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Abstract
Deep learning-based models have recently shown a strong potential in Underwater Image
Enhancement (UIE) that are satisfying and have the right colors and details, but these meth-
ods significantly increase the parameters and complexity of the image processing models and
therefore cannot be deployed directly to the edge devices. Vision Transformers (ViT) based
architectures have recently produced amazing results inmany vision tasks such as image clas-
sification, super-resolution, and image restoration. In this study, we introduced a lightweight
Context-Aware Vision Transformer (CAViT), based on the Mean Head tokenization strategy
and uses a self-attention mechanism in a single branch module that is effective at simulating
long-distance dependencies and global features. To further improve the image quality we
proposed an efficient variant of our model which derived results by applying White Balanc-
ing and Gamma Correction methods. We evaluated our model on two standard datasets, i.e.,
Large-Scale Underwater Image (LSUI) and Underwater Image Enhancement Benchmark
Dataset (UIEB), which subsequently contributed towards more generalized results. Overall
findings indicate that our real-time UIE model outperforms other Deep Learning based mod-
els by reducing the model complexity and improving the image quality (i.e., 0.6 dB PSNR
improvement while using only 0.3% parameters and 0.4% float operations).

Keywords Tokenization · Feature extraction · Image enhancement · Vision transformers

1 Introduction

Scattering and absorption make it difficult for light to travel through water, thus underwater
object detection is difficult beyond 20-meter depth, whereas in muddy water the visibility
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drops at only a 5-meter depth. In water, the light beam is reflected and deflected by dissolved
salts, and organic and inorganic substances [1]. There are three essential parts of the light
beam that the camera detects in underwater imaging systems. The direct portion of the light
is not scattered and is directly reflected from an object. The second potion of light that
is reflected after striking the target item at some angle is said to have undergone forward
scattering [43]. Typically, this kind of scattering causes an image to appear blurry. The third
component is backward scattering, which occurswhen a light beam strikes an imaging system
without first returning from the object. It only serves to further reduce an image’s contrast
[2]. All of the above phenomenons are explained in Fig. 1.

Images can be degraded because of a variety of factors and correcting just one of these
factors might affect the other. As a result, when using image enhancement algorithms, many
important factorsmust be considered for the ImageQuality Assessment (IQA) like sharpness,
dynamic range, and distortion [42]. The Human Visual System (HVS) processes visual data
and connects the eyes to the brain. Evaluating underwater image quality uses subjective and
objective methods. Subjective assessment by humans is impractical for underwater photos.
Objective evaluation employs metrics like MSE, PSNR [4], SSIM [5], MAD [6] and no-
reference UIQM [7], which aligns with the HVS. Deep learning based techniques have
advanced significantly in the domain of image enhancement in recent years. These techniques,
however, rely on intricate network structures and use an excessive amount of processing
power. For instance, the generalizability of existing approaches is likely to be constrained by
their tendency to bias towards a narrow range of brightness values and scenarios [3].

Some transformer-based architectural designs are utilized to tackle this problem. Utiliza-
tion of backbonemodels that have been pre-trained on extensive datasets, such as ImageNet, is
a common practice in achieving superior performance in high-level computer vision tasks like
object detection and semantic segmentation. In contrast, algorithms designed for low-level
vision tasks, such as image denoising, super-resolution, and deraining, are trained directly
on task-specific data [10].

Our research is based on the idea that if a tiny dataset is sufficiently innovative, pre-trained
models won’t be able to aid with training on that domain and the model won’t be suitable for
that dataset. Although transfer learning is a powerful technique, it necessitates a pre-trained
model for each dataset, increasing training time and complexity, requiring an additional for-
ward pass [11]. Learning-based techniques have advanced significantly in the field of photo
improvement in recent years. However, the implementation of the enhancement approaches
on lightweight devices becomes significantly more challenging because they depend on
complicated network architectures and use a lot of Computational resources. Therefore, our
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Fig. 1 (a) Components of camera light (b) Underwater light scattering and absorption (c) Attenuation of light
of different wavelengths in clean and turbid water
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proposed network aims to generate high-quality underwater images by utilizing vision trans-
formers which are less complex and require less time, while also considering the inconsistent
attenuation characteristics of different color channels and regions in underwater images.

To the finest of our knowledge, the methodology and framework presented in this work
have not previously been used in the process of improving the quality of underwater images.
The primary highlights of this work are:

• We created a new Context-Aware Vision Transformer (CAViT) that is simpler in design
and uses fewer parameters and can perform the UIE task in real-time.

• We evaluated the proposed method using common datasets, to improve the network’s
generalization.

• We performed an ablation study to determine the optimal settings for our model. This
was done by applying White Balancing and Gamma Correction methods.

The rest of the research article has been organized as follows: Section 2 gives an overview
of the related work in the domain of Underwater Image Enchantment (UIE). Section 3
discusses the architecture of the proposed methodology. Section 4 describes the datasets
used in this study. Section 5 is the results and ablation study of the best baseline model.
Section 6 summarizes the research work and presents the limitations.

2 Literature review

The UIE task can be approached with various techniques, which can be grouped into two
main categories i.e. Traditional UIE techniques, Machine & Deep Learning based methods.
Further elaborations regarding this division is given below:

• The traditional UIE method includes two types of algorithms i.e. Physical models and
non-physical models. For physical model-based UIE it is difficult to evaluate numerous
parameters at once, and model hypotheses are not always reasonable in the complex
and dynamic undersea environment. Also, the technology is expensive to adopt and is
dependent on the development of an imaging system. Non-physical-based models have a
limited number of direct applications for improving underwater image quality. The issue
with the enhanced images is that either they have too little contrast or too much exposure
[2].

