving the accuracy of the analysis. Except for Band Clustering [182], fuzzy clus-
tering [183], and automatic band selection algorithms [184], most clustering methods 
derive from k-means, Affinity Propagation (AP), and graph clustering. These methods 
will be discussed in the following sections.

a. K-means-based clustering methods: According to [185], K-means is a popular 
and highly effective clustering technique. It partitions data into separate clusters 
based on similarity. Its simplicity, speed, and versatility have made it a preferred 
choice in data science, particularly for handling large datasets. It starts with a set of 
randomly chosen clusters, and then iteratively optimizes an objective function that 
measures the distance to a set of potential centers until the optimal cluster centers 
are identified. In particular, it seeks to minimize the objective function by dividing 
N bands into m clusters C, where C = {c1,c2,…, cm} and cj = (j1,j2,…,jn) with 
1 ≤ j1 < j2 < … < jn ≤ N.

  The cluster center of Cj in the k-means algorithm is denoted by �j , and the simi-
larity metric D(•,•) computes the distance between a band and the cluster center to 
which it belongs.

b. Affinity Propagation-based clustering methods: The exemplar-based AP clus-
tering algorithm confidently overcomes the sensitivity of the k-means clustering 
algorithm to initial conditions and successfully identifies representative bands [186]. 
The AP algorithm expertly maximizes a function by taking into account both inter-
band similarity and intra-band discriminative capability, which ultimately results 
in a flawless exemplar e.

  A similarity matrix s
(
i, ei

)
 , containing the eligibility of each band ei to serve as 

the exemplar for the ith , bands are involved in Eq. (10). A coherence constraint, 
represented by the second term, 

∑N

i=1
logfi(e) , indicates that a band must be its 

exemplar if it is selected as an exemplar by other bands.
c. Graph-based clustering methods: According to [187], band selection can be for-

mulated as a graph problem in graph theory. Within the HSI bands graph, each band 
is represented as a node. The edges linking these nodes denote the level of similar-
ity between them. Utilizing a clustering technique, an affinity matrix A is created 
from this band similarity data. This matrix enables the graph to be clustered into 
subgraphs and subsequently identify the most representative bands. Band affinities 
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are represented by the affinity matrix A, where σ is a scaling factor and each affin-
ity between pairs of bands is calculated as ai,j = exp(−fi − fi∕2�

2) . Graph-based 
clustering techniques, such as spectral clustering, are commonly used for clustering 
on the stacking eigenvectors of the affinity matrix Γ, which are defined as follows:

  The affinity matrix’s stacking eigenvectors are utilized for clustering in spectral 
clustering. The diagonal matrix � , which is calculated by summing over the rows of 
A, and the normalized graph Laplacian L are used to normalize the affinity matrix.

2. Embedding learning-based methods: These methods optimize application models 
such as classification, target detection, and spectral unmixing by combining them with 
band selection.

a. Classifier learning-based methods: The SVM classifier is an established and 
widely used method for hyperspectral image analysis due to its low sensitivity to 
imbalanced training samples. The RFE-SVM model, which stands for Recursive-
Feature Elimination Support Vector Machine, is a highly effective approach for 
selecting hyperspectral bands and improving overall performance [188]. Weight val-
ues are obtained during the SVM classifier’s training phase and are used as ranking 
criteria to remove unnecessary bands and improve the classifier. Recursive feature 
elimination, or RFE, aims to reduce generalization error by eliminating features that 
increase the margin. The predictive ability assessment, sREF is computed as follows 
and is inversely proportional to the margin:

  Here, the ith training samples and class labels are denoted by xi and xi ∈ {−1, 1} 
respectively. The kernel function used in SVM is Φ

(
xi, xj

)
.

b. Other learning-based methods: It is worth considering the possibility of integrat-
ing band selection models into learning models to improve target detection and 
endmember extraction. In reference [189], to promote sparsity, a band sparsity term 
was incorporated into the objective function. This was accomplished through the 
incorporation of a sparsity-promoting prior, which was integrated into the iterative-
constrained endmember algorithm. By introducing this term, it was possible to 
expand the sparsity-promoting capabilities of the algorithm, thereby improving its 
overall performance. This approach is particularly effective in a variety of applica-
tions, including signal processing, image analysis, and machine learning. As such, 
it represents a powerful tool for researchers and practitioners alike who are working 
to develop more effective and efficient algorithms for solving complex problems.

  Here, RSSB is the residual sum of squares based on the convex geometry model, 
SSDB is the term that describes the sum of squared distances, SPT represents the 
band sparsity-promoting term, while BST accounts for the weighted sum of band 
weights. The regularization parameters, �, and � , balance RSSB and SSDB in the 
objective function.

(11)L = Λ−1∕2ΓΛ−1∕2

(12)sREF =
∑D

i=1

∑D

j=1
�i�j�i�jΦ(xi, xj)

(13)J = �
RSSB

N
+ �SSDB + SPT + BST
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3. Ranking-based methods: Ranking-based methods are utilized to prioritize spectral 
bands based on a predefined criterion. These methods aim to determine the significance 
of each spectral band and select the top-ranked bands in a sorted sequence. By doing so, 
these methods provide a systematic approach to identifying the spectral bands that are 
most important for a given application. These methods can be divided into two types: 
unsupervised and supervised, based on whether labeled training samples are used.

A. Unsupervised: Unsupervised ranking-based band selection is a method to select 
bands from hyperspectral images without labeled data. It contrasts supervised band 
selection methods that require labeled data to train a machine learning model to 
select the most informative bands [190]. Unsupervised criteria consider the informa-
tion, dissimilarity, or correlation of bands. Metrics such as variance, first spectral 
derivative, spectral ratio, contrast measurement, signal-to-Noise Ratio (SNR), third-
order statistics (skewness), fourth-order statistics (kurtosis), kth order statistics, 
negentropy, entropy, and information divergence, are often employed to prioritize 
bands [191].

a. High-information criteria: Specifically labeled bands must have a consider-
able information volume. Dissimilar classical information metrics, including 
information divergence and entropy, are utilized for grading to choose the bands 
[192]. The band-decorrelation approach confidently utilizes Kull-back-Leibler 
(KL) divergence to effectively remove any unnecessary or significant bands. 
The lower priority band is eliminated if the two bands’ divergence value exceeds 
the threshold. In the future, mutual information remains to measure band dis-
similarity. The covariance-based technique arranged all spectral bands via a 
matching filter and an adaptive coherence estimator to lessen their impact on 
target detection [193].

• Information Entropy (IE): Shannon entropy is a precise and widely 
accepted measure of the information content of a discrete random variable B, 
accurately defined by information theory. It is calculated based on the prob-
ability distribution p(b) of the variable, making it an essential tool to evaluate 
the amount of information conveyed by the variable.

  Subject to

where B is a band, h(b) is its gray-level histogram, and M x N is the total 
number of pixels in B.

• First Spectral Derivative (FSD): It regulates the bandwidth variable as a 
function of supplementary data

(14)H(B) = −
∑

b∈B
p(b)logp(b)

∑
b∈B

p(b) = 1

(15)p(b) =
h(b)

M × N

(16)D1 =
�I(x, �)
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• Second Spectral Derivative: In hyperspectral images, SSD is used to 
explore the bandwidth variable as a purpose of additional data

b. Low-Correlation Criteria: If the specifically labeled bands consume lower 
mutual correlations, the aim is to reduce the selected bands’ correlation; there-
fore, band selection is combined into an objective identification framework. 
Band representation is considered the required target signature; the remaining 
bands are unknown signature vectors. The CBS (Constrained Band Selection) 
approach uses Constrained Energy Minimization (CEM) to restrain a band 
depiction during the Band Correlation (BC) reduction [194].

c. Large-Dissimilarity Criteria: It is anticipated that the selected bands are dif-
ferent. A ranking-based example component analysis approach is suggested to 
quickly locate cluster centers across all bands [200]. To use this approach, it is 
not necessary to parameterize a probability density function. Rather, it is simply 
desirable to quantify the distances among all corresponding bands.

B. Supervised ranking-based methods: In the field of hyperspectral imaging (HSI), 
two methods that are commonly used to prioritize bands are supervised and unsu-
pervised ranking-based methods. However, supervised methods are distinct from 
unsupervised ranking-based methods in that they rely on prior knowledge of HSI 
data to construct a band-prioritization criterion that can closely correlate with spe-
cific applications such as classification and spectral unmixing. This correlation is 
achieved through the use of labeled training data to train a model that can then be 
used to predict the importance of each band for a given task. By contrast, unsuper-
vised ranking-based methods do not require labeled training data and instead use 
statistical methods to identify bands that are most relevant to a given task. While 
both methods have their advantages and disadvantages, the use of supervised meth-
ods can lead to more accurate and reliable results in certain applications. Super-
vised ranking-based approaches are separated into two types: spectral unmixing 
and classification criteria. Spectral unmixing-aimed-criteria: For spectral unmixing, 
it is employed. Orthogonal Subspace Projection (OSP), which depends on linear 
mixture models, is used for subspace projection to minimize subconscious noise and 
undesired signatures [191]. Classification-aimed criteria: Choosing the bands are 
used to assure optimum classification performance. An MMCA method (Minimum 
Misclassification Canonical Analysis) is designed to order bands through classifica-
tion. Misclassification bands’ error rate can be reduced by addressing the eigenvalue 
problem, and for this purpose, MMCA is used [195].

4. Searching-based methods: By converting band selection into an optimization problem 
through searching-based methods, we can confidently determine the best bands for creat-
ing an optimal solution based on a given criterion function. Two crucial issues arise in 
searching-based methods: 1) the criterion function and 2) the searching strategy. The 
criterion function can be similarity-based measurements such as Euclidean Distance 
(ED), Bhattacharyya distance, Jeffries–Matusita (JM) distance [196], Spectral Angle 
Mapping (SAM) [197], structural similarity index measurement [198], or information-
based measurements such as Spectral Information Divergence (SID), transformed diver-
gence, MI [199], and spatial entropy-based MI [200]. The search strategy determines 

(17)D2 =
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the best way to find an optimal or suboptimal solution. Based on the adopted searching 
strategy, searching-based methods can be grouped into three categories: incremental 
searching, updated searching, and eliminating searching.

A. Incremental searching: To avoid the computationally prohibitive task of exhaus-
tively testing all band combinations, incremental searching-based methods sequen-
tially add new bands that optimize the criterion into current band subsets until a 
desired number of bands is selected. The Sequential Forwarding Selection (SFS) 
strategy is often implemented. These methods can be unsupervised or supervised, 
depending on whether labeled training samples are needed during the search process 
[201].

a. Unsupervised searching: There are unsupervised searching-based methods 
that can iteratively add informative bands to enhance the accuracy of HSI data 
without requiring any prior knowledge. In [202], A new algorithm has been 
proposed to identify bands that exhibit significant skewness or kurtosis values. 
The algorithm is designed to detect these features with higher sensitivity and 
accuracy than existing methods. The proposed approach employs advanced sta-
tistical techniques to capture the complex distributions of data more effectively. 
In [203], To achieve acceptable performance in target detection and classifica-
tion, we utilized Linear Prediction (LP) and OSP together to confidently assess 
the similarity between single and multiple bands. In [204], the utilization of 
spectral rhythm was found to be effective in enhancing the intermediary rep-
resentation of Hyperspectral Imagery (HSI) data. Through iterative selection 
based on bipartite graph matching, the algorithm was able to identify the most 
informative and dissimilar bands. Additionally, the algorithm utilized convex 
set geometry to search for new vertices iteratively that maximize the largest 
simplex in the pixel space. As a result, the selected bands corresponding to 
these vertices had low correlations with each other. Overall, this approach has 
shown promising results in improving the representation of HSI data [205].

b. Supervised searching: Incorporating prior knowledge of hyperspectral imag-
ing (HSI) data is a key strategy for improving class separability. Incremental 
searching-based methods represent a promising approach for achieving this 
objective. By leveraging prior knowledge, these methods can steadily refine the 
separability of classes over time. As such, they offer a powerful tool for enhanc-
ing the accuracy and effectiveness of HSI analysis in a variety of business and 
academic settings. In [206], the Band Add-On (BAO) algorithm was expertly 
developed and presented as a powerful tool. It utilizes the exact decomposition 
of SAM, enabling it to iteratively select the most effective bands. To optimize 
performance, it is necessary to increase the angular separation of two spectra in 
a spectral library. To effectively distinguish between two types of spectra, the 
BAO method was augmented with two band selection techniques: the average 
distance and Minimum Distance Methods (MDMs). By meticulously selecting 
the appropriate bands, the angular separation between the two categories was 
significantly enhanced, resulting in improved accuracy. Similarly, in [207], the 
Minimum Estimation Abundance Covariance (MEAC) MEAC algorithm incre-
mentally selects dissimilar spectral bands to preserve classification information 
by minimizing the trace of the abundance covariance matrix using class spectral 
signatures
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  In the above equation, Ms represents the selected band subset and the matrix 
St contains the spectral signatures of the classes in the selected band subset. 
Through the utilization of efficient SFS searching, the nonlinear parsimonious 
feature selection algorithm has been able to effectively and iteratively maximize 
the classification rate estimate from the Gaussian mixture model classifier in 
carefully selected spectral bands.

