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Abstract
The generalisability of deep neural network classifiers is emerging as one of the most impor-
tant challenges of our time. The recent COVID-19 pandemic led to a surge of deep learning
publications that proposed novel models for the detection of COVID-19 from chest x-rays
(CXRs). However, despite the many outstanding metrics reported, such models have failed
to achieve widespread adoption into clinical settings. The significant risk of real-world gen-
eralisation failure has repeatedly been cited as one of the most critical concerns, and is a
concern that extends into general medical image modelling. In this study, we propose a new
dataset protocol and, using this, perform a thorough cross-dataset evaluation of deep neural
networks when trained on a small COVID-19 dataset, comparable to those used extensively
in recent literature. This allows us to quantify the degree to which thesemodels can generalise
when trained on challenging, limited medical datasets. We also introduce a novel occlusion
evaluation to quantify model reliance on shortcut features. Our results indicate that models
initialised with ImageNet weights then fine-tuned on small COVID-19 datasets, a standard
approach in the literature, facilitate the learning of shortcut features, resulting in unreliable,
poorly generalising models. In contrast, pre-training on related CXR imagery can stabilise
cross-dataset performance. TheCXRpre-trainedmodels demonstrated a significantly smaller
generalisation drop and reduced feature dependence outwith the lung region, as indicated by
our occlusion test. This paper demonstrates the challenging problem of model generalisa-
tion, and the need for further research on developing techniques that will produce reliable,
generalisable models when learning with limited datasets.
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1 Introduction

Effective classification of samples from a limited dataset has been a long-sought goal in the
field of computer vision. The problem is particularly pronounced in medical applications,
where the availability of high-quality, labelled datasets is naturally constrained by the lim-
ited availability of skilled annotators and restrictive legislation regarding data privacy. To
overcome the challenge of low volumes of annotated training data in the medical setting,
transfer learning has been used extensively in the literature [1]. However, a consequence of
the low availability of data is that thorough evaluation of model generalisation capacity is
often overlooked in the literature.

Generalisation failure is a well-established challenge in machine learning. One of the
earliest studies to highlight this issue was published by Torralba and Efros [2], who demon-
strated that large training sets can still produce biased models unable to perform well on new
data. Such concerns persist, with recent works revealing the presence of spurious correla-
tions in the popular ImageNet dataset [3], that can cause models to rely on irrelevant and
non-generalising decision boundaries [4]. Similarly, recent critical publications of medical
image models repeatedly warn that the risk of biased predictions and generalisation failures
prevented their adoption into the clinical setting [5, 6]. As such, the evaluation of model
generalisation capacity is a critical aspect which must be considered when developing deep
learning methods, especially for medical applications. This is exemplified in the COVID-19
medical image model literature.

The COVID-19 pandemic brought global disruption and created a high demand for fast
and accurate testing. Hospitals began to incorporate the use of chest x-rays (CXRs) to speed
up the triage of suspected COVID-19 patients [7], and this, in turn, led to a sudden rise in
the availability of COVID-19 labelled CXR data. However, the identification of COVID-19
abnormalities in CXRs was observed to be a challenging task. COVID-19 indicators can
overlap with other viral infections, such as influenza [8], which may lead to an incorrect
diagnosis of COVID-19. Furthermore, in mild cases, an x-ray may not capture the abnormal-
ities at a visible level [7]. The authors of [9] reported cases where indicators of COVID-19
infection were present in computed tomography (CT) scans of COVID-19 patients, but not
visible in the accompanying CXRs. During the early stages of the pandemic, radiologists
struggled to identify all cases using this method, with some reporting that their radiologists
achieved 64% sensitivity when trying to detect COVID-19 from CXRs alone [10]. As such,
significant potential for improved radiological diagnosis using AI as an assistive technology
was established [6].