• The lack of a large dataset with various underwater settings and high-fidelity reference
photos is a problem for the current Machine Learning based underwater image enhance-
ment (UIE) algorithms. Additionally, the uneven attenuation in various color channels
and space regions is not fully considered for enhanced images. Deep learning approaches
immediately learn the translation relationship between the source input images and the
clean underwater image without being constrained by model assumptions or previous
conditions.

The categories and their related model are further explained in the following sections.

2.1 Underwater image enhancement analysis using traditional techniques

The physical model-based restoration techniques use the reverse process of the imaging
paradigm to obtain a clear image. A similar popular recovery model is the Jaffe-McGlamery
underwater imaging model [16]. Using the Jaffe-McGlamery underwater imaging model, the
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light obtained by the camera Et was divided into three parts: the light reflected straight from
an object, Ed the forward scattered portion, which is small-angle light reflected from a target,
E f and the backscattered light which is non-target reflected light Eb.

Et = Ed + E f + Eb (1)

Meng et al. [17] exploited The Dark Channel Prior (DCP) based recovery, which depends
on the sharpening method’s maximum a posteriori probability (MAP) which improves vis-
ibility, lessens fuzziness, and enhances foreground retention textures but too many new
parameters are added. In spite of the significant scattering effect of murky water, integral
imaging technology has a tremendous impact since it can combine signals from several
images. Cho [18] Single-photon imaging with a threshold was suggested by Li et al. [19].
By using this technique, photos captured in a high-loss underwater environment are recon-
structed. The Peak Signal to Noise Ratio (PSNR) is theoretically improved by applying
photon-limited computational techniques. The underwater dark channel prior (UDCP) tech-
nique, which only takes into account the blue and green channels, was proposed by Drews
et al. [20] and achieved a more precise transmittance map compared with the DCP algorithm,
increasing the restoration impact. Its robustness and dependability, however, fall short of the
assumptions’ restrictions.

There are a number of techniques proposed using Non-Physical Model Enhancement
methods, including histogram-based, retinex-based, and visual fusion-based algorithms.
Zhuang et al. [21] created a Bayesian and Retinex framework that enhances a single underwa-
ter image using multi-order gradient priors. This algorithm is effective for color correction,
preserves the naturalness of the image, and improves the visibility of structures and details.
However, the algorithm takes a long time to optimize. Song et al. [22] proposed a method
that uses global stretching and multiscale fusing of dual models to eliminate unwanted color
variations. The technique employs white-balancing and uses contrast and spatial signals in
combination with a saliency weight coefficient method. However, there are some limitations
to this approach, particularly with regard to the depth of the color model. Li et al. [23] sug-
gested an approach for underwater hybrid systems that stretches the histogram and uses an
improved white balance method. The method improves contrast and saturation, eliminates
scattering-related blur, enhances color adjustment, reduces haze, and increases the clarity
of details by creating a variable brightness and saturation enhancement model. However,
this approach requires obtaining multiple fusion images and fusion weights. The process of
image enhancement, utilizing the histogram equalization (HE) algorithm, involves the trans-
formation of the image histogram from a narrow unimodal distribution to a more balanced
distribution. Subsequently, the adaptive histogram equalization (AHE) method was formu-
lated with the aim of enhancing the local contrast of the image. The algorithm known as
Contrast Limited Adaptive Histogram Equalization (CLAHE), enhances the computational
efficiency [24]. Iqbal et al. [25] introduced an unsupervised color correction method (UCM)
for underwater images that relies on color correction and selective histogram stretching and
can successfully reduce blue deviation while enhancing the low-component red channel and
brightness. Huang et al. [26] suggest a straightforward yet efficient technique for improving
shallow-water images called relative global histogram stretching (RGHS), which is based on
appropriate parameter acquisition. The two components of the suggested method are color
correction and contrast adjustment.
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2.2 Underwater image enhancement analysis usingmachine learning & deep
learningmethods

Li et al. [27] developed an underwater image enhancement network calledUcolor, which uses
medium transmission-guided multi-color space embedding. The network has a multi-color
space encoder and a medium transmission-guided decoder. However, it does not produce
visually satisfactory results when processing an underwater image with limited lighting. In
order to process underwater images,Wang et al. [28] presented a parallel convolutional neural
network with two parallel branches, a transmission estimation network, and a global ambient
light estimate network. To avoid the halo effect and maintain edge properties, the network
uses multiscale estimation and cross-layer connectivity. The contrast improvement, however,
is not strong enough. WATER-NET, a gated fusion network, was suggested by Li et al. [29].
The underwater image is enhanced using white balance, histogram equalization, and gamma
correction algorithms, and the final image is produced by integrating the confidence graphs of
various enhancement techniques the referencemodel performswell in terms of generalization
and has an opportunity for improvement.

For the purpose of enhancing underwater images, Guo et al. [30] presented the UWGAN,
a new multiscale dense generated adversarial network that incorporates residual multiscale
dense blocks into the generator. The discriminant uses the spectral normalization calculation
method to stabilize discriminant training. Uplavikar et al. [31] proposed an algorithm for
enhancing underwater images using domain adversarial learning. This algorithm improves
the learning data for underwater target detection algorithms. An end-to-end dual generative
adversarial network (DuGAN) for improving underwater images is proposed by Zhang et al.
[32]. In which two discriminators are utilized to complete adversarial training. However, this
solution relied on a user-guidedway to gather reference photos, making it challenging to train
with fresh images. Islamet al. [33] proposedFUnIE-GAN, an underwater image enhancement
algorithm that is computationally efficient and able to run in real time. The algorithm uses a
simpler generator model resulting in fast inference. The discriminator part of the GANmodel
is based on patch-level information rather than global recognition. However, the model is
trained on a specific dataset, and its performance on other datasets or in other underwater
environments may not be as good.