B. Updated searching-based methods: The latest searching-based methods confi-
dently optimize the predefined evaluation criterion by iteratively replacing ele-
ments of the current band subset with new ones as required during the searching 
procedure. Aside from simple searching strategies such as the sequential forward-
floating search [208], the branch-and-bound search [209], the steep ascent search, 
and the constrained search [210], evolutionary algorithms have been adopted for 
band searching, such as Particle Swarm Optimization (PSO) [208], Adaptive Simu-
lated Annealing [211], Genetic Algorithms (GAs) [212], Firefly Algorithms (FAs) 
[213], Differential Evolutionary Algorithms [214], and Ant Colony Optimization 
[215]. Similar to incremental searching-based methods, similarity or information 
measurements can be used as an objective function.

a. Classifier Independent Methods: The latest searching-based approaches incor-
porate an objective function that evaluates class separability based on specific 
metrics while disregarding any classification accuracy from a true-classifier 
standpoint. In [216], The Clonal-Selection Feature-Selection algorithm can 
meticulously select a subset of bands that optimizes the averaged JM distance 
among various classes. This algorithm employs a rigorous approach to ensure 
that the selected subset is a true representation of the entire dataset. By select-
ing the optimal subset, the algorithm facilitates the identification of the most 
significant and relevant features, thus enhancing the accuracy of the classifica-
tion process.

b. Classification-dependent methods: Through extensive evaluation, the authors 
in [217] determined that utilizing the accuracy of a genuine classifier in certain 
updated searching-based techniques can lead to a highly effective objective 
function. Our findings indicate that nature-inspired algorithms such as Gravi-
tational Search, Harmony Search, PSO, FA, and Bat algorithms are the most 
optimal choices for selecting bands that maximize the accuracy of the Optimum 
Path Forest classifier.

C. Eliminating searching-based methods: The "eliminating search-based" approach 
to select the best bands for a task. This method starts with all the bands and removes 
the unnecessary ones until we reach the desired number of selected bands. Sequen-
tial Backward Selection (SBS) is a common way to do this [218].

5. Sparsity-based methods: According to the sparsity theory, each band can be accurately 
and efficiently represented through sparse usage of nonzero coefficients associated with 
atoms in a suitable basis or dictionary. Sparsity-based band selection methods use sparse 
representation or regression to reveal specific underlying structures within HSI data. To 
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find representative bands, an optimization problem with sparsity constraints is solved 
[219]. Also, the current sparsity-constrained methods are categorized into Sparse Non-
negative Matrix Factorization (SNMF)-based, sparse representation-based, and sparse 
regression-based approaches.

A. Sparse nonnegative matrix factorization-based methods: According to [220], 
Spectral Non-negative Matrix Factorization (SNMF) breaks down a data matrix 
in hyperspectral imaging into a set of bases and encodings. The basis matrix in 
SNMF is non-negative, while the coefficient matrix is negative and sparse. The 
non-negative constraint in both matrices is responsible for the parts-based feature 
of SNMF. This is because only additive combinations are allowed. SNMF was ini-
tially designed to solve the HSI band selection problem, which involves selecting 
representative bands by clustering the sparse coefficients. The technique aims to 
factorize the HSI band matrix B into two unknown matrices: the dictionary matrix 
W ∈ RD×r and the sparse coefficient matrix H ∈ Rr×N . This is achieved by optimiz-
ing the objective function, we will get the below equation;

  Subject to W,H ≥ 0, and ||hi||0 < < r, 1 ≤ i ≤ N

  To achieve a desired low-rank r, the subscript r in fr is used. Each column of H 
contains a cluster or subspace of each band it belongs to, with the most significant 
entry in each column representing it. The constraint ||hi||0 means that each column 
vector hi is sparse, and the number of nonzero entries is significantly smaller than 
the dimensionality r. Unfortunately, the ED distance measurement in Eq. (19) inac-
curately represents the error between X and its approximation H, as the Gaussian 
distribution assumption behind the ED measurement contradicts the nature of HSI 
data.

B. Sparse representation-based methods: Sparse representation-based methods 
employ either manual definition or learning of a dictionary in advance to select 
informative bands based on sparse coefficients. In these methods, the dictionary is 
a set of basis functions that represent the input signal. By selecting a sparse rep-
resentation of the signal, that is, a representation that uses only a small number of 
basis functions, the method can identify the most informative bands in the signal. 
An algorithm was proposed for selecting bands from hyperspectral images, which 
is based on sparse representation. In this algorithm, the hyperspectral image bands 
were sparsely represented using a dictionary learned by K-SVD. The algorithm 
then ranked the bands based on their sparse coefficients, using majority voting. 
Finally, the bands with high occurrences in the histograms of sparse coefficients 
were selected [221].

C. Sparse regression-based methods: According to [222], Sparse regression-based 
methods can be used to solve the band selection problem. To do this, the problem 
is transformed into a sparse linear regression problem, which uses training samples 
and their class labels. The sparse coefficients obtained from the best solution are 
then used to select the bands that provide better class separability. To ensure spar-
sity, a constraint is imposed on the linear regression between the training samples 
and their class labels. The Least Shrinkage And Selection Operator (LASSO) is 
used to obtain the solution.

(19)minW,Hfr =
1
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  The given equation consists of class labels, where 1 indicates belonging to the 
specific class, and 0 denotes the opposite. The parameter � controls the L1 penalty 
term’s contribution. The bands were chosen based on the ranking of their coef-
ficients for all classes. A combined framework for band selection was developed 
by coupling the LASSO model and a new separability measure that employs the 
Hilbert–Schmidt independence criterion.

6. Hybrid scheme-based methods: Hybrid schemes are a powerful tool in identifying 
the most appropriate bands, allowing for versatility and efficiency. These methods 
often combine clustering and ranking schemes to create hybrid algorithms. In a 
study referenced as [223], the Spectral Separability Index (SSI) algorithm integrates 
clustering, ranking, and searching schemes to select the most optimal band combination 
for classification. First, the original bands are grouped into clusters based on their 
spectral Correlation Coefficients (CCs). Then, a representative band from each cluster 
is chosen by ranking the entropy of the bands in the same cluster. Finally, the best band 
combination is selected by maximizing the SSI separability.

7  Hyperspectral image classification

The process of hyperspectral image classification is a highly accurate and effective method. 
It involves assigning pixels in an image to specific classes based on their spectral signa-
tures. Hyperspectral images contain a wealth of information about object reflectance, with 
hundreds or even thousands of narrow, contiguous wavelength bands. This enables us to 
perform a range of applications, including precise mineral mapping, vegetation analysis, 
and urban land-use mapping [224]. The primary objective of hyperspectral image classi-
fication is to accurately identify and categorize different objects within an image based 
on their spectral properties. This is accomplished by extracting features from the spectral 
signatures of the pixels, which are then utilized to train a machine learning model. With the 
help of this model, we can confidently classify the pixels, ensuring accurate object identi-
fication and classification. The objects present in the image can be anything from soil, veg-
etation, water, buildings, or any other type of object that possesses a unique spectral signa-
ture [225]. We have divided the classification techniques into traditional machine learning 
neural networks in hyperspectral image classification. In traditional machine learning, we 
have divided into supervised, semi-supervised, and unsupervised classification techniques. 
Coming to the neural network classification model, we have subdivided it into traditional 
neural networks and deep learning (Fig 19).

7.1  Traditional machine learning

7.1.1  Supervised machine learning

According to [116], Supervised machine learning classification is an algorithmic para-
digm that facilitates the categorization of data into distinct groups. This is achieved by 
training the algorithm on a labeled dataset, where each data point is assigned a known 
label. The algorithm then identifies patterns in the data associated with each label, which 
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can subsequently be utilized to classify new data points that have not been previously 
encountered. Standard supervised learning algorithms include Random Forest (RF), Logis-
tic Regression (LR), Artificial Neural Networks (ANN), Decision Trees, Support Vector 
Machine (SVM), Gaussian Naive Bayes, and Nearest Neighbours. These algorithms are 
widely employed in business and academic settings, owing to their efficacy in predicting 
and classifying outcomes.

A. Support Vector Machines (SVM): SVMs are widely recognized as powerful machine 
learning algorithms utilized in various applications such as classification and regres-
sion analysis. SVMs derive their strength from the concept of decision planes, which 
effectively determine the boundaries between objects with different class memberships. 
The SVM algorithm is a robust and reliable tool that efficiently categorizes data into 
distinct training and testing sets. It skillfully identifies the hyperplane that optimizes the 
distinction between classes, with minimal room for error. SVMs have demonstrated their 
efficacy across a range of applications, from image and text classification to bioinfor-
matics, and have a well-established record of success. In the training set, each instance 
is assigned a target value, making SVMs an excellent choice for solving complex clas-
sification and regression problems with high accuracy. This target value represents 
the class the instance belongs to [226]. According to [227], the SVM algorithm then 
uses this information to learn each class’s characteristics and create a model that can 
be used to classify new instances. The objective of this model is to identify the opti-
mal hyperplane that effectively separates the distinct classes within the training data. 
Once trained, it can classify new, unseen data accordingly. X denotes the input data-
set, while Y denotes the output dataset. Through the utilization of these datasets, this 
model can generate precise and reliable predictions. The training set will be defined as 
{
(
x1, y1

)
,
(
x2, y2

)
,…… ., (xm, ym)}

  Here, Kernel function parameters α are fine-tuned for accurate classification by the 
SVM classifier, which transforms data into a higher-dimensional space for easier class 
separation. Various types of kernel functions can be used with SVM, including polyno-

(21)Y = f (x, �)

Fig. 19  Hyperspectral Image Classification
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mial, linear, and radial basis functions. Each kernel function has unique characteristics 
that significantly impact SVM classifier performance. Polynomial kernels are helpful 
for data that has non-linear relationships, while linear kernels are used for linearly 
separable data. Radial basis functions are often used when the data has no clear separa-
tion between classes. The choice of kernel function is an important consideration when 
using SVM, and it is often determined through experimentation and testing. The SVM 
decision function is given by

  In this case, the kernel function K(xi, xj) reflects the machine learning mathematical 
technique that converts data into a higher-dimensional space. The subgroups of the 
training sample are indicated by s.

  Several kernels are commonly used:
  Linear:

  Polynomial:

  Radial basis function:

  Sigmoid:

B. Maximum Likelihood Classification: According to [228], the Maximum Likelihood 
(ML) classification method is often preferred as it can yield better results in hyper-
spectral remote sensing images. This is particularly true when the training samples are 
normally distributed, as the classification method obtained through ML tends to be more 
effective in such cases. In remote sensing, a ground feature image can use its spectral 
feature vector X to locate a corresponding feature point in the spectral feature space. 
Each feature point from a similar feature will form a cluster of certain probability in 
the feature space. The conditional probability P(�i|X) of a feature point (X) falling into 
a certain cluster (�i) can be used as a component category decision function, which is 
called a likelihood decision function. Assuming that gi(x) is a discriminant function, the 
probability P(�i|x) that a pixel x belongs to class �i can be expressed as

  So basically, there’s this thing called the Bayesian formula that helps you figure out 
the probability of something happening based on new information that we will get.

  In this case, P
(
�i|x

)
 is the conditional probability that x is a member of �i , P(�i) is the 

prior probability, and P(x) is the probability that x is not a member of the category. One 
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approach to hyperspectral data classification is maximum likelihood, which assumes 
that the data has a normal distribution. Equation (29) provides the discriminant formula, 
which makes distinctions between various classes.

  In this case, i denotes the number of classes, k the number of features, covariance of 
the matrix of the ith class is provided as 

∑
i , determinant of the matrix 

∑
i is given as 

�∑ i� , and ui is the mean vector.
C. Spectral Angular Mapper (SAM): According to [229], the Spectral Angle Mapper 

program computes the angle between two spectra and considers them as vectors with 
dimensions equivalent to the number of bands to establish spectral similarity. On the other 
hand, spectroscopy is a technique that determines the molecular structure by measuring the 
radiant intensity and energy of the interaction between light and the subject of interest. In 
absorption spectroscopy, the element that interacts with light is passive. It absorbs specific 
photons based on their wavelength, resulting in a spectral signature. The light not absorbed 
can either pass through the chemical sample or be diffusely reflected on it. Once the diffuse 
reflectance spectrum is obtained, it must be processed to identify, classify, or discriminate 
the elements. The SAM method generalizes this geometric interpretation to n-dimensional 
space. It uses the following equation to determine similarity:

  Here, the number of bands is denoted by nb, the pixel spectrum is represented by t, 
and the reference spectrum is depicted as r. Figure 20 shows the classification results of 
Washington DC Mall hyperspectral image using ML, SAM and SVM.

D. Decision Tree (DT): The construction of the decision tree is a confident and reliable 
process, achieved through the recursive division of training data into subsets based on 
attribute values until the stopping criterion is reached. The stopping criterion could be the 
maximum depth of the tree or the minimum number of samples required to split a node. 
This process of dividing the subsets based on the attribute values is continued until the 
stopping criterion is met. In the training phase, the Decision Tree algorithm selects the best 
attribute to divide the data based on a metric such as entropy or Gini impurity. The metric 
measures the level of impurity or randomness in the subsets of the data. The objective is 
to find the attribute that results in the maximum information gain or reduction in impurity 
after the split. This attribute selection process continues until the tree is fully grown [230].

E. Random Forest (RF): Random Forest is an ensemble learning technique that combines 
multiple decision trees to improve accuracy in classification and regression tasks. It 
can handle large datasets and identify influential features to improve model interpret-
ability. In a Random Forest, each decision tree is constructed using a random subset of 
the training data and a random subset of the features. This helps to reduce overfitting 
and improve the accuracy and generalization of the model. When making predictions, 
the Random Forest algorithm aggregates the predictions of all the individual decision 
trees to arrive at a final prediction. Overall, Random Forest is a powerful and flexible 
algorithm that can be used for various machine-learning tasks [231].
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F. CART (Classification and Regression Trees): According to [232], It is a rule-based 
data mining technique used for classification and regression tasks. CART has the learn-
ing procedure in two stages: 1. Selecting the tree structure and 2. Determining the pre-
dictions at the leaf node. It will isolate the input data into independent variables with 

Fig. 20  Classification results. a ML classification, b SAM classification, and (c) SVM classification [228]
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the best degree of purity. Where the same land use type is the source of the leaf nodes. 
At each node, there are numerous criteria for data partitioning, one of which is the Gini 
index, which may accommodate nominal values. The Gini index at node t is determined 
using.