A surge of research activity emerged to develop technology to assist radiologists in diag-
nosing COVID-19 from CXRs. A significant portion of this research was focused on the
development of AI models to detect and localise COVID-19, with many publications util-
ising transfer learning in conjunction with existing CXR datasets [1]. One of the earliest
and most heavily cited examples was the bespoke DarkCOVIDNet [11], which at the time of
writing accrued over 2000 citations. The architecture achieved an outstanding average binary
classification accuracy of 98.8% with an average sensitivity of 95.13%, while working with
a dataset of 127 COVID-19 images with negative samples taken from [12]. Similarly, using
only 358 COVID-19 CXRs, the custom-designed COVID-Net [13] architecture which has
gained more than 2400 citations, reported overall accuracy of 93.3% and a COVID-19 sen-
sitivity of 91%. This trend of model training and evaluation using small datasets continued
throughout the COVID-19 model publication cycle, however the challenge of evaluating
models’ capacity for generalisation remained often overlooked [14].
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Beyond the broad risk of generalisation failure, medical imagery poses unique challenges
due to characteristics of the medium itself. There are growing concerns that models may
rely on non-pathological features to distinguish between positive and negative cases. This
risk increases when training datasets contain class-wise stratifications irrelevant to the task.
As reported by Roberts et al. [6], various COVID-19 papers used the popular composite
COVID-19 chest x-ray dataset [15], in conjunction with the Guangzhou Pneumonia dataset
[16]. However, the pneumonia samples are exclusively paediatric images, in contrast to
the wide age range present in the COVID-19 images [14]. As shown by DeGrave et al.
[17], medical deep learning models tend to optimise their performance by relying on the
easiest distinguishing features, and in this scenario, this may lead to optimisation based on
distinguishing between paediatric and adult images.Moreover, the covid-xray-5k [18] dataset
used in this study contains resolution stratification, where all negative samples obtained
from the CheXpert dataset have maximal dimensions of 500x500px, whereas the COVID-
19 samples range in dimensions from 500 to 3500px. These differences can be seen in
Fig. 1, where image (a) shows a very high-resolution image of the chest region, whereas
in image (b), the pixels are clearly visible, indicating information loss. Such differences
may present confounding factors that could also facilitate shortcut learning [19] and threaten
generalisation capacity.

This paper investigates aspects of generalisability within the field of chest x-rays, spe-
cific to the classification of COVID-19. We investigate the impact of training with small,
imbalanced datasets on model generalisation, and whether transfer learning can significantly
improve their ability to accurately predict on unseen data sources. This work is motivated by
recent literature that emphasises how uncertainty and concerns regarding the reliability and
robustness of medical image models pose a significant barrier to their adoption into clinical
settings. We shine light on this problem, by quantifying the extent to which COVID-19 CXR

Fig. 1 Visual comparison of image samples taken from the internal training dataset, COVID-Xray-5k [18].
Image (a) is a high resolution image from the COVID-19 samples, while image (b) is a significantly lower
resolution image from the negative samples
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models can generalise to unseen datasets and determining their susceptibility to rely upon
shortcut features. We compare a variety of architectures, representing the most commonly
used in COVID-19 publications, as well as the state-of-the-art. We conclude our study with
a chest occlusion evaluation to identify models heavily dependent on features outside the
lung tissue region and determine whether this correlates with poorly generalising models.
Our work differs from that of [20] and [21] in that we look specifically at images with the
lungs and pathological features of COVID-19 removed to quantify the contribution of non-
pathological features to model performance. This approach allows for a deeper analysis of
model reliability without the availability of costly annotations.

Our main contributions of this paper are as follows:

• An experimental review of top-cited COVID-19models with carefully curated datasets to
quantify and thoroughly evaluate the state of generalisability of COVID-19 CXRmodels.

• Highlight the impact of pre-training strategies on generalisable learning, through the
comparison of generic model weights against closely related weights. From this emerges
further support for the use of network pre-training on closely related tasks rather than
ImageNet.

• We present a chest occlusion evaluation to quantify and approximate model reliance on
non-pathological features (shortcut learning) without the need for costly annotations.
Our results strongly suggest that models trained without closely related pre-training had
higher dependence on shortcut features, which strongly correlates with poor generali-
sation capability. From this, we can infer that shortcut learning is a critical barrier to
achieving robust model predictive performance. We recommend the incorporation of
similar tests in model evaluations when external data is unavailable to assist in the iden-
tification of shortcut learning.