Transformer is a Seq2Seq framework that replaces conventional recurrent neural network
used in Natural Language Processing (NLP) nearly entirely by introducing a self-attention
strategy and using position embedding to account for the position information. Computer
vision is undergoing a revolution because of the introduction of a new architecture called
VisionTransformers (ViT).Vaswani et al. [8] The adoption of transformers in computer vision
tasks, inspired by the significant achievements in natural language processing, has resulted
in the emergence of Vision Transformers (ViTs). In recent years, vision transformers have
gained significant prominence, as demonstrated by Dosovitskiy et al. [9].

Attention has intrinsic complexity of O(N 2), which means that to evaluate the complex-
ity of every pixel in relation to every other pixel in any low-resolution images like 256x256
pixels, the number of calculations would be enormous. Therefore, to make this strategy
effective it is suggested in the paper “A picture is worth 16x16 words” [9] that the image
would be divided into patches and are projected linearly to produce vectors, which are then
combined with knowledge about the patch’s location within the picture and fed into a tradi-
tional Transformer Encoder. The ViT model consists of multiple components, namely Image
Tokenization, Positional Embedding, Classification Token, the Transformer Encoder, and
a Classification Head. The insertion of information regarding the patch’s original position
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inside the image is essential since, despite being crucial to completely comprehending the
image’s content, this knowledgewould be lost during the linear projection. The result relating
to this patch being the one that is taken into account and fed into a Multi-Layer Perceptron
(MLP). An additional vector is inserted that is unrelated of the picture being analyzed and is
utilized to get global data on the entire image. This procedure is described visually in Fig. 2.

Efficient vision transformers There are several ways to interpret a model’s efficiency. It
could be referring to the model’s memory footprint, which is significant when the memory
of the accelerators on which the model is running is constrained. In addition to training and
inference costs, efficiency may also refer to computing costs, such as the number of FLOPs.
In particular, models frequently have to work within a severely constrained computational
budget for on-device applications. Khan et al. [12]

Data-Efficient Image Transformers (DeiT) were proposed by Touvron et al. [13] in an
effort to lessen reliance on data. Without extensive pretraining on dataset like ImageNet-21k.
Additionally, DeiT variations were developed even further thanks to their inventive knowl-
edge transfer method, particularly when a convolutional model was used as the instructor.

Token-to-token ViT (T2T- ViT), which employs a window and attention-based tokeniza-
tion technique, was proposed by Yuan et al. [14]. Their tokenizer creates three sets of feature
maps using three sets of kernel weights, extracting patches from the input feature map in a
manner akin to convolution. In addition, a T2T tokenizer is more sophisticated and has more
parameters than a convolutional one.

Convolutional vision Transformer (CvT) [15] presents convolutional transformer encoder
layers that use convolutions rather than linear projections for the QKV in self-attention. In
their tokenization process, they also include convolutions, and they report results that are
competitive with those of other vision transformers on ImageNet-1k. All of these papers
present findings after initial training on ImageNet (or bigger) data sets.

Image Processing Transformer (IPT) is the name of a pre-trained model Chen et al. [34]
proposed based on the Transformer architecture. It is capable of restoring images in a variety
of ways, including super-resolution, denoising, and deraining. IPT has a shared encoder-

Fig. 2 Vanilla transformer architecture where image to sequence translation is shown where XεRL×d denote
a sequence of vectors (x1, x2, ···, xL), where d is the embedding dimension of each vector
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decoder Transformer body as well as many heads and tails that can each do a distinct task
independently. Peng et al. [35] created a channel-wise multi-scale feature fusion transformer
(CMSFFT) and a spatial-wise global feature modeling transformer (SGFMT) based on the
attention mechanism, which they then integrated into the U-shape Transformer. They also
created a multi-color space loss function that includes RGB, LAB, and LCH. An innovative
underwater image improvement technique called UDAformer, developed by Shen et al. [36]
is based on the Dual Attention Transformer Block (DATB), which also includes the Channels
Self-Attention Transformer (CSAT) as well as Shifted Window Pixel Self-Attention Trans-
former (SW-PSAT). Huang et al. [37] proposed anAdaptive GroupAttention (AGA)method,
which is used within the Swin Transformer (ST) module. This method dynamically selects
channels that are visually similar based on dependencies, reducing the need for additional
attention parameters. Sun et al. [38] presented a network that includes the SwinMT module,
which has two components: a unit for extracting low-frequency features and another for
recovering high-frequency features to produce a high-quality image.

3 Proposedmethod

We create the CAViT model, which is focused on image improvement tasks and can oper-
ate without stacking convolution to extract structural data more effectively. Similar to word
embedding in NLP, patches of the photograph are tokenized and turned into token embedding
in our model. CAViT actively understands token-wise dependencies for input images rather
than directly computing pixel-wise connections. CAViT enhances the image with excel-
lent efficiency. Along with being highly effective, CAViT can intuitively learn the semantic
information and hence produce results that are more semantically meaningful than CNNs.
Nevertheless, obtaining comparable performance with CNN often requires a large amount of
training data or extra supervision else cannot perform as expected due to the lack of inductive
biases.