  Here, P(wi) is the comparative regularity of  ith class. The tree expansion procedure 
is frequent until the maximum spotlessness at the leaf nodes is obtained. If the decision 
tree models a target variable with nominal values, it is referred to as a classification tree; 
if it models a target variable with continuous values, it is referred to as a regression tree.

G. K-Nearest Neighbour (K-NN): According to [233], the K-NN algorithm is a non-para-
metric method widely used for classification in pattern recognition. The main principle of 
K-NN is that the category of a data point is determined according to the classification of 
the nearest K neighbors. If we have a training set T = {

(
x1, y1

)
,
(
x2, y2

)
,… .., (xN , yN)} , 

here N is the Number of training entities. Here, xi ∈ Rd denotes the feature vec-
tors, yi ∈ y = {c1, c2,… .cm} depicts the classification labels. An input x is given as 
i = 1, 2,… .,N , from this we can obtain the K-nearest neighbors NK(x) by computing 
the distance with training entities.

Distance Metrics Used in K-NN: The KNN algorithm is used to identify the nearest 
groups or points to a query point. However, we need to use a metric to determine the 
closest groups or points for a query point. For this purpose, we use the following dis-
tance metrics:

 i. Euclidean Distance: The Euclidean distance measures the Cartesian distance between 
two points in a plane or hyperplane. It can be visualized as the length of a straight line 
that connects the two points in question. This metric is beneficial for calculating the 
net displacement between two states of an object.

 ii. Manhattan Distance: The Euclidean distance is advantageous when we are interested 
in calculating the total distance traveled by an object rather than just its displacement. 
To compute this metric, we sum the absolute differences between the coordinates of 
the points in n-dimensions.

 iii. Minkowski Distance: It’s worth noting that both the Euclidean and Manhattan dis-
tances are exceptional cases of the Minkowski distance.

How to choose K value In the k-nearest neighbors (k-NN) algorithm, the value of k is 
crucial as it determines the number of neighbors that will be considered. It’s essential to 
choose an appropriate value of k based on the input data. For instance, if the input data 

(31)Gini(t) =
∑

i≠j
P(wi) × P(wj)

(32)d(x, y) =

√∑n

i=1
(xi − yi)

2

(33)d(x, y) =
∑n

i=1
|xi − yi|

(34)d(x, y) = (
∑n

i=1
(xi − yi)

p)
1

p
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contains significant outliers or noise, a higher value of k may be more suitable. To avoid 
ties in classification, choosing an odd value for k is recommended. Cross-validation meth-
ods can help select the best k value for a given dataset.

H. Multivariate Adaptive Regression Splines (MARS): In [234], the authors have given 
that a nonparametric regression technique called Multivariate Adaptive Regression 
Spline (MARS) can spot interactions and nonlinear correlations between response and 
predictor variables. Additionally, the MARS technique can automatically choose cru-
cial modeling variables. The equation below can be used to display the MARS model 
estimator.

  Based on the least Generalised Cross-Validation (GCV) value, MARS uses stepwise 
forward and backward stepwise algorithms to determine knots (automatically) from the 
data. In other words, the chosen knot point has the lowest GCV value. The algorithm 
for determining knots uses the modified GCV formula as a criterion.

  Here, M is represented as a nonconstant basis function, the number of parameters in 
the model is C(M), and the matrices bias function is B.

  The significance of the parameters of the MARS model is tested in two stages - simul-
taneous testing and partial testing. The F test or Fisher test is used as the test statistic. 
The formula used for this test is as follows:

I. Minimum Distance Classification: The Minimum Distance Classifier (MDC) tech-
nique is a highly reliable and widely accepted classification method that accurately 
categorizes pixels in the feature space based on their distance. It is a commonly 
accepted notion within the field of feature space that feature points of the same 
class tend to form clusters. These feature points determine the mean vector, which 
acts as the category’s center. Additionally, the covariance matrix is precisely com-
puted to describe the dispersion of the surrounding points. Points are then meas-
ured consistently and reliably for each category [228]. To identify whether the two 
modes are similar or not, a similarity measure is used. This measure confidently 
asserts that modes can be considered similar if their feature differences fall below 
a certain threshold. The technique creates decision-making regions by collecting 
different training sample points, and similarity is measured using distance as the 
primary metric. There are various methods for calculating distances, such as Ming’s, 
Mahalanobis’, absolute value, Euclidean, Chebyshev’s, and Barth’s distances. The 
effectiveness of Mahalanobis and Barth-Parametric distances in classification is 
widely acknowledged due to their ability to take into account the mean vector and 

(35)f (x) = a0 +
∑M

m=1
am

∏km

k=1
[Skm.(xv(k,m) − tkm)]

(36)GCV(M) =
(
1

N
)
∑N

i=1
[yi − f̂m(xi)]

2

[1 −
C(M)

N
]
2

(37)F =
SSe∕k

SSe

n
− k − 1
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the distribution of each feature point around the class center. It’s worth noting, how-
ever, that their computation requires more data than other distance criteria [235].

7.1.2  Unsupervised machine learning

This technique is used to group data points into clusters based on their similarities without 
using labeled data. This method differs from supervised machine learning classification, 
which relies on labeled data to train a model to classify new data points. Unsupervised 
machine learning classification is often used in exploratory data analysis to discover hidden 
patterns and relationships. For instance, it can be used to identify groups of customers with 
similar buying habits or groups of the population with different health risks [236]. Stand-
ard unsupervised machine learning algorithms are Principal Component Analysis (PCA), 
Adaptive Resonance (AR), Self-Organizing Maps (SOM), Artificial Neural Network 
(ANN), ISODATA, and Clustering. In clustering, we have K-means Clustering, Spatial 
Clustering, spectral clustering, fuzzy c-means clustering, mean shift clustering, Density-
Based Clustering (DBSCAN), Balanced Iterative Reducing and Clustering using Hierar-
chies (BIRCH), Hierarchical Clustering

A. Principal Component Analysis (PCA): It is one of the most well-known and often 
employed dimensionality reduction techniques that use statistical measurements. To 
extract the information from the informative bands, PCA performs orthogonal transfor-
mations to transform HSI’s highly correlated image bands into a set of linearly uncor-
related variables. According to [237], if x is the pixel vector of the hyperspectral image 
data, it can be represented as Xn = {xn1, xn2, xn3,……… .xnF}

T with all pixel values 
X1,X2,X3,……… ,XS at one parallel pixel location of the hypercube or data matrix. 
The n represents the nth number of pixels from s. here, the hypercube is represented by 
D of size F × S , where S = X × Y  . To calculate mean vector, M of all image vectors:

  The covariance matrix is calculated by using Eq. (40)

  Here, I is the zero-mean image as I = {I1, I2, I3,… .., In} produced from 
In = xn −M = {In1, In2, In3,… , InF}

T . Now, covariance matrix, the variable C is com-
puted to perform eigenvalue decomposition. This process follows a specific format 
which can be described as:

  Here, V is the orthogonal matrix, where F is the dimension eigenvec-
tors (V1,V2,V3,… ..,VF) are used to create the orthogonal matrix, and 
E = diagonal(E1,E2,E3,…… ,EF) is a diagonal matrix composed of the corresponding 
eigenvalues (E1,E2,E3,…… .,EF) The eigenvectors in this case are referred to as princi-
pal components (PCs). Currently, a new feature subspace w, a F × k dimensional matrix 
with k ≤ F and frequently k << F , is created by selecting k eigenvectors. Divergence 
analysis, discriminant analysis, and other methods can be used to select k eigenvectors, 

(38)M =
1

S

∑S

n=1
Xn

(39)C =
1

s
IIT

(40)C = VEVT
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such as sorting the eigenvectors in descending order and selecting the top k principal 
components. Ultimately, the modified PCA pixel vector Y can be acquired as follows:

  Here, the original image data is represented as d, which can be created as 
d = (w ∗ Y) +M

B. Self-Organising Maps (SOM): This is an artificial neural network that takes high-
dimensional data and maps it to a lower-dimensional space. The resulting map comprises 
a set of nodes that preserve the distribution of the input data while also representing the 
entire dataset. The lattice structure can be of any shape, but a finite two-dimensional 
rectangular grid is the most commonly used. Each node in the SOM is associated with 
a vector 𝐳 that has the same dimension as the input data points [238]. The SOM opera-
tion consists of two main parts: training and labeling. Although they can be combined 
into a single online process, we will describe them separately. In both parts, the goal 
is to identify the best matching unit (BMU) for a given input vector. The BMU is the 
node closest to the input vector under a specified distance metric, typically Euclidean 
distance. The best matching unit is given as

  Here, input data is given as X = [x1, x2, x3,… , xn] , xi ∈ Rd , m × m grid of the SOM 
nodes a given as Z = [Z1,1, Z1,2, Z1,3,… , Zm,m] , Zi ∈ Rd , and k is the distance metric. 
During the Self-Organizing Map (SOM) training phase, the BMU (Best Matching Unit) 
is identified, and its neighborhood function is calculated. The SOM adjusts neighbor-
ing nodes towards the input vector and labels the input vector with the BMU’s SOM 
coordinates during the labeling phase. After training the map, if two points are located 
near each other in the input data space, then they will also be mapped to nodes that are 
positioned close to each other on the SOM grid. In other words, the SOM grid maintains 
the spatial relationships between various data points while preserving the topology of the 
input space. Gradient descent is analogous to the Self-Organizing Map (SOM) training 
procedure. However because the original SOM lacked an objective function, it’s not 
the same. The index on the SOM of BMU for an input vector xi from Eq. (43) can be 
represented as u∗

i
= BMU(xi) . For every SOM node Zi , the updated steps are provided 

as

where α > 0 is the learning rate for iteration, the neighborhood function is represented 
as 𝛽

(
t, uj, u

∗
i

)
> 0 , each training epoch is denoted as t, and the iteration within the 

epoch is denoted as s. The learning rate is denoted by α, which determines the speed 
at which the map adjusts to the input data. The neighborhood function �

(
t, uj, u

∗
i

)
 Pre-

serves the topology by training nodes that are spatially far from u∗
i
 with a lower magni-

tude. During training, the update radius (t) is used to characterize the learning process. 
As the training progresses, this radius decreases to enable the model to learn the rough 
distribution topology before fine-tuning the local areas of distribution [239].

C. Active Learning: It is a machine learning method that selects the most informative 
samples from an unlabeled dataset and uses human input to label them, thereby 
training a supervised machine learning model. This approach aims to reduce the 
dependence on a large labeled training dataset. Two primary types of Active Learning 

(41)Y = wT × I

(42)BMU
(
xi
)
= argmin k(xi, Z)

(43)zs+1
j

= zs
j
+ ��(t, uj, u

∗
i
)k(xi, z

s
j
)
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(AL) are stream-based and pool-based. In stream-based AL, the algorithm receives 
each unlabeled sample one at a time and decides whether to request a label. In 
contrast, pool-based AL involves a large pool of unlabeled samples presented to an 
AL acquisition function for selection and manual labeling. In an Active Learning 
framework, a supervised machine learning algorithm and an acquisition function play 
crucial roles [240].

D. ISODATA (Iterative Self-Organizing Data Analysis Technique): The ISODATA 
algorithm is a commonly used unsupervised classification method that extends the 
K-Means algorithm. It selects the number of clusters automatically using heuristics. 
According to [241], the ISODATA algorithm assumes that each class follows a multi-
variate normal distribution and requires each class’s means and covariance matrices. It 
follows an iterative process where arbitrary cluster centers are assigned initially, and the 
cluster means and covariance are calculated. Then, each pixel is classified to the near-
est cluster. New cluster means, and covariance are calculated based on all the pixels in 
each cluster. This procedure is iterated until the change between iterations is considered 
"low enough." The modification can be quantified by measuring the distances the cluster 
means have changed from one iteration to the next or by the percentage of pixels that 
have changed between iterations.

  In more detail, the steps in ISODATA clustering are as follows:

 i. Specify the number of clusters.
 ii. The clustering algorithm will then proceed to select the initial cluster centers 

and assign the pixels to them accordingly.

   Here, the cluster centers for cluster i and j are given as �i , and �j , and x is 
the position of the feature vector.

 iii. To calculate the new class mean, we confidently compute the average of the 
pixel values that are assigned to the class, which serves as the definitive center 
for class i.

   Here, K denotes the number of clusters, Qi is the number of pixels in class 
I, and the cluster covariance is also calculated at the same time.

 iv. So basically, the pixels are assigned to the closest cluster.
 v. The determination to calculate the means and covariance of the new cluster is 

truly inspiring.
 vi. Repeat steps 4 through 5 if the difference between the initial and new clusters 

is not minimal enough. If not, the clustering process is over.

E. Clustering: Clustering categorizes data points into distinct groups or clusters based on 
their similarities and differences. The objective of clustering is to group data points that 
are alike and separate those that are dissimilar. Clustering is a technique for organizing 
objects to make them easier to understand and analyze [242]. The types of clustering 
algorithms have been listed below.

(44)x ∈ iif ||𝜔(x) − 𝜔i
|| < |||𝜔(x) − 𝜔j

|||forallj ≠ i

(45)�i =
1

Qi

∑
x∈i

�(x), i = 1, 2, 3, ,… .,K
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• K-means Clustering: K-means is a widely used unsupervised learning algorithm 
that easily groups data into a specified number of clusters. If a set of observa-
tions are depicted as X = (x1, x2, ,… , xn) , where each observation is x1 ∈ Rd , i.e., 
xi = [xi1 , xi2 ,… ., xid ] , here, d is represented as several spectral channels. To group 
each observation cluster into several clusters, k is fixed a priori value, i.e., k <  = n. 
K-means will calculate the centers of the k groups by optimizing the error of each 
group as

  Here, the Euclidian distance between a data point xj
i
 of the cluster, j is depicted as 

||xj
i
− cj||

2
 , the cluster center is given as cj , and the observations within each cluster 

are given as nk . The K-means algorithm effectively extracts valuable insights from 
a dataset, especially when identifying the most suitable distance metric. However, 
the results can vary significantly depending on slight parameter changes and initial 
center selection. Therefore, it is crucial to initialize the process correctly to ensure 
the final output is the best solution [243].