The remainder of this paper is structured as follows. Section 2 describes the specific chal-
lenges and criticisms of COVID-19 studies, Section 3 details our experiment and Section 4
describes our results. In Section 5 we summarise our findings and discuss the outcomes of
this study.

2 Related work

Throughout the COVID-19 pandemic, the novel nature of the disease and strict regulations
associated with sensitive medical data limited the amount of public data available for model
training and evaluation, with many publications relying on the aggregate COVID-19 Image
Data Collection [15]. Deep neural networks trained exclusively on small medical image
datasets have been found to generalise poorly onto new datasets [22]. To overcome this limi-
tation, transfer learning has been shown to help models achieve state-of-the-art performance
when trained on limited datasets in mainstream image classification tasks. In their system-
atic review Roberts et al. [6], observed that many COVID-19 papers implemented transfer
learning, using weights learned from the natural image dataset, ImageNet [3]. However, in
a pre-COVID-19 study focused on pneumonia classification, Zech et al. [23] showed that
models pre-trained on ImageNet did not consistently generalise onto external tests, despite
achieving strong internal performance. Some papers performed model pre-training on gen-
eral chest x-ray datasets, before fine-tuning on COVID-19 data [24, 25], however neither
performed external evaluation tests, so the impact of transferring weights from a closely
related task is unclear.
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Critical reviews of the literature regarding COVID-19 models frequently shared concerns
regarding reported model performance. Systematic reviews produced by the medical com-
munity [5, 6] highlighted the high risk of bias in datasets and models which, combined with
the ambiguous reporting of results, has led to a lack of trust in models produced. Wynants et
al. [5] warned that the use of aggregated COVID-19 datasets may lead to unintentional data
overlap across training and test sets. This is evident in the literature, where several COVID-19
papers indicate the use of datasets with accidental data duplication [26–28]. Further concerns
of data usage were raised in [6], where it was revealed that of the 37 papers evaluated, 29
performed no external validation of their models, without which, the reliability of predictive
ability is difficult to determine. Similar concerns were raised in [29] and [14], where both
reported on a lack of generalisation reporting in COVID-19 model literature. Roberts et al.
[6] also highlighted the significant risk of participant bias, after identifying 16 publications
which used paediatric CXRs as control images for COVID-19 classification [6]. The use of
such datasets may lead to models becoming reliant on image features unrelated to pathology
[8], thus making them inappropriate for clinical use.

To better understand the extent to which COVID-19 models may learn spurious correla-
tions, a broader review of contextual works is required. The use of segmented images has
been shown to be beneficial for models. In [14] it was demonstrated that using UNET to
extract only the lungs from CXRs in conjunction with data augmentations limited the pos-
sibility for learning known CXR shortcuts. However, it has been observed that CXRs with
extensive diseased regions can cause lung segmentation models to fail [30], leading to subse-
quent classification failure. Similarly, machine artifacts can confound segmentation models,
and specialised methods are required to address these challenges [31]. As such, care must be
taken when relying on image masking to alleviate shortcuts.

Regarding COVID-19 specifically, [32] demonstrated how training on aggregated datasets
with class-wise stratification of sources, a commonpractice inCOVID-19 literature, can facil-
itate the learning of irrelevant features. They also found that training on a single data source,
while achieving a lower internal score than the aggregate models, produced a significantly
stronger generalising model. Similar findings were found by [17], who trained models on
two different composite datasets, each with class-wise stratification of data sources. In their
cross-dataset evaluation, both models gave outstanding performance on internal tests but suf-
fered severe performance drops when tested externally. Through a careful review of model
saliency maps, they demonstrated how models were reliant on non-pathological features,
such as laterality markers and shoulder positioning, and argued that this shortcut learning
contributes to the generalisation failure of models. In a simple yet effective experiment, [33]
showed that even with lung tissue occluded, some deep learning models can easily distin-
guish between data sources. Given the prevalence of COVID-19 models trained on datasets
with class-wise stratification of sources, this sets a concerning precedent for the reliability
of reported model performances.