3.1 Overall architecture

An overview of the proposed lightweight Context-Aware Vision Transformer (CAViT)model
is represented in Fig. 3. We introduced a novel UIE method, to start, given an unpro-
cessed underwater image IεR(H∗W∗CI ). We first divide the image into patches of the form
IpεR((H/P)(W/P)∗CI ), where P is the patch’s size. The flattened image patches are then
considered as a series of tokens IT εR(L∗CT ), wherein CI & CT are the input channel and
transformer dimensions, respectively. And L = (H/P)(W/P). The Context-Aware Vision
Transformer module will then receive the created tokens IT as inputs and produce an output
structural map as SI εR(L∗L∗CT ) using bilinear interpolation. Table 1 Presents the detailed
Pseudocode of the proposed algorithm.

3.1.1 Tokenization strategy

In practice, the input features of the original image are designed to have a big dimension
tiεR(P2∗CI ), whereI = 1, 2, 3, · · · , N necessitating high training parameters (e.g., 33 M
parameters in [34]). An alternate approach is to derive input features from a sequence using
CNN’s feature maps. Therefore, the Mean Head method, where Adaptive Average Pooling
immediately reduces the spatial size followed by Linear Head Embedding, is used in this
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Fig. 3 Overall Architecture:We used a single branch transformer designwith one encoder block, that explicitly
combines the global and local context extraction modules to lessen model complexity. The conventional
Transformer design used in this study was inspired by [15]

study to lower memory usage. This was inspired by the squeeze-and-excitement block [18]
as shown in Fig. 4.

Input spatial resolution of the image is shown by the H ∗ W features. Similar to [14],
Adaptive Average Pooling is applied to the image, using a 7 x 7 convolution with stride 4
and 16 output channels and then we feed the output features to the Linear Head Embedding.
Linear Head Embedding is used in order to split input features into patches directly, which
is then followed by linear projections. Behind every Patch, there is a cascading dimension
reduction procedure. By using Mean Head, we decreased the tokenization complexity as
much as possible. Empirically demonstrating the advantages of such a spatial dimension
reduction for a transformer architecture. In essence, the structure maintains the same number
of spatial tokens across all layers of the network and include a spatial reduction layer across
every patch. Although the self-attention operation is not constrained by spatial distance, the
spatial size of the feature has an impact on the size of the spatial area participating in attention.
Utilizing CAViT’s spatial reduction layers further increases the architecture’s capacity.

The patches are projected linearly to produce vectors, which are then combined with
knowledge about the patch’s location within the image and then fed into a traditional Trans-
former Encoder. In order to keep position information we add a 1D learning positional
embedding pεR(CT /2) to Transformer inputs, as shown in Fig. 5.

3.1.2 Attention mechanism

We used a single branch with a local-global spatial attention module of the Transformer to
process token sequences used in the area of computer vision. Which includes a Multi-Layer
Perception (MLP) with a skip connection and a Multi-head Self-Attention (MSA) module.
We choose GELU as the non-linearity function and LayerNorm (LN) as the normalization
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Table 1 The description of the proposed algorithm

Pseudocode description of the proposed algorithm

Algorithm: Context-Aware Vision Transformer (CAViT) Training

Input:

- Parameters and hyperparameters (e.g., depth, heads, dropout, etc.)

- Training data (underwater images and targets)

- Patch size P

- Transformer dimensions CI and CT

Initialization: Define optimizer and loss function, enhance-net neural network with CAViT modules

Main Training Loop:

for epoch in range(number-of-epochs):

for batch in training-data:

Input-Images = preprocess(batch.underwater-images)

patches = divide-image-into-patches(input-images, P)

tokens = flatten-image-patches-to-tokens(patches)

reduced-tokens = apply-mean-head(tokens, CT )

output-structural-map = context-aware-vision-transformer

(reduced-tokens, CT )

L = (H // P) * (W // P)

structural-map-with-interpolation = bilinear-interpolation

(output-structural-map, L)

enhanced-images = enhance-net(structural-

map-with-interpolation)

loss = compute-loss(enhanced-images, batch.targets)

End of Training

function. In summary, the transformer module can be defined as:

A0 = IT + p (2)

ÃN = MSA(LN (AN−1)) + AN−1 (3)

Fig. 4 Mean head / squeeze-and-excitation tokenization strategy
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Fig. 5 Dividing an image into patches and then feeding them into the transformer encoder

AN = MLP(LN ( ÃN )) + ÃN (4)

where N represents the Transformer’s depth (number of basic transformer blocks i.e. 1 for
our model). In a typical Transform block, a linear layer creates the projections from the input
features, Query (Q), Key (K), & Value (V), but only accomplishes global spatial interactions.
It seems sense to substitute a convolution with a kernel size of 3 x 3 for the linear layer
in order to employ more local information, as this simultaneously reinforces the channel
and spatial augmentation. In order to cover neighboring tokens for the convolutions 2-D
Block convolutions are utilized to analyze the rearranged picture tokens as opposed to 1-D
convolutions, which are used for processing sentences in natural language processing (NLP).