• Hierarchical clustering: Hierarchical clustering is an incredibly powerful machine 
learning algorithm that expertly groups data points into clusters based on their 
similarities, in a way that each cluster has a parent cluster. Hierarchical clustering 
is a valuable technique that helps to group similar data points into clusters. Initially, 
each data point is considered as its cluster, and then the closest clusters are iteratively 
merged until all data points belong to a single cluster. There are two types of 
hierarchical clustering: agglomerative and divisive. The agglomerative method is the 
most commonly used type, where the algorithm merges the closest clusters until only 
one remains. On the other hand, the divisive method works by splitting the largest 
cluster into two smaller clusters until each data point belongs to its cluster [244].

• BIRCH: The BIRCH algorithm is an innovative hierarchical clustering algo-
rithm that incorporates two fundamental concepts: Clustering Features (CF) and 
Cluster Feature Tree (CF Tree) to provide a more comprehensive cluster descrip-
tion. The CF Tree outlines the clustering of valuable information, and its minimal 
space requirement enables it to store metadata collections in memory, significantly 
enhancing the algorithm’s speed and scalability. This makes it an ideal option for 
handling large datasets. It is beneficial for clustering both discrete and continu-
ous attribute data [245]. According to [246], the first step in organizing the dataset 
objects involves creating a sub-clustering CF form. This form consists of a triple of 
information, denoted as CF = (N, LS, SS), where N represents the number of data 
points, LS denotes the sum of the attribute values of X, and SS represents the sum 
of the squared values of X. The resulting CF is then clustered into k-groups using 
the conventional hierarchy clustering procedure. Should two CFs be merged, the 
theorem applies accordingly.

  BIRCH is a meticulously designed algorithm that generates a concise summary 
of CF sub-clusters incrementally. The clusters are represented by a vector CF, which 
is the only value stored in memory. This CF value is sufficient to compute vital 
information related to subclusters, including their centroid, radius, and diameter. By 

(46)min
∑k

j=1

∑nk

i=1
||xj

i
− cj||

2

(47)CF12 = (N1 + N2, LS1 + LS2,SS1 + SS2)
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summarizing the information about subclusters instead of saving all points, BIRCH 
offers a highly efficient storage technique. The D2 distance formula is utilized to 
locate a cluster feature suitable for combination.

  By applying the following formula, we can determine the radius of a CF leaf.

• Fuzzy C Means clustering (FCM): This is an extremely powerful and flexible soft 
clustering algorithm that enables a data point to belong to multiple clusters with 
varying degrees of membership. This sets it apart from traditional clustering algo-
rithms like k-means clustering, which only allows each data point to belong to a sin-
gle cluster [247]. According to [248], the Fuzzy C-Means clustering algorithm com-
putes the probability of image pixel membership to image clusters. In traditional 
Fuzzy C-Means clustering, the objective function to be minimized is:

  Let’s consider a scenario where we have an image X and want to group its pixels 
into clusters. In this case, we can represent the ith pixel of the image X as xi . Simi-
larly, we can represent the jth cluster center as cj . uij is a representation of xi degree 
of membership to the jth center. M clusters and D number of picture pixels are pre-
sent. Utilizing a natural number, m, we regulate the degree of fuzziness.

• Spatial Clustering: Through a clustering analysis of observation points that exhibit 
comparable deformation sequences, the deformation area can be divided. To ensure 
alignment with spatial observation data clustering, essential similarity indicators, 
and a spatial similarity index have been established. These indicators include three 
primary spatial similarity measures: "weighted absolute distance," "weighted incre-
ment distance," and "weighted growth rate distance." These measures gauge the 
similarity between two distinct locations at different points in time.

  The "weighted absolute distance" in real time between observation points k and l 
is denoted by dS

kl
(AD) and the full formula can be found here.

  The value of the mth deformation variable of the observation point k at the time 
section t (m = 1, 2, ……, M, t = 1, 2, ….., T) is represented as xmt(k) , xmt(k) = �mt(k) , 
xmt(l) = �mt(l) . In this case, the weight of the mth deformation variable xm is pro-
vided as WXm . The distance between deformations at observation locations k and l 
at a given time instance is measured by the value of dS

kl
(AD) . The similarity between 

the deformation at the two observation places increases with decreasing dS
kl
(AD) 

value.

(48)D2 =

√(
N1SS1

)
+
(
N2SS2

)
+ 2LS1LS2

N1N2

(49)R =

√
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n

(50)Jm =
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∑M

j=1
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ij
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  The "Weighted Increment Distance" in real time between observation locations k 
and l is denoted by dS

kl
(ID) , and the entire formula will be found here.

  The equation in this case is ymt(k) = xmt(k) − xm,t−1(k) ; ymt(l) = xmt(l) − xm,t−1(l) . 
The deformation increment distance between observation points k and l at a particu-
lar time from the last measurement is indicated by the value of dS

kl
(ID) . The defor-

mation increments at the two observation places are more likely to be identical if 
dS
kl
(ID) is lower.

  dS
kl
(GRD) represents the full-time "Weighted growth rate Distance" between 

observation sites k and l, and the full formula, if provided, is

  Here, the difference between the two observation points, k, and l, at one particular 
time and the last can be used to calculate the value of dS

kl
(GRD) , which indicates the 

relative deformation increments of the two points. A greater degree of remarkable 
similarity between the relative deformation increments of the two observation loca-
tions is indicated by a smaller value of dS

kl
(GRD) [249].

• Spectral Clustering: Spectral Clustering is a powerful technique for grouping data 
according to their similarities. It operates by assessing the interconnections between 
each data point and creating a graph with vertices representing the data and edges 
representing those relationships. Typically, the connections are determined by meas-
uring the distance between two related records. Spectral clustering is a straightfor-
ward algorithm that can be efficiently solved using standard linear algebra software. 
Due to its superior performance compared to traditional clustering approaches like 
the k-means algorithm, Spectral Clustering has gained significant popularity in 
recent times [250].

• Means Shift Clustering: Means shift clustering is a clustering algorithm that 
groups data points based on their density in the feature space. Unlike parametric 
algorithms, it makes no assumptions about the data distribution. The algorithm 
selects a data point and defines its neighborhood using a kernel function that 
assigns a weight to each data point based on its distance from the current data 
point. Then, it shifts the selected data point towards the mean of the data points 
in its neighborhood, and the process is repeated for all data points until conver-
gence is achieved. In simpler terms, mean shift clustering identifies clusters of 
data points based on how close they are to each other in space, without assum-
ing any specific shape or size for the clusters [251]. The means shift clustering 
algorithm iteratively shifts each data point towards the mean of the data points 
in its neighborhood until all data points have converged to a local maximum of 
the density function. These local maxima represent the clusters in the data. Mean 

(53)dS
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∑M

m=1

∑T

t=1
WXm[ymt(k) − ymt(l)]

2

(54)dS
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WXm[zmt(k) − zmt(l)]

2
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shift clustering is particularly useful for clustering data with overlapping clusters 
or is not well-defined. It can also handle data with outliers, disrupting the perfor-
mance of other clustering algorithms [252].

• DBSCAN: The Density-Based Clustering (DBSCAN) approach solves the problem 
of identifying clusters in data with varying densities. The algorithm allocates clus-
ters in dense regions of the data space while separating regions with lower point 
density as noise. DBSCAN works by defining a neighborhood around each point 
in the data space and requiring that a minimum number of points fall within that 
neighborhood. Clusters are formed by connecting points that satisfy this criterion, 
while lone points that do not meet the minimum threshold are classified as noise. 
In simple terms, DBSCAN identifies clusters of data points by looking for areas 
with high point density and separating them from areas with low point density. It is 
a helpful algorithm for identifying clusters in complex data sets where traditional 
clustering algorithms may fail [253]. DBSCAN is an algorithm that can identify 
clusters in data sets with varying densities and classify outlier points as noise. It is 
beneficial for handling large spatial datasets with small related clusters in multiple 
dimensions, which can significantly reduce computation time. The algorithm evalu-
ates the density of data points in a given space, grouping them based on their prox-
imity. Points alone in low-density regions are classified as outliers, meaning they are 
not part of any cluster. It’s worth noting that DBSCAN requires some adjustment for 
certain types of data sets to identify cluster shapes accurately. However, it remains a 
powerful clustering method that can effectively handle complex data sets [254].

7.1.3  Semi‑supervised machine learning

Semi-supervised machine learning classification is an algorithm for categorizing data 
into different groups using a small amount of labeled data and a large amount of unla-
beled data. This method differs from supervised machine learning classification, which 
relies solely on labeled data, and unsupervised machine learning classification, which 
relies only on unlabeled data. Semi-supervised machine learning classification is benefi-
cial for problems with scarce or expensive labeled data. This is often the case in hyper-
spectral imaging, where the images can be large and complex, and it can be difficult and 
costly to label all of the pixels in the image [255].

A. Inductive SVMs: According to [256], Inductive Support Vector Machines (SVMs) are 
well-suited classification algorithms for high-dimensional classification tasks. These 
algorithms aim to maximize the margin between the closest training samples for two 
classes by utilizing hyperplanes. The algorithm obtains the separating hyperplane by 
maximizing the separating margin between the two classes. This makes it an ideal choice 
for remote sensing classification problems.

Consider a set of training examples S = (xi, yi) , where i ranges from 1 to l, i.e., 
i = 1, 2,… .., l . Each input pattern xi is associated with a label yi that belongs to the set 
yi ∈ {±1} . The SVM classifier aims to minimize the error by using a nonlinear mapping 
∅ (.)
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Subject to:

Here, �i = 1, 2,…… ., l

Constrained Quadratic Programming (QP) is a proven and reliable method for confidently 
minimizing equations (58) and achieving significant reductions in both VC dimension and 
misclassification error.

The proposed solution yields a decision function that can be expressed in the subsequent 
format:

The function k (.,.) is defined as follows:

Only a tiny fraction of the �i coefficients are non-zero, and the corresponding pairs of xi 
entries are referred to as support vectors. These support vectors fully define the decision func-
tion. The term k(x, xi ) is the corresponding nonlinear kernel function.

For the experiment, the RBF kernel function in the form k
(
x, xi

)
= exp(−�||xi − xj||2) was 

used. This kernel function is defined by a weight c. The two-class SVM can be extended to 
multi-class classification by designing several one-against-all (OAA) two-class SVMs.

B. Transductive SVM: Semi-supervised learning algorithms, such as transductive sup-
port vector machines (SVMs), are an effective tool for classification tasks. These algo-
rithms can assist in streamlining the classification process, making it more efficient and 
accurate. These algorithms can train a classification model by utilizing a small amount 
of labeled data and a large amount of unlabeled data. The transductive SVM method 
involves constructing a graph where each node represents a data point and the edges 
represent their similarity. Using this graph, the algorithm propagates the labels from the 
labeled data points to the unlabeled data points.

In [256], the transductive SVM is an iterative algorithm that gradually searches for 
an optimal separating hyperplane in the feature space. It does this through a transduc-
tive process incorporating unlabeled samples during training. In the semi-supervised 
framework, two datasets are defined: a labeled training dataset S and an unlabeled dataset 
V =

[(
xj
)]
, j = 1 + 1, ...., n . The learning process of the TSVM can be formulated as an opti-

mization problem as follows:

Subject to:
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For the training and testing samples, the user-specified penalty levels are indicated by 
C and C∗ , respectively. The number of transductive samples is denoted by d, and the slack 
variables are represented by �i and �∗

j
 . The aforementioned optimization challenge must be 

resolved to train the Transductive Support Vector Machine (TSVM). Once the Lagrange 
multipliers �i and �∗

j
 , are set, the TSVM’s decision function can be found.

C. Graph-based methods: Graph-based methods are a powerful tool for classifying data. 
Constructing graphs with nodes representing labeled and unlabeled data samples and 
edges representing their similarities is an effective way to classify data samples. By 
propagating each sample’s label information to its neighboring samples until a global 
stable state is reached, confident propagation of each data sample’s label to its neighbor-
ing points becomes possible. This approach is highly effective for data classification 
tasks. In [257], According to the authors, the graph structure is represented as G = (V, 
E), where V stands for the dataset’s labeled and unlabeled data samples and E for the 
similarities between them. X = [× 1, × 2,…, xM] represents the HSI dataset, where xi is 
a member of FN. Let’s have a look at this dataset. The feature vector is denoted by F, the 
total number of pixels in the HSI by M, and the total number of spectral bands, or feature 
dimension, by N in this case. Let U = {l + 1,….., l + u} represent the unlabeled samples 
and L = {1,…., l} represent the labeled samples corresponding to labels y1,…., yl. We 
take two steps to build the graph. Using the k-nearest or e-nearest neighbor approach, we 
build the graph adjacency matrix in the first step. Using one of the following equations, 
we determine the graph weights in the second stage:

• The Gaussian similarity function, whose representation is as follows, is one of the 
formulas used to calculate graph weights.

  Here, the σ factor controls the width of the neighbourhood
• The Gaussian similarity function, whose representation is as follows, is one of the 

formulas used to calculate graph weights.

Here, xi and xj are associated with weight wij . If samples are unconnected, wij = 0.
To enhance the ease of categorization, the weight matrix W is computed for all labeled 

and unlabeled data. The normalized graph Laplacian is precisely defined as:

Here, D is represented as diagonal matrices with degrees d1, d2, d3,…… .., dN and 
di =

∑n

j=1
wij

yj
(
∅
(
xj
)
.w + b

)
≥ 1 − �∗

j
, �∗

j
≥ 0;j = 1, 2,… , l

(61)f (x) = sgn
[∑l

i=1
yi�ik

(
x, xi

)
+
∑d

j=1
y∗
j
�∗
j
k
(
x, x∗

j

)
+ b

]

(62)g
(
xi, xj

)
= exp(−

||xi − xj||2
2�2

)

(63)g
(
xi, xj

)
= ||xi − xj||−1

(64)L = I − D(−1∕2)WD(−1∕2)
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The Laplacian is a powerful tool, possessing an essential property that drives inno-
vation and progress, and it gives below,

Here, Vector F comprises various elements. The following objective function is 
intended for data classification and therefore should be minimized. Graph-based tech-
niques are becoming increasingly popular among researchers for their sparse proper-
ties, robust mathematical basis, connection to kernel methods, and exceptional perfor-
mance. In the following section, we will delve into some of the graph-based techniques 
utilized for HSI classification.