The limited availability of medical imagery, and the intrinsic lack of explainability associ-
ated with deep learning models, has led to the use of saliency maps to validate model ability.
The authors of [6] argue that the inclusion of such interpretative techniques is imperative
for the clinical adoption of these technologies. However, in [34] there is a warning that the
findings of such techniques can be misleading, as there is no guarantee that features identi-
fied in a highlighted region of interest correlate directly to the pathological finding. These
concerns are supported by the work of [35], where different methods of mitigating model
dependence on non-pathological features were evaluated. It was found that models present-
ing good saliency features did not always generalise well. Conversely, models with stronger
generalisability did not always obtain good saliency attributions. As such, while saliency can
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Fig. 2 Schematic diagram of our experiment. Images are first normalised to reduce noise and source biases.
We then train a suite of model architectures with various pre-training strategies. Models are then evaluated
on Internal and External datasets (shown in Fig. 3) to determine their generalisation ability. We then perform
a chest occlusion test to understand how models behave when pathology-relevant regions are hidden, and
determine whether this relates to their cross-dataset performance. The results are discussed in Section 4

be useful in revealing model reliance on inappropriate features, it should not be assumed
that apparent good feature attributions will produce a strongly generalisable model, and they
must not used in place of external validation.

3 Materials &methods

To determine the generalisability of deep learning models trained on a limited dataset, we
performed an extensive cross-dataset evaluation. By using multiple external datasets, we
can more reliably assess the ability of models to generalise beyond the training dataset.
Furthermore, we can better understand the extent towhich learned features are relevant across
different datasets, which is essential for deploying suchmodels in real-world applications.We
also evaluate the impact of concealing a known region of interest, the lung tissue, to determine
model reliance on irrelevant features. Models which continue to distinguish between classes,
despite the true pathology being hidden, are likely to generalise poorly. We compare the
results of this test against the cross-dataset stability of the models. A visual summary of our
study is shown in Fig. 2. The following subsections detail our data curation efforts, describing
the characteristics of each data source and the justification for our inclusion criteria.

3.1 Datasets

In this study, we consider four distinct datasets, one for training and internal testing. The
protocol for gathering these datasets has been carefully considered, taking into account the
precedence of the source datasets to ensure as little as possible overlap between different
datasets. The composition of each is shown in Fig. 3.

3.1.1 Internal

The covid-xray-5k dataset [18] was used for model training and testing. We refer to this as
the Internal dataset. It combines COVID-19 images from the covid-chestxray-dataset [15]
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Fig. 3 Visualisation of the various data sources used across the curated datasets. The Internal dataset contains
both training and test samples, while External I, II and III are exclusively used for testing the models on
unseen sources

and non-COVID samples from CheXpert [36]. covid-chestxray was one of the first publicly
available COVID-19 datasets and is one of the most commonly used in COVID-19 model
literature. It contains images collected from medical websites and publications, as well as
user-submitted images, resulting in a broad range of image variations. Image formats include
both JPEGandPNG. In contrast, the non-COVIDCheXpert imageswere obtained exclusively
from Stanford Hospital in California, USA, between 2002 and 2017. All CXRs were filtered
to only contain Anterior-Posterior (AP) or Posterior-Anterior (PA) view images. We used
the predefined train and test split for this dataset, which has a 33-67% split. The classes are
heavily imbalanced as highlighted in Fig. 4, with a total 184 COVID-19 images and 5000
negative images. All images are shared as JPEGs.

3.1.2 External I

Since the publication of covid-xray-5k [18], further 152 AP/PACOVID-19 images have been
added to the covid-chestxray-dataset [15]. We combined these newly available images with
normal and pneumoniaCXRs from theBRAX dataset [37] to produce our first test set, External

Fig. 4 Histogram showing the class distribution across the various datasets

123



76760 Multimedia Tools and Applications (2024) 83:76753–76772

dataset I. The BRAX dataset consists of CXRs collected from the the Hospital Israelita Albert
Einstein, Brazil between 2008 and 2017. Imageswere automatically extracted from radiology
reports using theCheXpert [12] label extraction algorithm. The original dataset contains over
40,000 images classified across 14 different findings labels. The authors shared both DICOM
and PNG versions of the images, however we considered only the PNGs for this study. We
randomly sampled 152Normal and 152Pneumonia images from the dataset, ensuring images
were all either PA or AP view.