3.1.3 Defining the loss function

To objectively evaluate the performance of the model, we use a combination of Gradient
Loss and Cosine Similarity Loss as a loss function. Gradient Loss not only collects low-
frequency information, such as the L1 loss but also, by adding a second-order constraint
acquires high-frequency information. L1 loss is employed by minimizing the MAE (Mean
Absolute Error) between generated and ground truth patches during network training. Let G
and G̃ denote the gradient map of X and X̃ , where X̃ and X denote the restored and the real

Fig. 6 Li [29] dataset encompass a wide variety of underwater settings, with different aspects of quality
degradation, and includes a diverse range of image information. It also include high-quality reference images
that correlate to the underwater images
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image, respectively. Q(r) and Q(g) are the distribution of G̃ and G respectively. Gradient
Loss is stated as:

Lgd = EG̃∼Q(r),6G∼Q‖G̃ − G‖1 (5)

The Cosine Similarity Loss is stated as:

Lcoss = 1 − A ∗ B

‖A‖ ∗ ‖B‖ (6)

where A and B are the predicted and ground truth vectors, respectively, and ||A|| and ||B||
are their L2 norms. The linear summation of the two loss functions results in the total loss
function, which is given as:

Lsum = Lcoss + Lgd (7)

4 Underwater image datasets

There are two datasets utilized in this study:

• The UIEB dataset: Li et al. [29] introduced The underwater Image Enhancement Bench-
mark (UIEB) dataset consisting of 950 real-world underwater photos. It is further
subdivided into 890 pairs of raw underwater photographs and associated high-quality
reference images, and the remaining 60 difficult images without reference (this set of
images is denoted as Test-U60). Out of 890 images 300 images are used as training dataset
denoted as Train-U and 90 images are used as testing dataset denoted as Test-U90. The
dataset was annotated from different Internet sites, relevant papers, and video footage.

Fig. 7 Peng et al. [12] created an LSUI (Large-Scale Underwater Image) dataset that surpasses current under-
water datasets in terms of coverage of underwater scenes and visual quality of reference photos
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It contains a variety of underwater scenes and aquatic animals. To create high-quality
reference images as shown in Fig. 6, 12 image enhancement techniques were applied to
the training dataset. Volunteers choose the final, high-quality reference photos.

• The LSUI Dataset: Peng et al. [35] created the dataset that contains 5004 pairs of natural
underwater photographs. Compared to the current underwater datasets, it has better refer-
ence photographs with more varied underwater habitats as shown in Fig. 7 The images in
Large-Scale Underwater Image (LSUI) dataset have richer features and diverse underwa-
ter settings (lighting conditions, water kinds, and targeted categories). The LUSI dataset
containing 1500 images denoted as Train- L is being utilized as the training images for the
proposed transformer models. And the rest 70 images demoted as Test-L70 are utilized
as the testing dataset for the proposed dataset.

5 Results and discussion

On both UIEB dataset and LUSI dataset, we carried out extensive trials. The Mean Square
Error (MSE), Peak Signal to Noise Ratio (PSNR), Most Apparent Distortion (MAD) and
Structural SIMilarity index (SSIM) are commonly employed as full-reference evaluation
metrics for measuring the similarity between an image and a reference image. A higher
PSNR, SSMI and MAD value indicates a closer match in terms of image content, while a
lowerMSE score signifies a greater similarity in terms of structure and texture. The evaluation
of underwater image quality is commonly conducted using non-reference metric such as the
and the Underwater Image Quality Measure (UIQM). These metrics assess various aspects
of image quality, including color density, saturation, sharpness, and contrast. A higher score
in UIQM indicates better human visual perception of the underwater image.

5.1 Underwater images quality assessment techniques

For underwater images to be more visually appealing, evaluating their quality is essential.
Subjective and objective approaches can be used to classify quality evaluation techniques. In
a subjective evaluation, human observers give ratings based on their viewpoint, such as mean
opinion scores (MOS). Due to its labor-intensive nature and lack of automation, especially in
the perspective of contemporary deep learning techniques, this method is however imprac-
ticable for underwater photos. On the other hand, objective evaluation employs computer
algorithms for instantaneous scoring. Full reference (comparing photos), reduced reference
(with only part of the picture), or no reference (independent evaluation) are the possible
options. Human Visual System (HVS) refers to the intricate sensory system in humans that
is in charge of processing visual data and enabling us to experience and understand the envi-
ronment around us. The complex neurological connections between the eyes and the brain
are included in the HVS. The evaluation of full reference picture quality involves compar-
ing a reference image with a distorted image and quantifying the discrepancies in order to
derive a numerical score. Traditional evaluation indicators commonly used in full-reference
and semi-reference evaluations include Mean square error (MSE), peak signal-to-noise ratio
(PSNR) [4], structural similarity index (SSIM) [5] and most apparent distortion (MAD)
[6]. The initial approaches to full-reference quality assessment mostly relied on the analysis
of distortion energy. However, MAD [6] incorporated and analyzed luminance and contrast
masking to assess the perceived distortion based on high-quality images. The underwater
image colorfulness measure (UICM), the underwater image sharpness measure (UISM), and

123



Multimedia Tools and Applications (2024) 83:75603–75625 75615

the underwater image contrast measure (UIConM) are the three underwater image attribute
measures that make up the UIQM (underwater image quality measure) [7], which is a no-
reference quality metric. Each offered attribute measure is motivated by the characteristics of
human visual systems (HVSs), and each attribute is chosen for analyzing one component of
underwater picture degradation. The experimental findings show that the methods accurately
assess the quality of underwater images in line with human perceptions.

5.2 Objective image quality evaluationmetrics

Non-reference evaluation and full-reference evaluation are the two basic categories of objec-
tive assessment methods. In this work, we will evaluate our model on both categories.

5.2.1 Full-reference image quality evaluation

We carried out a full-reference assessment using Peak Signal to Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM) measures, which reflect the similarity of the
enhanced images with the reference images (provided in the dataset). Higher values of the
PSNR and SSIM indicate the better visual quality of the images. The equation below displays
the Mean Square Error.