D. Object-based classification: Object-based classification (OBC) is a method of 
image classification that segments an image into objects and then classifies those 
objects based on their spectral, geometric, and spatial properties. Unlike traditional 
pixel-based classification methods, OBC does not classify each pixel in the image 
independently. OBC is useful for identifying and classifying objects with high precision 
in hyperspectral imaging due to the high spectral resolution of the images. C is also 
useful for classifying images with complex textures or mixed pixels, wherein traditional 
pixel-based classification methods can face challenges [258].

E. Sub-Pixel-Based Classification: Sub-Pixel-Based Classification (SPC) is a type 
of image classification that can identify and quantify materials in an image at a 
sub-pixel level. Unlike traditional pixel-based classification methods, SPC does 
not assign each pixel in the image to a single class. SPC is made possible by the 
high spectral resolution of hyperspectral photographs, which contain details about 
an object’s spectral reflectance at hundreds or even thousands of tiny, contiguous 
wavelength bands. This allows researchers to identify and quantify materials in 
an image, even when mixed with other materials at the pixel level. Several SPC 
algorithms can be used [259].

F. Super-Pixel-Based Classification: Super-Pixel-Based Classification (SPBC) is an 
image classification technique that groups pixels into super-pixels before performing 
classification. By implementing this approach, we can achieve remarkable results with 
utmost accuracy and clarity, making a positive impact on our goals. Super-pixels are 
groups of pixels that are similar in color and texture. Using a graph-based algorithm to 
segment the image into regions based on pixel similarity is how image segmentation 
is typically achieved. Once the image has been segmented into super-pixels, a range 
of classification algorithms can be used to classify the super-pixels [260]. The 
combination of pixels with spatial proximity and spectral similarity in hyperspectral 
images is called super-pixel. Super-pixel classification is mainly used for segmentation. 
Super-pixel segmentation is utilized to extract spectral data from hyperspectral images, 
effectively reducing the number of units that must be classified and minimizing the 
impact of noise. It is a well-established fact that each segment can effectively be viewed 
as a super-pixel which serves as a crucial component of an object. Over-segmentation, 
on the other hand, is a widely recognized approach that enables the generation of 
super-pixels for representing local information and taking full advantage of the spatial 
correlation [261].

(65)F�LF =
1

2

�n

i,j=1
wij

�
fi√
di

−
fj√
dj
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7.2  Neural networks

Neural network classification models are machine learning models that enable data classifi-
cation. They are designed to mimic the structure and function of the human brain, consisting 
of interconnected nodes or neurons. Each neuron performs a simple mathematical operation, 
and the results are passed on to other neurons in the network. Neural network classification 
models are versatile and can be trained on different data types, such as images, text, and 
numbers. To train such a model, you provide labeled data where each point carries a known 
label. The neural network then learns to predict new data labels based on the patterns it has 
detected from the training data [262]. Neural network classification models are divided into 
two types:

• Traditional neural networks,
• Deep Learning

7.2.1  Traditional neural network

According to [263], a traditional neural network refers to a class of artificial neural net-
works designed to mimic the structure and function of the human brain. It consists of a 
series of layers of interconnected nodes, or neurons, where each neuron is connected to 
every neuron in the previous and the next layer. The input is fed to the first layer, and the 
output is obtained from the last layer. The neurons in each layer perform a simple math-
ematical operation on their input and pass their output to the next layer.

Artificial neural network (ANN) The Artificial Neural Network (ANN), takes inspiration 
from the structure and operation of biological neurons. It is a complex, multilayered system 
that can learn and extract numerous features. The network is composed of an input layer, 
multiple hidden layers, and an output layer to produce the final result. The computation 
process follows a specific format. The jth neuron in the ith layer is represented vij . The value 
has a certain form and is calculated using the neurons in the layer above.

Here, the number of neurons in the (i − 1)th layer is given by ni−1 , the connecting weights 
between the vij and v(i−1)k neurons are depicted as wij

(i−j)k
 , and the bias index for the vij the 

neuron is given as bij . The pointwise activation function is given as �(.), which is used to 
apply the non-linearity to the neural network [264].

A. FNN: The term FNN stands for Feedforward Neural Network, which is a type of arti-
ficial neural network that facilitates the flow of information in a unidirectional manner, 
starting from the input layer, traversing through the hidden layers, and eventually reach-
ing the output layer. The input data is fed to the input layer, and each neuron in the input 
layer is connected to every neuron in the first hidden layer. The neurons in the hidden 
layers perform a simple mathematical operation on their input and pass their output to 
the next layer until the output layer produces the final output. FNNs are primarily used 
for supervised learning tasks such as classification and regression [264].

B. MLP: Unlock the power of neural networks with the Multi-Layer Perceptron, also known as 
MLP. Experience the wonder of multiple neuron layers working together in perfect harmony 

(66)vij = Φ
(
vij +

∑ni−1

k=1
w
ij

(i−j)k
v(i−1)k

)
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to create a feedforward neural network. Each of these layers is connected to every neuron 
in the previous and next layers. MLPs are widely used in supervised learning tasks such 
as classification and regression. They are trained using backpropagation, which adjusts the 
weights of the connections between neurons to minimize the error between predicted and 
actual outputs. They effectively solve complex problems, especially non-linear relationships 
between input and output variables [265]. According to [266], the Multilayer Perceptron 
(MLP) is a type of feedforward artificial neural network where nodes from different layers 
are interconnected. It was first introduced by Frank Rosenblatt in his perceptron program. 
The perceptron is considered the basic unit of an artificial neural network and it defines the 
artificial neuron in the network. It is a supervised learning algorithm containing nodes’ values, 
activation functions, inputs, and weights to calculate the output. The MLP neural network 
works only in the forward direction. All nodes are fully connected to the network. Each node 
passes its value to the next node only in the forward direction. The MLP neural network uses 
the backpropagation algorithm to improve the accuracy of the training model.

Structure of MLP This neural network comprises three main layers that work together to 
form an Artificial Neural Network.

Input layer This layer represents the output of the Neural Network. The number of nodes 
in the output layer depends on the problem type. For a single targeted variable, use one 
node. N classification problem, ANN uses N nodes in the output layer.

Hidden layer The hidden layer is responsible for all computations within the neural net-
work. The edges of this layer are assigned weights, which are then multiplied by the node 
values. Additionally, the hidden layer utilizes an activation function. The model can have 
one or two hidden layers. It is essential to have several hidden layer nodes to achieve accu-
racy. Having too few nodes in the hidden layer can make the model inefficient in process-
ing complex data. Conversely, having too many nodes can result in an overfitting problem.

Output layer The output layer of a Neural Network is responsible for providing the pre-
dicted output. The number of nodes required in this layer depends on the type of problem 
being solved. For a problem where only one variable is being predicted, one node is suf-
ficient. However, for an N-classification problem, the output layer should have N nodes to 
facilitate the classification process (Fig 21).

7.2.2  Deep learning

Deep learning is the cutting-edge subset of machine learning that is specifically designed to train 
deep neural networks with multiple layers, making it a powerful tool for solving complex and 
challenging problems. It is an artificial intelligence technique that enables systems to learn and 
improve from experience without being explicitly programmed. Deep learning algorithms are 
designed to identify patterns and relationships in large, complex datasets, and they have proven 
to be highly effective in tasks such as image and speech recognition, natural language processing, 
and decision-making [267]. In deep learning, we have different types of classification models 
available: Autoencoder, Attention Models, Transformer models, etc., are available. We have 
divided the CNN models into subsections. The description of these models is given below
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A. Autoencoders: Autoencoder is a powerful tool in the field of artificial neural networks, 
particularly in its ability to learn efficient data representations. These models are 
unsupervised learning models, meaning they do not require labeled data to train. 
Autoencoders are also used as unsupervised dimensionality reduction techniques. It is used 
to learn a mapping from high-dimensional observations to low-dimensional representation 
space. The original observation can be reconstructed from the lower-dimensional 
representation [268], which is used for image pre-processing, feature extractions, and 
image classification. According to [29], it minimizes input and reconstructed output 
differences. Autoencoders have the encoder and decoder and the reconstructed output. 
These are the visible input layers called x, hidden layer h, reconstruction layer of x units, 
and activation layer f. An autoencoder is a feedforward technique to reconstruct an output 
from input. For an input vector x, the “encoder” maps the input to a hidden layer and 
produces y. After that, we can get the encoded value y by the parameter weight wy and 
bias by.

  The "decoder" is responsible for mapping y to an output layer that is of the same size 
as the input layer. This output layer is commonly referred to as "reconstruction".

  The hidden layer to output weights and the input-to-hidden layer are represented by 
wy and wz in this instance. The activation function is displayed by f(.), and the bias of 
the hidden and output units are, respectively, by andbz . The sigmoid, tanh, and rectified 
linear functions are just a few options for activation functions. In this work, we have 
used the sigmoid function as the activation function for both the encoder and decoder. 
It is defined in the below equation.

  To achieve the objective of training, it is crucial to minimize the "error" between the 
input and output which is also commonly known as reconstruction. For this purpose, the 

(67)y = f (wy + by)

(68)z = f (wz + bz)

(69)f (x) =
1

1 + ex

Fig. 21  The framework of the Multiscale-MLP for HSI classification [266]
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loss function is defined in a precise manner to ensure accurate and efficient performance 
during training.

  The total number of training samples available is denoted by M in this case. It may 
be possible to successfully reduce the difference between the input and reconstructed 
output over the entire training set X = {x1, x2, x3,………… , xM} to determine the 
values of Θ = (wy,wz, by, bz).

  Through this kind of training focused on reconstruction, the authority and efficacy 
of AE are determined. It only uses the data from the hidden layer, represented as input 
features, during the reconstruction phase. This model must be able to perfectly recover 
the original input from y to demonstrate that it retains sufficient knowledge of the input 
(Fig. 22).

B. RNN: According to [269], An RNN or Recurrent Neural Network is an artificial neural 
network that includes loops in connections, unlike a conventional feedforward neural 
network. These loops enable RNNs to handle sequential inputs using a recurrent hid-
den state that depends on the activation of the previous step. As a result, the network is 
capable of displaying dynamic temporal behavior. If we have given a sequence of data 
x = (x1, x2,… .., xT ) , where xi is the data at ith timestep, an RNN updates its recurrent 
hidden states ht by 0, if t = 0; ht == ∅(ht − 1, xt) . The equation includes a nonlinear 
function called ϕ, which can be either a logistic sigmoid function or a hyperbolic tangent 
function. The RNN may also have a single output yT for certain tasks like hyperspectral 
image classification. However, for some other tasks, the RNN may have multiple outputs

  The recurrent hidden state update rule in equation (68) is commonly used in tradi-
tional RNN models.

(70)J(Θ) =
1

2M

∑M

m=1
|zm − xm|2

(71)y =
(
y1, y2,…… ., y

T

)

Fig. 22  Autoencoder representa-
tion
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  The coefficient matrix W is used in a conventional RNN model to calculate the input at the 
current time step. Conversely, recurrent hidden units at the preceding time step are activated 
using the coefficient matrix U. Based on an element’s current state, ht , an RNN can be used 
to construct a probability distribution for the subsequent element in a data sequence. An 
RNN’s ability to capture a distribution over sequence data with changing length makes this 
feasible. The sequence probability, p(X1,X2,…… ,XT ) , can be broken down into

  Unlock the potential of each conditional probability distribution with the power of a 
recurrent network.

  In this case, ht is obtained from Eqs. (73) and (75). Since a hyperspectral pixel is 
treated as sequential data instead of a feature vector, we can use a recurrent network to 
model the spectral sequence. RNNs are an essential branch of the deep learning family. 
They have recently shown promising results in many machine learning and computer 
vision tasks. However, training RNNs to handle long-term sequential data can be chal-
lenging since the gradients tend to vanish. To address this issue, one common approach 
is to design a more sophisticated recurrent unit.

C. LSTM: According to [270], to effectively solve the sequence learning problem, a Recur-
rent Neural Network (RNN) is the ideal choice as it incorporates recurrent edges that 
connect the neuron to itself across time, resulting in efficient and accurate learning out-
comes We have an input sequence {x1, x2,…… ., xT} . And a sequence of hidden states 
{h1, h2,…… ., hT} . At a given time t, the node with recurrent edge receives the input xt 
and its previous output value ht−1 at time t-1, then outputs the weighted some of them, 
which can be formulated as below equation

  The weight input node and the recurrent hidden node are represented here as Whx , 
the bias is represented by b, and the non-linear activation function is represented by σ. 
The weight between the recurrent hidden node and itself from the previous time step is 
represented as Whh (Fig. 23).

(72)ht = ∅(Wxt + Uht − 1)

(73)p
(
X1,X2,…… ,XT

)
= p

(
X1

)
… .p

(
XT |X1, ..,XT − 1

)

(74)p
(
XT |X1, ..,XT − 1

)
= ∅(ht)

(75)ht = �(Whxxt +Whhht−1 + b)

Fig. 23  The architecture of 
LSTM
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  However, there’s a difficulty with training RNN models. Depending on whether 
||Whh

|| < 1 or ||Whh
|| > 1 , the contribution of the recurrent hidden node hm at time m to 

itself hn at time n may approach zero or infinity as n − m rises. Long-term depend-
encies pose a challenge for recurrent neural networks (RNNs) as back-propagating 
errors over many steps can lead to the gradient vanishing or exploding. To tackle 
this issue, a solution called long-term short memory (LSTM) was introduced. 
LSTM replaces the recurrent hidden node with a memory cell that stores and 
retrieves relevant information using dot product and matrix addition operations. 
This enables the network to better learn and remember long-term dependencies. 
The memory cell in LSTM has a node with a self-connected recurrent edge with a 
fixed weight, ensuring that the gradient can traverse numerous time steps without 
vanishing or exploding. LSTM comprises four crucial components: input gate, out-
put gate, forget gate, and candidate cell value. By leveraging these components, we 
can compute the memory cell and output, and overcome the challenges of learning 
long-range dependencies in RNNs.