To prevent potential overlap and duplication of COVID-19 samples between External I
and the Internal datasets, images present in the Internal datasets were carefully removed using
filename filtering. Additionally, we compared the URL sources of images of both datasets
to check for overlap. We observed overlap of sources from radiopaedia.org, sirm.org, euro-
rad.org, rsna.org and sciencedirect.com. All of these sites are composite sources; images are
either collected from journal publications or user-submitted, hailing from countless institu-
tions. As such, these overlaps are less likely to be as severe as initially observed. Furthermore,
17 new data sources are introduced into the External I dataset, thus ensuring new sites are
being evaluated. Despite this, due to the eclectic nature of this data collection, detailed image
meta-data is not always available. The ambiguity of image origins, such as hospital and
patient details, means this dataset cannot be guaranteed to be completely mutually exclusive
of the Internal dataset, therefore we consider this dataset as a weak external validation. To
address the limitation of this dataset, we created an additional two datasets for more realistic
external model evaluations.

3.1.3 External II

For the second external evaluation dataset, we used the SIIM-FIABIO RSNA COVID-19
dataset [38]. This combines images from the BIMCV COVID-19+ dataset [39] with addi-
tional COVID-19 samples from theRSNARICORDdataset [40]. Unlike the previous external
dataset, all images in this datasetwere sourced fromcontrolled, clinical environments.BIMCV
images were obtained from the Valencian Region Medical Image Bank, which includes data
from 11 hospitals throughout the Valencian region of Spain. The RSNA RICORD dataset con-
tains COVID-19 images from medical institutions in Turkey, the USA, Canada and Brazil.
Both datasets provided images as high-resolution DICOM files. The preprocessing steps
applied to the External I DICOM images, were repeated for these images. Using the prede-
fined test set, External II contains 1752 COVID-19 images and 671 non-COVID-19 images.
In contrast to the previous datasets, this dataset contains a vast amount of COVID-19 images
and significantly fewer negative images.

3.1.4 External III

External III is our final external evaluation set and is comprised of images exclusively from
theCOVID-GR dataset [41]. It is one of the onlyCOVID-19 datasets that provides an even dis-
tribution of both COVID-19 positive and negative CXRs collected within the same timeframe
from a single institution. Images were procured from the Hospital Universitario Clinico San
Cecilio, Granada, Spain. It contains 426 positive and 426 negative COVID-19 CXRs, which
are exclusively PA views.

External datasets II and III were shared by medical institutions. As these images come
from a controlled and consistent source, they are likely to better represent data in applied
clinical scenarios, compared to the mass aggregated COVID-19 samples used in Internal and
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Fig. 5 Examples of natural variations in chest x-rays from the BIMCV dataset [39]

External I. As such, the discriminative ability of models on these datasets is of particular
interest.

3.1.5 Processing

As can be seen in Fig. 5, image brightness and contrast can vary greatly between images.
These variations may occur naturally in a dataset, such as the use of different machines
and the quality of the x-ray. These variations, which are irrelevant to the classification target,
introduce noise into the dataset, making it more challenging for amodel to learn the important
features of an image. To create more consistency across the images, we applied histogram
equalisation to all images using the OpenCV image processing library for Python. This
process aims to redistribute the grey levels throughout the image more evenly and improve
image contrast. Crucially, unlike adaptive histogram equalisation techniques, the original
shape of the distribution is kept. This maintains tissue density information, which can be
determined by comparing the intensity of different tissues. We evaluated all models on the
original and the histogram equalised images, then report the results from the best image type
for that architecture. We specify which image types were used for each model in Section 3.2.