MSE = 1

M ∗ N
�(M,N )[l1(m,n) − l2(m,n)]2 (8)

l1(m,n) − l2(m,n) stands for the original and enhanced images, respectively. A peak signal-to-
noise ratio is given by the following equation.

PSN R = 2 log10
L − 1

RMSE
(9)

Root Mean Squared Error is referred to as RMSE. Three crucial elements are extracted
from an image via the Structural Similarity Index (SSIM) metric; Structure, Contrast, and
Luminance. These three elements serve as the foundation for the comparison of the two
photos. And finally, the SSIM score is given by,

SSI M(x, , y) = [l(x, y)]α.[c(x, y)]β .[s(x, y)]γ (10)

where α, β, γ denote the relative importance of each of the three components.
The Most Apparent Distortion (MAD) is a perceptual image quality metric that quantifies

the perceived quality difference between a reference image and a distorted image. It’s defined
as the average of the absolute pixel-wise differences between the luminance values (brightness
values) of corresponding pixels in the reference and distorted images. Mathematically, MAD
can be expressed as follows: Let R(x, y) be the luminance value of the pixel at coordinates
(x, y) in the reference image, and let D(x, y) be the luminance value of the pixel at the same
coordinates in the distorted image. The MAD between the reference image and the distorted
image is calculated as,

MAD = 1

N
�W

x=1�
W
x=1‖R(x, y) − D(x, y)‖ (11)
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5.2.2 No-reference image quality evaluation

UIQM focuses on Underwater Image Color Measure (UICM), Underwater Image Sharpness
Measure (UISM), and Underwater Image Contrast Measure (UIConM). Better visual per-
ception is indicated by a higher UIQM score. The equation for the UIQM, which combines
the measures of color, sharpness, and contrast, is provided by:

U I QM = α.U ICM + β.U I SM + γ.U IConM (12)

The weighted coefficients, α = 0.0282, β = 0.2953, and γ = 3.5753 are used to balance
the values of the three measures.

• Underwater Image Colorfulness Measure (UICM): Both Red-Green (RG) and Yellow-
Blue (YB) color components are evaluated by the UICM in order to gauge the
effectiveness of color-correcting algorithms.

• Underwater Image Sharpness Measure (UISM): First, each color component is used to
create edge maps, which are then used to measure the sharpness. Then, to determine
the grayscale edge maps, the resulting edge maps are multiplied by the original color
component.

• Underwater Image ContrastMeasure (UIConM): Contrast is an underwater visual perfor-
mance factor. Backscattering is typically to blame for the contrast reduction in underwater
photos.

5.3 Experimental analysis of proposed transformer basedmodel

On both UIEB dataset and LUSI dataset, we carried out extensive trials. The all obtained
statistical results will be discussed in the following sections.

5.3.1 Preprocessing of images for CAViT

Both the training and the test images are downsized to 1200 x 900 pixels depending on their
longest side [40]. In order to achieve comparability, the dataset was split into 80% training
examples and 20% test data. Additionally, random cropping, resizing, flipping, and rotating
are used to enhance the training data.

5.3.2 Implementation details

Pytorch-based implementation is carried out on NVIDIA-SMI 460.32.03 GPU and CUDA
11.2. The Adam optimizer is used for processing with a preset learning rate of 1e−4. The
default setting was set to use Transformer depth 1 as concluded with multiple experiments
that increasing the depth of the transformers did not improve any artifacts of the suggested
pipeline. Each image will be divided into 32 by 32 tokens. The skip connection ratio is set to
0.1 and the scale factor inQandKvector is 8, and the number of heads of theTransformer is set
to 8. CAViT and CAViTG denote the model with and without gamma correction, respectively
(explained in Section 5.3.3). The rest of the details are shown in Table 2.

5.3.3 Ablation study

The White Balancing and Gamma Correction branch tries to improve the appearance of
underwater images by eliminating undesired color casts brought on by various illuminants. It
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Table 2 Defining the training hyper-parameters (number of epochs, batch size and tokenization features) for
LUSI (training dataset Train-L) and UIEB (training dataset Train-U) for the proposed CAViT and Gamma
correction based CAV iTG Models

Tokenization Branch Epochs Batch Features

CAViT,
CAViTG

Adaptive Average
Pooling (Mean
Head Strategy)

Single branch model 30 8 24

is employed before passing the image to the transformermodule. Because underwater images
suffer noticeably when water depths are greater than 30 feet, the goal of the White Balancing
and Gamma Correction branch is to improve the overall contrast and brighten up dark areas
of underwater image images.

In Table 3 we reported the Full-Reference Test on Both Dataset (LUSI & UIEB). Using
the Test-L70 for the LUSI dataset & Test-U90 for the UIEB dataset. We evaluate both the
models i.e simple as well as the gamma correction based model with evaluation metrics;
PSNR and SSIM. It can be concurred that the gamma based model gives more PNSR and
SSIM values but their running time is a little more then the base model.

The enhancement outcomes of our proposed methods for both CAViT and CAViTG for
the LUSI dataset are visually compared in Fig. 8, using the images from the train dataset of
LUSI Train-L. The results given by (c) are most similar to the reference image, which has
less color artifacts and high-fidelity object areas, which also supports the hypothesis given
in ablation study as well as the evaluation results.