  Here, σ is the logistic sigmoid function, ‘.’ Is a matrix multiplication, ‘˳’ is a dot prod-
uct, and bf , bi, bcandbo are biased terms. The weight matrix subscripts have the apparent 
meanings. For instance, Whi is the hidden input gate matrix, Wxo is the input–output gate 
matrix.

D. Attention-based Models: According to [271], to solve the bottleneck issue caused by 
a fixed-length encoding vector, which would restrict the decoder’s ability to access the 
input’s information. The dimensionality of their representation would be compelled to 
be the same as for shorter or simpler sequences, which is anticipated to become par-
ticularly problematic for long and complex sequences. The step-by-step computations 
of the alignment scores, the weights, and the context vector comprise Bahdanau et al.’s 
attention mechanism.

• Alignment score: hi is the alignment model of the encoded states, and the previ-
ous decoder output is represented as St−1 , to compute a score et,i is used. It displays 
how closely the input sequence’s elements match the position’s current output t. The 
alignment model is represented by a function a(.), which can be implemented by 
using the feed-forward neural network

(76)ft = �(Whf .ht−1 +Wxf .xt + bf )

(77)it = �(Whi.ht−1 +Wxi.xt + bi)

(78)ĉt = tanh(WhC.ht−1 +Wxc.xt + bc)

(79)Ct = ft◦Ct−1 + it◦

(80)Ot = �(Who.ht−1 +Wxo.xt + bo)

(81)ht = Ot◦ tanh(Ct)

(82)et,i = a(St−1, hi)
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• Weights: �t,i are the weights; these weights are computed by applying a SoftMax 
operation to the previously computed alignment scores:

• Context vector: Ct is represented as a unique context vector. It is used to feed into 
the decoder at each time step. A weighted sum of all computes it, T is depicted as 
encoder hidden states:

  The attention process can be reformulated into a universal form that can be 
applied to any sequence-to-sequence (abbreviated as seq2seq) action, even though 
the information may not necessarily be related sequentially. fatt(Q,K,V) is an exam-
ple of an attention module; it operates on certain queries, keys, and values. It will 
produce a few weighted average vectors, Q, K, V, and V̂  in that order. After calcu-
lating the similarity score between Q and K, the weighted average vector over V is 
calculated. It is possible to formulate the weighted average vector using Eq. (84)

  In this case, the ith key-value combination is Vj ∈ V  , and the ith query is qi ∈ Q . 
A function called fsim calculates each kj, andqi similarity score. Furthermore, the 
attendant vector for the query qi is V̂i . The attention module creates a weighted aver-
age for each inquiry if Q and K/V are related to each other. The attention module 
nevertheless generates a weighted average vector even in the absence of permanent 
vectors, and this vector could include adaptive or superfluous information.

  a. Self-attention: Self-attention models enable a neural network to 
concentrate on different parts of its output. This technique is beneficial for 
tasks like text summarization and machine translation. Self-attention models 
are frequently used in transformer-based architectures such as BERT and 
GPT-3 [272].

b. Encoder-decoder attention: Neural networks can focus on specific input 
data while producing output using encoder-decoder attention models. This 
method is valuable for tasks like image captioning and question answering. 
Encoder-decoder attention models are often used in sequence-to-sequence 
learning tasks such as text summarization and machine translation [273].

c. Global attention: Global attention models enable a neural network to consider 
all parts of the input data. This technique is beneficial for tasks like sentiment 
analysis and question answering. It is not uncommon for global attention models 
to be employed in both RNNs and CNNs [274].

d. Local attention: Local attention models enable a neural network to focus on a 
subset of the input data. This method is helpful for tasks like image classifica-
tion and object detection. Local attention models are often used in CNNs [275].

(83)�t,i = softmax(et,i)

(84)Ct =
∑T

i=1
�t,ihi

(85)ai,j = fsim
(
qi, kj

)
,∝i,j =

eai,j

�je
ai,j

(86)V̂i =
∑
j

∝i,jvi
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e. Hierarchical attention: Hierarchical attention models allow neural networks 
to focus on varying levels of abstraction within input data. This technique is 
beneficial for tasks like document classification and machine translation. Hier-
archical attention models are often used in RNNs and CNNs. Apart from these 
general types of attention models, many specialized attention models are also 
developed for specific tasks. For instance, attention models designed for speech 
recognition, music generation, and video processing [276].

E. Transformer Models: According to [271], Transformers is a type of neural network 
architecture introduced in 2017 in the paper "Attention Is All You Need." They have 
become the go-to model for various Natural Language Processing (NLP) tasks, such 
as machine translation, text summarization, and question-answering. Transformers are 
based on the self-attention mechanism, which enables the network to learn long-range 
correlations in the input sequence. This makes them particularly well-suited for NLP 
tasks where the meaning of a word or sentence can often depend on words far away from 
the sequence (Fig. 24).

  Transformers consist of an encoder and a decoder which respectively generate a hid-
den representation and output sequence (Fig. 25). The decoder confidently employs the 
hidden state representation generated by the encoder to produce the output sequence. 
In a Transformer network, both the encoder and decoder contain self-attention layers 
that facilitate the learning of long-range dependencies by attending to various parts of 
the input sequence. The Transformer architecture has exhibited impressive performance 
in a range of NLP tasks, including but not limited to machine translation, text summa-
rization, and question-answering. They are also being used for other tasks, including 
image classification and speech recognition [277]. Also, in transformers, we have so 
many types like Vision Transformer (ViT), Swin Transformers, Bidirectional Encoder 
Representations from Transformers (BERT), GPT, etc.

Fig. 24  Transformers serve as an example of the attention mechanism. a Self-attention module; b multi-
head attention [277]
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Basics of transformers According to [278], While RNNs have sequence dependence as 
a characteristic, Transformers adopt a self-attention mechanism that allows the network 
to efficiently capture global information, including long-term dependencies, for units at 
any position. This results in the complete abandonment of the aforementioned sequence 
dependence characteristic of RNNs. The use of transformers greatly improves the devel-
opment of models for processing time series data. One should be aware that transformers 
can be applied to more than just NLP tasks, as they also have applications in image pro-
cessing and computer vision. The vision transformer (ViT) has been proven or come close 
to achieving state-of-the-art results in a range of vision-related tasks, presenting excit-
ing prospects for innovation and creativity in these domains. The success of transform-
ers largely relies on multi-head attention, which involves stacking and integrating multiple 
self-attention (SA) layers. The self-attention mechanism is highly skilled at identifying and 
capturing the internal correlations within data or features. This means that it can lessen 
the reliance on external information. Figure 2(a) depicts the self-attention module in trans-
formers. To perform self-attention, we can confidently follow these six easy steps:

Step 1: Enter the m-long sequence data x, where ss xi, i = 1,… ,m is a vector or a scalar.
Step 2: Using a shared matrix W, obtain the feature embedding, represented as ai , for 
each scalar or vector xi.
Step 3: Get three vectors: Query (Q = [q1, q2,… .., qm]) , Key (K = [k1, k2,… .., km]) , and 
Value (V = [V1,V2,… ..,Vm]) by multiplying each embedding by three distinct transfor-
mation matrices, W_q, W_k, and W_v, respectively.
Step 4: Calculate the attention score (s) as an inner product, such asqi.kj , between each 
Q vector and each K vector. To stabilize the gradients, the scaled scoreSi,j = qi.kj∕

√
d , 

where d is the dimension of qi orkj , is calculated using normalization.
Step 5: The Softmax activation function is applied on s. Ŝ1,i = es1,i∕

∑
je
s1,j is one exam-

ple of this at position 1.
Step 6: Develop attention representations z = [z1, z2,… , zm] , where z1 =

∑
jŜ1,ivi . To 

sum up, the SA layer can be expressed as follows in its entirety:

Fig. 25  Transformer structure 
[278]
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To create a multi-head attention model, we can combine multiple SA (self-attention) 
layers by using Eq. (88), as illustrated in Fig. 24(b). Firstly, we obtain several attention rep-
resentations, which we denote as zh, h = 1, 2,… , 8. These representations are obtained by 
applying SA multiple times (in this case, eight times). After generating the attention rep-
resentations, we combine them to form a larger feature matrix. To ensure that the feature 
matrix has the same dimension as the input data, we use a linear transformation matrix. 
However, it’s important to note that the Self-Attention layer doesn’t incorporate any posi-
tional information, which means it fails to take into account the sequence information. To 
overcome this limitation, we encode the position information into the feature embedding. 
This embedding is formulated as ai + ei , where ei is a unique positional vector that is man-
ually given and represents the position of the embedding in the sequence.

"Vision Transformer" (ViT) is used to classify hyperspectral images. ViT is mainly 
applied in a straight line to Computer Vision (CV) with the most minor conceivable adjust-
ments. Transformers can be used to extract the comprehensive evidence constructed on 
their unique structure to acquire long-range information [279]. The transformer model 
comprises undistinguishable layers, and each layer is composed of two sub-layers, named a 
fully connected feed-forward network and a multi-headed self-attention mechanism. Atten-
tion models represent global dependence inside a series of input transformers. The problem 
of vanishing gradient is a common problem for deep learning, including transformers. This 
impedes the training procedure’s convergence [280].

Convolutional neural network models Hyperspectral image classification can be done 
using various types of CNNs. The most commonly used types are 2D CNNs, 3D CNNs, 
and spectral-spatial CNNs. 2D CNNs are the primary type of CNN used to classify images 
with two dimensions: height and width. However, 2D CNNs can also classify hyperspectral 
images by treating each spectral band as a separate channel [281]. 3D CNNs can classify 
data using height, width, and depth. Hyperspectral image classification can be improved 
with the use of spectral-spatial CNNs. These convolutional neural networks (CNNs) are 
expertly crafted to effectively leverage both spatial and spectral information present in 
images with precision. By combining the strengths of 2D and 3D CNNs, they can learn 
spatial and spectral features more effectively. Specialized CNN architectures have also 
been developed for hyperspectral image classification, including those for land cover clas-
sification, crop classification, and mineral mapping [282].

A. Convolutional Neural Network (CNN): According to [310], Stacks of convolutional, 
pooling, and nonlinear layers are used by a convolutional neural network to extract fea-
tures. Using convolutional kernels, the convolutional layers calculate the convolution of 
input feature maps. Equation (89) gives the activity of the ith feature map in the lth layer.
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The feature map in layer l-1 in this case is yl−1
j

 and it is related to the feature map yl
i
 . wl

i,j
 is the 

convolutional kernel for yl−1
j

 . The value of bias is b_i^l. The activation functions are rectified 
linear unit (ReLU) and sigmoid, and the non-linear activation function is denoted as f(.). The 
convolutional operator is indicated by a *. It is typical to incorporate a pooling layer after the 
convolutional layer. Max pooling is the most frequently used pooling function. It works by 
computing the maximum value in a particular window of the feature map. This process aids 
in making the feature map more robust against data distortioSn and enhances its invariance. 
Additionally, the pooling layer can decrease the feature map’s size, reducing the computational 
burden.

By combining multiple convolutional and pooling layers, a sophisticated deep neural 
network is formed. This layered network can learn hierarchical features, with lower layers 
identifying fundamental features like edges and textures, and higher layers acquiring more 
intricate and abstract features with semantic significance. These features are highly advan-
tageous in a wide range of applications, including classification tasks (Fig. 26).

a. 2D-CNNs: According to [283], The 2D-CNN technique applies a convolution process 
to the input data using 2D kernels. This involves computing the dot product between 
the input data and the kernel, which is then summed up. To ensure the entire spatial 
dimension of the input data is covered, the kernel moves over it. The features obtained 
from this process are subjected to an activation function to introduce non-linearity in 
the model. This technique is popularly used in image processing and computer vision 
applications, as it enables the extraction of crucial features from the input data. The 
activation value at spatial location (x, y) in the jth feature map of the ith layer in 2D 
convolution is computed using the following formula and is referred to as vx,y

i,j
 (Fig. 27).

The activation function φ is used in the preceding equation to determine the activation 
value at spatial point (x, y) in the jth feature map of the  ith layer. bi,j is the bias parameter for 
the jth feature map of the ith layer. The number of feature maps in the (I − 1)th layer and the 
depth of the kernel wi,j for the ith layer’s jth feature map is represented by the values of dI−1 . 
In this case, the kernel’s width is represented by 2γ + 1, and its height by 2δ + 1. Last but not 
least, the value of the weight parameter for the ith layer’s jth feature map is represented by wi,j

.
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Fig. 26  CNN for hyperspectral image classification
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b. 3D-CNNs: In 3D convolution, to effectively capture the spectral information in the 3D 
data, the proposed HSI data model utilizes a 3D kernel that is convolved with the data. 
The feature maps of the convolution layer are then created by applying this 3D kernel 
over multiple adjacent bands in the input layer. This approach has proven to be highly 
effective in capturing the spectral information in the data with confidence. The activation 
value at spatial location (x, y, z) in the jth feature map of the ith layer in 3D convolution 
is produced by applying the following equation to vx,y,z

i,j
 (Fig 27)

The depth of the kernel along a spectral dimension in the provided equation is repre-
sented by 2η + 1, and all other parameters stay the same as they did in the previous equa-
tion [284].