Fig. 6 Examples of images used in the black box chest occlusion test. The occluded image aims to conceal all
potential valid lung tissue indicators of COVID-19, while the control image effectively removes some pixel
information, but not necessarily lung tissue
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3.1.6 Occlusion test

Influenced by the analysis produced by Maguolo et al. [33], we introduce a novel occlusion
test (see Fig. 6) to help determine whether models which fail this internal test are more
prone to generalisation failure. Using the test images from Internal, we produced a new
occlusion test set. This was achieved by placing a black box directly over the dark lung tissue,
thus concealing the crucial chest region (shown in Fig. 6). This process should conceal all
pathology features which may be present, but does not rely on expert annotators. As it could
be said that any drop in performance could simply be due to an effective drop in the number
of pixels available for analysis, we also include a control dataset where a random region of
each image is occluded with a black box. We then tested each model on the occluded dataset
(chest and control) to determine whether they could still identify COVID-19. A model which
could still distinguish easily between classes on images where the lung region is occluded is
likely to depend on pathology-irrelevant features, and may be subject to shortcut learning.
Conversely, a model which fails to distinguish between classes after lung occlusion may be
more reliant on relevant features. We quantify this assumption by examining the difference
between the number of accurate predictions made by models on both the lung-occluded
dataset and the control-occluded dataset and comparing this against the standard deviation
of the models when tested on all datasets.

3.1.7 Class distribution

Severe class imbalance, as found in the training data, can lead to unreliable, biased models.
To prevent this behaviour, many COVID-19 publications implemented a variety of class-
balancing techniques to encourage fair learning between classes. In this study, we apply
class weighting to our models, but do not apply class weighting to reproduced models (Dark-
CovidNet and DeepCOVID). We chose this technique as it does not produce augmented
data samples. Without review by a radiologist, techniques which modify images to produce
new samples, such as data augmentation and generative adversarial networks (GANs), may
result in invalid images where important pathological features are obscured or completely
destroyed. Class weighting assigns weights to the model loss function during training, to
encourage it to assign greater importance to the minority class samples. In our class weighted
models, we assigned the negative class a weight of 0.5195 and the COVID-19 class 13.3205
using the following equation:

Wclass = 1

nclass
0.5(ndata)

where nclass is the total number of samples of the class in the dataset and ndata is the total
number of images in the dataset and the specified class weight is denoted as Wclass .

3.1.8 Evaluation

We compare the cross-dataset performance of the models using the area under the receiver
operating characteristic curve (AUC). AUC ranges in values from 0 to 1, where 0.5 is con-
sidered random guessing and 1 indicates a perfect ability to distinguish between classes. In
cross-dataset evaluations, we report the AUC of each dataset, as well as the model stability,
SDall . We quantify model stability as the standard deviation of the model AUC across all
evaluated datasets. Stable models are models which maintain their performance across mul-
tiple datasets and can therefore be said to generalise well, even if their performance on the
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internal dataset is not state of the art. As model stability increases, the standard deviation of
AUC should lower. We also calculate the specificity and precision of models when tuned to
a sensitivity value of 0.98 due to the importance of always identifying positive cases. How-
ever, we only report the specificity and precision on the internal test, as models with little
to no discriminative ability in external tests produce insignificant values when tuned to high
sensitivity thresholds. Confidence intervals (CI) at 0.98 of three model runs are provided on
internal tests.

3.2 Models

We consider four deep learning architectures. These comprise: the novel COVID-19 archi-
tecture DarkCovidNet [11]; DenseNet-121 [42] with three sets of pre-trained weights; a
reproduction of the Deep-COVID ResNet-16 proposed by [18]; and a four-convolutional
layer network (Conv-4) to serve as a comparative baseline.

DenseNets are deep neural networks comprised of convolutional and average pooling lay-
ers. Each layer is connected to all the previous layers, creating a highly dense network. They
have been reported as one of the best architectures for both general chest x-ray classification
[43] and COVID-19 [6]. Due to the popularity of DenseNets, we were able to obtain not only
architecture weights from the popular ImageNet [3] benchmarking dataset, but also novel
COVID-19 weights shared by [24]. We used three variations of DenseNet.

Thefirst variation ofDenseNetwas initialisedwith ImageNetweights.While the ImageNet
dataset does not contain images related to medical imagery, it is well established that fine-
tuning ImageNet model weights on new tasks can produce state-of-the-art performance, even
when fine-tuning with relatively few new images [44]. As such, this approach has been used
extensively in the COVID-19 literature.