In Table 4 we reported the Non-Reference Test on Both Dataset (LUSI & UIEB). Using
the Test-L70 for the LUSI dataset & Test-U90 for the UIEB dataset. We evaluate both the
models i.e simple as well as the gamma correction based model with evaluation metrics;
UICM, UISM, UIConM and UIQM. It can be endorsed that the gamma based model gives
more overall UIQM value UICM, UISM, UIConM being its components.

The enhancement outcomes of our proposed methods for both CAViT and CAViTG for
the UIEB dataset are visually compared in Fig. 9, using the images from the train dataset of
UIEB Train-U. The results given by (c) are most similar to the reference image, which has
less color artifacts and high-fidelity object areas, which also supports the hypothesis given
in ablation study as well as the evaluation results.

It can be concluded from Table 5 that CAViTG has a lower latency than CAViT on the
LUSI dataset, indicating that it is faster in making inferences. On the UIEB dataset, CAViT

Table 3 Full-reference test on both dataset (LUSI & UIEB) using test-l70 & test-U90, respectively

Model Test set Training time (s)↓ PSNR (dB)↑ SSIM↑
CAViT Test-L70 2273.31 24.80 0.93

CAViTG Test-L70 10253.25 25.76 0.95

CAViT Test-U90 1057.23 21.37 0.89

CAViTG Test-U90 4174.406 23.54 0.96

Presenting evaluation metrics (training time, number of parameters, PSNR and SSIM) for both models CAViT
and CAViTG
The top results are bold
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Fig. 8 Enhancement results of CAViT and CAViTG trained on LUSI. (a): Input images. (b): Enhanced results
using the model trained on Train-L. (c): Enhanced results using the model trained with the Gamma Correction
component on Train-L. (d): Reference images (recognized as ground truth (GT))

has a slightly lower latency than CAViTG , but the difference is minimal. The choice between
CAViT and CAViTG depends on specific priorities. If low latency and good image quality
are crucial, CAViTG might be preferred. However, CAViT still has competitive performance.

Figure 10 shows the visual results from the inference results form the LUSI dataset for both
the models i.e. CAViT and CAViTG . It may be argued that LSUI contains reference photos
with richer underwater settings and higher visual quality than existing underwater image
datasets, which enhanced the tested network’s capacity for improvement and generalization.

Figure 11 shows the visual results from the inference results form the UIEB dataset for
both the models i.e. CAViT and CAViTG . UIEB have more intensities of different color
gradations and better visibility and brightness.

Table 4 Non-reference test on both dataset (LUSI & UIEB) using test-l70 & test-U90, respectively

Model Test Set UICM↑ UISM ↑ UIConM ↑ UIQM↑
CAViT Test-L70 5.19 5.59 0.19 2.49

CAViTG Test-L70 5.59 5.79 0.19 2.69

CAViT Test-U90 8.25 7.16 0.25 3.23

CAViTG Test-U90 7.89 7.89 0.28 3.29

Presenting evaluation metrics (UICM, UISM, UIConM & UIQM) for both models CAViT and CAViTG
The top results are bold
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Fig. 9 Enhancement results of CAViT and CAViTG trained on UIEB underwater datasets. (a): Input images.
(b): Enhanced results using the model trained on the Train-U dataset. (c): Enhanced results using the model
trained with the Gamma correction component on the Train-U dataset. (d): Reference images (recognized as
ground truth (GT))

Table 5 InferenceResults on bothDatsets (LUSI andUIEB) onCAViT andCAV iTG Models stating (Latency,
Number of Paramenters, PSNR, SSIM and MSE Vaules)

Model Dataset Latency (s) ↓ Parameters (K) ↓ PSNR (dB) ↑ SSIM ↑ MSE ↓
CAViT LUSI 0.0034 s 21.87 K 23.81 0.967 270.69

CAViTG LUSI 0.0025 s 21.87 K 23.89 0.969 265.19

CAViT UIEB 0.0032 s 21.87 K 25.49 0.981 183.83

CAViTG UIEB 0.0034 s 21.87 K 26.36 0.981 150.18

The top results are bold

Fig. 10 Inference results. (a): Input images. (b): Enhanced results using the model trained on the Train-L
dataset. (c): Enhanced results using the model trained with the Gamma Correction component on the Train-L
dataset. (d): Reference images (recognized as ground truth (GT)
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Fig. 11 Inference results. (a): Input images. (b): Enhanced results using the model trained on the Train-U
dataset. (c): Enhanced results using the model trained with the Gamma Correction component on the Train-U
dataset. (d): Reference images (recognized as ground truth (GT)

Table 6 Quantitative comparison
of traditional UIE methods
(CLAHE, UICM, RGHS and
UDCP) on the full-reference
testing dataset UEIB test dataset
U-90 presenting metrics (PSNR,
SSIM, MAD and inference time

Methods PSNR ↑ SSIM ↑ MAD↓ Time (s)

CLAHE [24] 20.64 0.82 100.0 x

UCM [25] 22.03 0.81 92.95 x

RGHS [26] 23.57 0.80 81.02 8.92s

UDCP [20] 13.47 0.54 139.0 30.82s

Ours 23.54 0.96 80.54 0.0025s

The top results are bold

Fig. 12 Visual comparison of enhancement results sampled from the Test-U90 (UIEB) dataset. From left to
right are raw underwater images, FUnIE [33], UGAN [41], Ucolor [27], U-Trans [35] and our CAViT. the
reference image recognized as ground truth (GT). The highest PSNR value from the mentioned methods is
marked in yellow
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Table 7 Quantitative comparison of deep learning based UIE methods on the full-reference testing dataset
UEIB Test Dataset U-90 presenting (PSNR, SSIM, Number of Parameters, Inference Time and Flops)