8  Hyperspectral image prediction

Hyperspectral image prediction refers to the process of predicting the properties of 
objects within a hyperspectral image. Hyperspectral images offer an unparalleled level 
of precision in identifying and classifying objects, thanks to their high spectral resolu-
tion and ability to capture hundreds or even thousands of narrow, contiguous wavelength 
bands [285]. The LU/LC changes are challenging the universal atmosphere variations 
significantly. The global atmosphere suffers from substantial fluctuations due to human 
activity at before intensities, unheard-of rates, and geographic scales. Human-induced 
land use transformation is a significant contributor and component of environmental 
diversity on a global scale. It is essential to possess knowledge of land use/cover and 
possible applications for choosing, planning, and implementing land use plans. Land use 
will impact the land cover, and the latter will affect the former [286]. SOC (Soil Organic 
Carbon) is a critical gauge of soil’s biological, chemical, and physical features in agri-
cultural settings. It also makes up a significant portion of the world’s carbon cycle. Crop 
yields, a reduction in the ability of the soil to retain moisture, and an excess of nutrients 
can all arise from soil erosion. Geographically, dissimilarities in vegetation categories, 
soil features, and soil erosion rates fetched by deviations with slope inclination, the deep-
ness of surviving crops, microclimate, slope processes, and soil physical characteristics 
are highly variable [287].
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Fig. 27  HybridSpectralNet (HybridSN) Model, which integrates 3D and 2D convolutions for hyperspectral 
image (HSI) classification [283]
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It is widely recognized that there are various approaches to predicting future land use/land 
cover (LU/LC) changes, which take into account factors such as the percentage and rate of 
change observed over a given period. The altered area is confidently examined to determine the 
differences between specific periods. With confidence, one may utilize both dependent and inde-
pendent variables to examine the potential for LU/LC change. These variables include aspects 
such as distance and slope and can provide valuable insight into the environmental factors that 
may contribute to such changes [288]. Various techniques, including time neural networks, 
regression models, and series models, are employed to forecast changes in Land Use/Land Cover 
(LU/LC). These models consider factors such as water bodies and forest edges to make predic-
tions about future changes. Figure 28 illustrates the range of methods utilized for predicting LU/
LC changes. Additionally, there are numerous applications for predicting hyperspectral imaging, 
such as forecasting vegetation, soya bean growth, agriculture, and soil biochar levels.

LU/LC change prediction predicts how much land is used to build an area and how 
much land is occupied by water bodies. This will be used for urban planning and the devel-
oped area [289]. Vegetation prediction is used to predict the growth and disease of plants. 
If the plant’s disease is predicted before, it will be suggested to give the fertilizers accord-
ing to its growth. Soya bean prediction is used to indicate the soya bean crop, which will 
be used to know the plant’s health. Soil prediction determines the soil’s physical, chemical, 
and biological properties. If the soil properties are predicted before, an agriculture plan is 
to be done. We are concentrating on predicting the change in LU/LC from the applications 
mentioned above. Regression, neural network, and Time series models are prediction mod-
els for investigating future LU/LC changes [290].

8.1  Traditional machine learning‑based prediction models

Traditional machine learning models for hyperspectral image prediction are statistical 
models trained on labeled hyperspectral data. In the field of hyperspectral data analysis, 
the training process confidently establishes the correlation between the spectral features 
present in the data and the respective target variable. This enables the model to predict 
the target variable for new hyperspectral data. Decision trees, random forests, Support 
Vector Machines (SVMs), and k-nearest Neighbors (k-NN) models are some of the 
commonly used traditional machine learning models for hyperspectral image prediction 
tasks [34]. Decision trees employ a tree-like structure to analyze data and make decisions 

Fig. 28  prediction models for hyperspectral images
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based on its spectral features. To classify and predict, two popular machine learning 
models are often used: random forests and SVMs. Random forests improve accuracy by 
ensembling multiple decision trees, while SVMs use a hyperplane to classify the data 
into distinct classes. K-NN models are a type of model that uses the spectral features of 
the nearest neighbors to make a prediction. These traditional machine learning models 
have strengths and can be used effectively for a range of hyperspectral image prediction 
tasks. By leveraging the power of these models, researchers and practitioners can gain 
insights into hyperspectral data and make accurate predictions about the target variable 
[291].

8.1.1  Time series models

Time series prediction involves forecasting future events based on past data with times-
tamps. It comprises developing models through historical research, using them to make 
judgments and direct future strategic decision-making. The following are the time series 
for hyperspectral LU/LC change prediction.

a. Markov Chain (MC): Based on the transition probabilities, it is utilized to analyze the 
time-based changes in the landscapes among the LU/LC classes. Markov Chain (MC) inves-
tigation is a stochastic modeling technique that exploded widely employed to investigate the 
fluctuations of land use change at several balances. It operates based on physics assumptions, 
which recommend that if an organization’s ailment at a previous time is recognized, the 
likelihood of it being in that state later can be calculated. It is my pleasure to suggest that, 
based on the analysis of the Markov Chain model, changes in Land Use and Land Cover 
(LU/LC) at a large scale can be predicted with a high degree of accuracy [292].

b. Cellular Automata (CA): it is used to know the LU/LC changes to model the spatially 
evolving environments in the remote sensing environment. It is a dynamic bottom-up 
model. It is used to know the spatial dimension and model direction [128].

c. ARIMA (Autoregressive Integrated Moving Average Model): Our powerful pre-
diction tool utilizes time series data and advanced statistical analysis to confidently 
forecast future trends. By leveraging linear regressions, we can accurately predict future 
outcomes based on past data with a high degree of confidence. ARIMA is a prominent 
and commonly used statistical approach for predicting time series. It can capture several 
conventional temporal structures in time series data [293].

8.1.2  Regression models

Regression is a method for determining how independent traits or variables relate to a 
dependent feature or result. It is a machine learning predictive modeling technique using an 
algorithm to forecast continuous outcomes. One or more independent (predictor) variables 
and one or more dependent (criterion) variables are related in regression analysis. The cri-
teria of the projected value is obtained from a linear combination of the predictors [294].

a. Linear Regression: The link between factors impacting forest cover loss was deter-
mined using linear regression. GIS was used to create independent variables such as 
digital elevation data, distance from residential areas, distance from the road, and 
abruptness. A linear regression association was established between forest cover loss 
as a dependent variable and the stated factors [295].
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b. Logistic Regression: According to [295], Logistic Regression investigation ties the 
coincidental landslide (ranging from 0 to 1) to "u" logit (u0 indicates a higher likeli-
hood of non-occurrence and 0u suggests a higher likelihood of occurrence). The logit 
"u" is considered to be a linear grouping of independent variables in logistic regression 
analysis, and the equations are as follows:

Here, P is the model output, representing landslide occurrences probability, and u is the 
independent variable, a linear sum of factors (ex., land cover, slope, etc.).

8.2  Traditional neural network

Traditional neural network models are often used for hyperspectral image prediction 
tasks. By leveraging an interconnected network of nodes, our models confidently learn 
the intricate relationships between hyperspectral image features and the target variable 
for accurate predictions [296]. Several types of traditional neural network prediction 
models are commonly used for hyperspectral image prediction, including Multilayer 
Perceptron (MLPs), Radial Basis Function Networks (RBFNs), and Convolutional Neu-
ral Networks (CNNs). MLPs consist of a series of fully connected layers and are a sim-
ple yet effective type of neural network. RBFNs use radial basis functions as activation 
functions and are known for their ability to learn non-linear relationships in data. CNNs 
are known for their effectiveness in processing image data. Convolutional layers are a 
widely adopted approach for extracting features from data and predicting target vari-
ables. This technique involves the application of convolutional filters to the input data, 
which enables the detection of patterns and features at different scales. These traditional 
neural network models have unique strengths and can achieve state-of-the-art results for 
various hyperspectral image prediction tasks [112].

8.2.1  ANN‑based models for prediction

Neural networks can also be used for prediction. Neural networks fix extrapolative analyt-
ics networks effectively because of their hidden layers. In linear regression models, only 
input and output nodes produce predictions. The neural network utilizes a hidden layer to 
improve prediction accuracy.

a. Back Propagation Neural Network (BPNN): This model can incorporate the need 
to adjust activation functions. BPNN has double hidden layers, which outperformed 
the others regarding steadiness and simplification. The predicted accuracy was 
enhanced, although adding more hidden layers resulted in overfitting. The multi-
layer BPNN model improved predicted accuracy and model stability by using a 
sophisticated weight calculation across hidden layers [297]. A boundless dimension 
is demonstrated to fit non-linearity among hyperspectral variables and soil nutrients. 
Because of how it manages failures, BPNN is known as a Multilayer Perceptron 
(MLP) network. Through propagating the output error back into the network, back-
propagation overcomes the problem of "assignment of mistake in prediction to what-
ever input group." This method is continued until the input layer is reached with the 
lowest possible error model. A BPNN model typically involves input, output, and 
hidden layers [297].

(91)Pr = eu∕(1 + eu)
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b. Recurrent Neural Network (RNN): Because they include sequences in the architec-
tural design of network units, RNNs are more flexible for time series investigations. The 
vanishing gradient and expanding gradient difficulties make capturing lengthy temporal 
data with a typical RNN model problematic [298].

c. Long Short-Term Memory Neural Network (LSTM): LSTM with particular hid-
den units was proposed for learning time series over extended periods. The capacity 
of LSTM to recall information in lengthy time series makes it worthwhile in various 
disciplines, including voice recognition, video analysis, and biology [298].

8.3  Deep learning models for prediction

Deep learning prediction models are powerful machine learning model that uses a deep neural 
network architecture to learn the relationships between the spectral features in a hyperspectral 
image and the target variable. These models comprise multiple layers of interconnected nodes, 
and each layer learns to extract more complex features from the data. Deep learning prediction 
models offer several advantages over traditional machine learning and neural network predic-
tion models for hyperspectral image prediction. One advantage is that they can learn complex 
patterns in hyperspectral data without needing engineered features [122]. Additionally, they are 
less sensitive to the choice of hyperparameters and less likely to overfit the training data. Finally, 
deep learning prediction models can be trained on large datasets of hyperspectral images to 
achieve state-of-the-art results. Due to these advantages, deep learning prediction models are 
becoming increasingly popular for hyperspectral image prediction tasks. It has been observed 
that significant progress has been made in achieving commendable outcomes across a range of 
tasks, including classification, regression, and anomaly detection [299]. CNN-based prediction 
models are a deep learning model well-suited for hyperspectral image prediction tasks. These 
models can learn complex spatial and spectral features from hyperspectral images, allowing 
them to achieve state-of-the-art results on various hyperspectral image prediction tasks [300]. 
Several types of CNN-based prediction models are commonly used for hyperspectral image 
prediction, including 3D CNNs, spectral-spatial CNNs, Residual CNNs (ResNets), and Densely 
Connected Networks (DenseNets). 3D CNNs are a type of CNN architecture designed to pro-
cess 3D data. These models can process hyperspectral images by treating each band as a sepa-
rate channel. The Spectral-spatial CNN architecture is highly specialized for predicting hyper-
spectral images. It enables the CNN to learn both spatial and spectral features simultaneously 
from the hyperspectral data, which is a significant advantage. These models incorporate various 
techniques to combine spectral and spatial information from the hyperspectral data, leading to a 
substantial improvement in the model’s performance [284].

9  Dataset description

Hyperspectral image classification datasets are crucial for identifying and classifying 
objects accurately. These datasets consist of labeled hyperspectral images that provide 
detailed spectral information about objects at hundreds or even thousands of narrow, 
contiguous wavelength bands. With this high spectral resolution, researchers can differ-
entiate between objects with similar characteristics and classify them with precision. To 
facilitate research and development, by using the following link we can download vari-
ous types of benchmark datasets https:// www. ehu. eus/ ccwin tco/ index. php/ Hyper spect 
ral_ Remote_ Sensi ng_ Scenes.

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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1. Indian Pines: On June 12, 1992, in the region of North-western Indiana, advanced 
AVIRIS sensors were deployed to collect valuable data. The Airborne Visible/Infrared 
Imaging Spectrometer sensors helped to capture detailed information about the area 
which would have been difficult to obtain through traditional methods. This data set is 
divided into 16 classes. It consists of a 145*145-pixel size; the spatial resolution of this 
dataset is 20 m. IP dataset owns 224 bands; after removing the water absorption bands, 
200 bands are available. The wavelength of these images is 0.4 ~ 2.5. Table 9 Indian 
Pines Images are available before classification and ground truth images [301].

2. Pavia University: It was attained using the ROSIS (Reflective Optic System Imaging Spec-
trometer) sensors from a site in Northern Italy in 2002, 8 July. The Pavia University dataset 
has two types: one is Pavia University, and the other one is Pavia Centre [88]. Table 9 shows 
Pavia University Images are available before classification and ground truth images.

3. Salinas: According to [302], Salinas’s dataset is collected from Salinas Valley, Cali-
fornia. It was collected using AVIRIS sensors on 8 Oct 1998. This dataset also has two 
types: the Salinas-A and the Salinas scene. Table 9 shows Salinas Images before clas-
sification and ground truth images.

4. Botswana: According to [303], this dataset is collected using NASA EO-1 sensors in Oka-
vango Delta, Botswana. This has 145 bands with a pixel resolution of 1476*256. Table 9 
shows Botswana Images are available before classification and ground truth images.

5. Houston: The Houston dataset is collected with CASI-1500(Compact Airborne Spectro-
graphic Imager) sensors in Houston, USA. And this has nine classes and 144 bands [303]. 
In Table 9, Houston Images are available before classification and ground truth images.

6. Kennedy Space Centre: This dataset is collected from the Kennedy Space Center in 
Florida using NASA AVIRIS sensors. This has 176 bands and 13 classes.512*614 pixels 
in the wavelength 400-2500 nm electromagnetic spectrum [302]. In Table 9, Kennedy 
Space Centre Images are available before classification and ground truth images.

7. WHU-Hi-LongKu: The WHU-Hi-LongKu dataset is collected from Hubei Province, 
China, using Headwall Nano-spectrometer. This has nine classes and 270 bands. Table 9 
shows WHU-Hi-LongKu images before classification and ground truth images [88].

8. HYDICE: The dataset for the Hyperspectral Digital Imagery Collection Experiment 
(HYDICE) was taken from the mall in Washington, DC. This has 210 bands with 2.8 m spatial 
resolution. The spectral region is 0.4–2.4 µm. These images have 304*301 pixels and classes 
[304]. Table 9 shows HYDICE dataset Images before classification and ground truth images.

9. Gaofen-5 (GF-5) Advanced Hyperspectral Imager (AHSI): This land cover was 
launched on May 9, 2018 in China. It consists of mixed landscapes, including urban–
rural outlying and mining extents. The spectral range is 400-2500 nm, and the spatial 
range is 30 m. It contains 330 bands, including six land cover classes [305] (Table 9).

10  Quality metrics

Accuracy is a metric used to determine which model is better for identifying relationships 
and patterns between variables in a dataset using input or training data. It is used for evalu-
ating the classification models. The grade of concordance between the classification out-
comes and the real-time appearances is evaluated using several methods. The dataset has 
to be split into test sets and train sets before the classification accuracy calculation can be 
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done. Upon completion of training with datasets and subsequent testing, the resulting out-
put is appropriately categorized. It is imperative to note that the accuracy and effectiveness 
of the model are heavily reliant on the quality and integrity of the datasets used for train-
ing. Therefore, it is crucial to use high-quality datasets to achieve accurate results [306]. It 
won’t be possible to know the accuracy of the trained model until after it has been evalu-
ated. To assess the proposed model’s performance with the other existing models, the com-
monly used metrics are Confusion Matrix (CM), Average Accuracy (AA), Kappa Coef-
ficient (KC), Overall Accuracy (OA), NDVI, NDWI, and rate and percentage of change, 
the following are the formulas for CM, OA, AA, KC, NDVI, NDWI, rate, and percentage 
of change.

1. Confusion Matrix: According to [228], The confusion matrix, also known as an error 
matrix, is mostly utilized for comparing the original ground cover’s categorization con-
clusion. Given that the confusion matrix’s order is c*c,

Table 9  Description of benchmark datasets
Data Indian 

Pines
Pavia

University
Salinas Botswana Kennedy 

Space 
Centre 
(KSC)

WHU-Hi-
LongKou

Houston Hydice

Collection 

Location

Indiana

, USA

Northern 

Italy

Salinas 

Valley, 

California

Okavango 

Delta, 

Botswana

Kennedy 

Space 

Centre, 

Florida

Hubei 

Province, 

China

Houston, 

USA

Washington, 

DC

Acquisition 

Equipment

AVIRI

S

ROSIS AVIRIS NASA

E0-1

NASA 

AVIRIS

Headwall 

Nano-

Hyperspec

CASI-1500

Number of 

Categories

16 9 16 14 13 9 9 6

Number of 

Bands

224 103 224 145 176 270 144 210

Number of 

bands after 

denoising

220 103 220 NA NA NA 144 NA

Data Size 

(Pixel)

145*

145

610*601 86*63 NA 512 * 

614

550 *400 349*1095 304*301

Spatial 

Resolution

(m)

20 1.3 3.7 30 NA 0.463 2.6 2.8

Spectral 

Coverage

(µm)

0.4~2.5 NA 0.4~2.5 NA 0.4~2.5 NA 0.38~1.09 0.4-2.4

Sample size 10249 42776 54129 NA NA 204542 15029 NA

Dataset

Ground 

Truth
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  X = 
⎡
⎢⎢⎣

x11 x12 ……… . x1c
x21 x22 ……… . x2c
xc1 xc2 ……… .. xcc

⎤
⎥⎥⎦

  Here, the number of classes is given as c, xi,j(i, j = 1, 2…….c) is the number of illus-
trations of the ith class is split obsessed by the jth class. The xii elements on the diagonal 
stand in for the number of illustration arguments that remained impartially divided. 
The entire amount of illustration points is determined using n = 

∑c

i=1

∑c

j=1
xij where n 

represents the total number of values.
2. Overall Accuracy (OA): According to [307], the proportion of currently classified 

pixels to all pixels is referred to as overall accuracy

  Here, T is the chosen classifier’s confusion matrix, and Tcc is the number of testing 
pixels.

3. Average Accuracy (AA): The average per-class classification accuracy is measured 
using average accuracy [307]. To determine the per-class proportion, we confidently 
calculate the ratio of pixels in a specific class to the total number of picture elements in 
that class.

  Here, T is the number of challenging pixels, and Tcc’ represents the confusion matrix 
of a given classifier.

4. Kappa Coefficient (KC): The Kappa coefficient is a measurement used for the number 
of tries to translate overall accuracy by dropping its worth when a promise might be 
gained via coincidental [307].

5. NDVI: NDVI stands for Normalized Difference Vegetation Index. It is used to identify 
the probability of lower or higher vegetation. According to [307], the higher NVDI value 
indicates more vegetation cover, whereas the lower NDVI value indicates less vegetation 
cover. The NDVI readings fall within a range of -1 and + 1.

  Here, NIR is characterized as the Near-Infrared Band, and the Red is denoted as the 
Red Band.

6. NDWI: NDWI stands for Normalized Difference Water Index. This describes the prob-
ability of having either low or high water content. According to [307], a higher NDWI 
number indicates a higher water content and a lower NDWI value indicates a lower water 
content. The NDWI values are in the range of -1 to + 1.
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  In this case, NIR represents the near-infrared band, and SWIR represents the short-
wave infrared band.

7. Rate and Percentage of Change: Transformation rates and percentage changes are 
confidently and accurately calculated to demonstrate the precise LU/LC proportions for 
various time intervals.

  POC, or percentage of change, is used here. ROC is an acronym for rate of change. 
The variables T1 and T2 represent the area (ha) of LU/LC for time intervals 1 and 2, 
respectively, and Ti denotes the time interval in years (yr) between the two [308].

  Other three categories, sensitivity, specificity, and accuracy, can be used to classify 
Hyperspectral Images. Sensitivity is used to identify the actual positives identified by 
the classifiers. The classifier uses specificity to determine the negatives identified as 
negatives. In the field of machine learning, a model’s ability to accurately predict the 
class labels of previously unseen data is crucial. The overall accuracy of a model in this 
task is a key metric in assessing its performance.

  True positives, or TPs, are employed when circumstances are accurately identified, 
the test’s results are positive, and the classification’s actual value is positive. "False 
Positive" (FP) refers to an incorrectly discovered condition for which the test result was 
negative, but the classification was positive. The term "True Negative" (TN) refers to an 
accurately rejected condition. The test result is negative, but the classification’s actual 
value is positive. The term "True Positives" (TP) refers to situations where a condition 
was wrongly rejected, the test result was positive, but the categorization had a negative 
value [309].

11  Open issues and challenges of hyperspectral image analysis

This section elaborates on the issues and challenges in the hyperspectral image analysis 
identified from the above study.

• Hyperspectral imaging involves capturing data across a wide range of spectral bands. 
However, not all bands contain useful information. Therefore, the process of identify-

(97)POC = (
T2 − T1

T1
) × 100

(98)ROC
(
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/
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)
=

T1 − T2
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(99)Sensitivity =
TP

TP + FN

(100)Specificity =
TN

TN + FP

(101)Overall accuracy =
TP + TN

TP + FP + TN + FN
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ing the most relevant and informative bands is a complex and challenging task that 
requires careful analysis and interpretation of the data [102].

• Hyperspectral images, which capture information about objects at many different wave-
lengths across the electromagnetic spectrum, often present a challenge for image analy-
sis algorithms due to the spatial complexity of objects in the image [115].

• Acquiring accurate and reliable labeled data is a crucial component in the development 
and training of machine learning models. However, the process of gathering labeled 
data can be a challenging and resource-intensive undertaking, particularly when deal-
ing with large, complex, and diverse datasets [95].

• Achieving high classification accuracy rates and computational efficiency in hyperspec-
tral imaging poses a significant challenge [55].

• Obtaining accurate classification of data requires the fusion of both spectral and spatial 
information. However, this can be a challenging task due to the complexity involved in 
combining these two types of information effectively [56].

• Preventing overfitting caused by multiple adjustable parameters is also a challenging 
task in hyperspectral imaging (HSI) [59].

• When pure spectra are used to classify hyperspectral imaging (HSI) data, the resulting 
low or medium spatial resolution may be caused by spectral mixture problems [77].

• One of the challenges in hyperspectral image classification is the automatic determina-
tion of the optimal number of superpixel segments [80].

• In hyperspectral imaging (HSI), misclassification between similar labels is a challeng-
ing problem that is difficult to overcome [110].

12  Discussion

According to Fig. 6, SVM, mixed convolution methods, and attention models give the 
best accuracy. When it comes to hyperspectral image classification, the SVM (Sup-
port Vector Machine) algorithm is a crucial tool that has proven its effectiveness time 
and time again. Its ability to handle high-dimensional data with many spectral bands 
makes it well-suited for dealing with hyperspectral images’ complex and multidimen-
sional nature. SVM is a powerful algorithm that effectively handles nonlinear decision 
boundaries commonly found in hyperspectral data. By finding the optimal hyperplane 
and maximizing the margin between different classes, SVM ensures that the classifica-
tion results are accurate and reliable. Moreover, SVM’s ability to generalize to new 
and unseen data makes it a reliable and robust approach for classification tasks. Over-
all, SVM’s importance in hyperspectral image classification cannot be overstated, as 
it provides a powerful tool for researchers and practitioners to analyze and classify 
hyperspectral data accurately [92]. According to [119], CNNs are highly effective for 
hyperspectral image classification. They can handle high-dimensional data, learn fea-
tures invariant to spectral variations, and classify these features into different classes. 
CNNs can also deal with the complex and nonlinear nature of hyperspectral data.

Convolutional Neural Networks (CNNs) have the remarkable ability to be trained with 
small amounts of labeled data, making them an invaluable tool for researchers and prac-
titioners in the precise analysis and classification of hyperspectral data. The versatility of 
CNNs makes them a powerful approach for this purpose. Attention-based models have 
become increasingly popular in hyperspectral image classification as they can capture the 
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interdependencies of spectral bands while suppressing irrelevant information. These mod-
els assign weights to spectral bands based on their importance, allowing them to focus on 
the most relevant information. This results in improved performance with reduced compu-
tational complexity. Attention models provide an effective and efficient approach for accu-
rately classifying hyperspectral data [109].

13  Conclusion and future directions

Hyperspectral image analysis is a complex process that entails multiple tasks, including 
pre-processing, feature extraction, band selection, classification, and prediction. This paper 
presents an in-depth review of several machine learning and deep learning approaches uti-
lized in hyperspectral image analysis. Various classification techniques and their subcat-
egories, including supervised, unsupervised, and deep learning-based, are also illustrated. 
Furthermore, the review covers the significant feature extraction methods specific to hyper-
spectral image analysis, such as spectral angle mapper, principal component analysis, and 
linear discriminant analysis. And a detailed description of the band selection techniques, 
including minimum noise fraction, principal component analysis, and successive projec-
tions algorithm. The paper discusses hyperspectral image analysis its significance, chal-
lenges, and real-world applications, including benchmark datasets and evaluation metrics. 
The review identifies the open issues and presents future directions that will aid researchers 
in effectively analyzing hyperspectral images.

Hyperspectral imaging is a critical field of study, especially in remote sensing and medi-
cal diagnosis. Despite the challenges posed by the high dimensionality of hyperspectral 
images, researchers and analysts continue to push the boundaries of what is possible. Their 
unwavering dedication and determination to overcome obstacles is truly inspiring. To 
address these challenges, future research directions are focused on developing advanced 
feature extraction and reduction techniques that can effectively reduce the dimensionality 
of data without compromising the quality of the results. Deep learning algorithms such as 
convolutional neural networks are a highly promising research area that efficiently extract 
features from high-dimensional data, in addition to feature extraction and reduction tech-
niques. Researchers are also working on developing more efficient and scalable computing 
architectures such as parallel and distributed computing systems, to enable the processing 
and analysis of large hyperspectral datasets. One of the significant challenges of hyperspec-
tral image analysis is band selection. Researchers are developing more advanced machine-
learning algorithms to effectively identify and select relevant bands based on specific anal-
ysis requirements to address this challenge. Integrating domain knowledge and expert input 
into the analysis process can improve the accuracy and relevance of band selection.

Additionally, developing sophisticated visualization and exploration tools can help ana-
lysts better understand and interpret hyperspectral data, aiding in selecting appropriate 
bands. Multi-modal and multi-sensor data fusion techniques are also promising research 
areas for improving the accuracy and applicability of hyperspectral image analysis across 
various fields. To address the challenge of varying spectral signatures of objects in a hyper-
spectral image, researchers are developing advanced algorithms that can account for spec-
tral variability and advanced machine learning techniques that can learn and adapt to the 
variability in data. Integrating multi-modal and multi-sensor data can also enhance the 
accuracy and reliability of hyperspectral image analysis in various applications. Another 
significant challenge in hyperspectral image analysis is the availability of labeled data for 
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training. To overcome this challenge, researchers are developing more efficient and prac-
tical techniques for data labeling, such as active learning and semi-supervised learning. 
Additionally, using transfer learning and pre-training on large datasets can reduce the 
labeled data needed for training. Furthermore, developing advanced unsupervised and 
weakly supervised learning algorithms can overcome the limitations of labeled data, mak-
ing hyperspectral image analysis more accessible and applicable in various fields. Trans-
former architectures and attention mechanisms in deep learning models can be used to 
improve the classification accuracy of data. These models are capable of focusing on the 
most important elements of the input data and generating more precise and reliable pre-
dictions. By utilizing optimization algorithms, we can significantly improve the computa-
tional speed of various processes. These algorithms are designed to streamline operations 
by reducing the number of computations required to reach the desired outcome, resulting in 
faster and more efficient performance.
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