Methods Technique Test U-90 Parameters (K) Time (s) Flops (G)
PSNR SSIM

WaterNet [29] CNNs 19.81 0.86 24810 0.61s 193.7

Ucolor [27] CNNs 20.78 0.87 157400 2.75s 443.8

FUnIE [33] GANs 19.45 0.85 7019 0.09s 10.23

UIE-DAL [31] GANs 16.37 0.78 18820 0.07s 29.32

UGAN [41] GANs 20.68 0.84 57170 0.05s 38.97

U-Trans [35] ViTs 22.91 0.91 65600 0.07s 66.2

Ours ViTs 23.54 0.96 21.87 0.0025s 0.04

The top results are bold

5.3.4 Comparative analysis of various UIE methods

We report themodel size and corresponding average PSNR, SSIM,MADandUIQMonLUSI
and UIEB evaluation datasets. To demonstrate the performance of our proposed model, we
compare the CAViT Model with 6 deep learning UIE approaches & 4 traditional UIE tech-
niques. It contains comparison of different deep learning techniques:WaterNet [29], U-Trans
[35], Ucolor [27], FUnIE [33], UIE-DAL [31] and UGAN [41]. And other traditional UIE
methods like CLAHE [24], UCM [25], RGHS [26] and UDCP [20]. The top results are bold.
This analysis includes both the Non-Reference and Full Reference evaluation techniques. As
well as the visual results are presented at the end to fully understand the metrics and demerits
of each method.

For the evaluation of the traditional techniques in Table 6, we have presented themetrics on
PSNR, SSIM, MAD. For the comparison of the models performance we have also added the

Fig. 13 Graphical of comparison our CAViT inference (run-time) efficiency against WaterNet [29] FUnIE
[33], UGAN [41], Ucolor [27], U-Trans [35] results sampled from the Test-U90 (UIEB) dataset
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Table 8 Quantitative comparison
among different deep learning
UIE methods on the
non-reference testing dataset
U-60 presenting the values of
UIQM

Methods Test U-60 UIQM↑
WaterNet [29] 0.92

U-Trans [35] 0.85

Ucolor [27] 0.84

FUnIE [33] 1.03

UIE-DAL [31] 0.72

UGAN [41] 0.86

Ours 2.37

The top results are bold

inference time. It is evident that our model outperforms the traditional methods like CLAHE
[24], UCM [25], RGHS [26] and UDCP [20].

The statistical results and visual comparisons are summarized for the Full-ReferenceUIEB
testset U-90 in Table 7 and Fig. 12. As in Table 7, our Context-Aware Vision Transformer
demonstrates the best performance on both PSNR and SSIM metrics with relatively few
parameters, FLOPs, and running time.

The 6 other deep learning approaches are restricted as explained: The advantage of FUnIE
is that it can produce models that are quick, light, and require few parameters, but this
inherently restricts its capacity to handle complex and distorted test data. Both UGAN and
UIE-DAL did not take into account the varied qualities of the underwater photos. Simply
introducing the idea of multi-color space into the network’s encoder part cannot effectively
take advantage of it, which results in unsatisfactory results in terms of contrast, brightness,
and detailed textures. Ucolor’s media transmission map prior cannot effectively represent
the attenuation of each area. U-trans achieved comparative results but the size of their model
is relatively large. A graphical comparison of the inference results of the 6 deep learning
approaches is also given in Fig. 13.

Fig. 14 Enhancement results for Test-U60. The images represent underwater scenes of yellowish, greenish-
bluish colors. (a) Raw images. (b) Enhanced results. (c) Raw images. (d) Enhanced results
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The statistical results and visual comparisons are summarized for the Non-Reference
UIEB testset U-60 in Table 8 and Fig. 14. In Table 8, our Context-Aware Vision Transformer
demonstrates the best performance on UIQM metric.

6 Conclusions

For many practical purposes, such as underwater exploration, monitoring, and recovery oper-
ations carried out by semi- or fully autonomous robots, underwater image improvement is
crucial. This provides a substantial challenge for computer vision and image processing.
Scientific study, environmental preservation, and industrial applications can all benefit from
the capacity to enhance image quality in difficult underwater environments. For marine
scientists researching aquatic ecosystems, accurately visualizing underwater landscapes is
essential because it makes it easier for them to monitor and record sensitive marine species
and their environments.

In this research, we present a lightweight deep learning model for enhancing underwater
image quality called Context-Aware Vision Transformer (CAViT). The development of a
compact and effective model like CAViT also meets the expanding demand for resource-
effective deep learning solutions across numerous disciplines. In addition to being appropriate
for resource-constrained underwater robotic platforms, its minimal memory usage and rapid
inference also pave the door for more effective deep learning applications in other resource-
limited contexts.

We carried out a number of tests to evaluate the suggested model settings. By comparing
the suggested model to prior state-of-the-art work, quantitative and qualitative image qual-
ity assessment findings demonstrate the proposed model’s efficiency and effectiveness in
underwater image quality enhancement in terms of color distortion, low visibility, and poor
contrast.

As we move forward, new avenues for study and invention open up with the addition of
CAViT to the field of low-level vision tasks. The adaptability of this strategy is demonstrated
by the incorporation of the transformer design into various tasks, which suggests that it could
be a potent tool for overcoming difficulties in the field of computer vision. In the future,
perception-related loss functions can be used to train deep learning-based networks, which
can then be used to incorporate factors that are congruentwith howpeople interpret aesthetics.
It will consequently improve the network’s ability to alter visual sensitivity and contrast.
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