Our second variation of DenseNet was based upon the work shared by Wehbe et al.
[24]. Few COVID-19 models were pre-trained on medical images or greyscale datasets.
[24] was one of the few, who used a general chest x-ray dataset, CXR-8 [12], to pre-train
their models. This prior exposure to a single-source CXR dataset may facilitate the learning
of general chest features. The Wehbe models were originally fine-tuned on a vast private
clinical COVID-19 dataset containing over 3000 COVID-19 samples. While this dataset is
not publicly available, by using the shared model weights, we can take advantage of the
additional data. Incorporating model weights which contain COVID-19 information may
encourage the learning of generalisable features, thus producing a better generalising model.
To determine the impact of pre-training on a closely related dataset versus simple exposure
to more data, we trained our own third variation of DenseNet with the same CXR-8 dataset
[12] as used on the Wehbe model [24]. Using the pre-defined dataset train and test split, we
first initialised a DenseNet model with ImageNet weights, then fine-tuned the network on the
CXR-8 dataset. In our initial attempts, DenseNet struggled to converge on the full, multi-class
dataset. Therefore, we simplified the task to binary classification between pneumonia and
normal classes. There was a severe class imbalance present, with more than 60,000 normal
images against a mere 1431 pneumonia. We randomly under-sampled the normal class to
3000 samples and applied histogram equalisation to all images. When fine-tuning, we first
trained only the output layer for 50 epochs, then unfroze all network layers and continued
training for 10 epochs. The model weights were then saved.

All DenseNet-121 models were subsequently fine-tuned on Internal I in a consistent
manner. First, the transfer weights were loaded into the network, and the final layer was
replaced with a single-unit Dense layer. Initial training was achieved by freezing all model
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layers, except the output, and trained for 50 epochs with a learning rate of 0.001, to tune the
classification layer. The model was then fine-tuned by unfreezing all layers and training for
a further 10 epochs and a lower learning rate of 0.0001. The best weights were then saved
and used for evaluation.

Following on from our DenseNet variations, the second architecture we consider is Dark-
CovidNet, proposed by [11]. The authors modified the state-of-the-art DarkNet architecture
[45], to focus on small differences in images, rather than the image as a whole. The authors
argue this modification can allow the model to better recognise subtle pathological features
than typical networks. We used the code shared by the authors to train a DarkCovidNet on
our internal dataset. Unlike the previous models, whose input dimensions were set to the
typical 224x224, DarkCovidNet uses image dimensions of 256x256. We compared the per-
formance of the model using the original images and histogram equalised images, and found
the original images produced slightly better performance. As such, we share the results of
the model trained and tested on the original images. Additionally, given that all other models
in this study were trained on oversampled data or with class weights, we also compared the
performance of this architecturewith oversampling.We observed no significant improvement
in model performance, and therefore used the original model, as shared by the authors.

In their Deep-COVID paper, [18] experimentedwith various architectures, however in this
studywe only evaluate themodel for which they shared code: ResNet-18 [46].We reproduced
their model, transferring weights from ImageNet and then fine-tuned the final output layer of
the network onCOVID-19 data (Internal dataset).We compared the performance of themodel
trained for 100 epochs, as performed in their study, and 50 epochs, finding no significant
difference in performance. Therefore, we report the results of the model trained over 50
epochs for consistency with other models. As performed on DarkCovidNet, we compared
the performance of the model when trained using histogram equalised and original images,
and observed stronger performance using the original images. As such, we report the results
of the original images.

Finally, we introduce a simple deep neural network architecture, similar to LeNet-5 [47]
and AlexNet [48], to serve as a simple baseline model for comparison. It consists of four
convolutional layers with a kernel size of (3, 3), each followed by a max-pooling layer.
These are flattened and followed by two fully connected layers, the final layer outputting the
probability of the image being positive for COVID-19.We used LeakyReLU layer activations
with an alpha value of 0.2. Models were trained for a maximum of 50 epochs with a batch
size of 32.

Models were produced using the Keras framework [49]. An early stopping policy was
included in the Keras models that ended model training if there was no improvement in train-
ing loss for 30 epochs. The policy also restored the best-performing weights from all epochs.
We used Stochastic Gradient Descent (SGD) and cross-entropy loss for model optimisation.

4 Results

In Table 1, we present the internal performance metrics of the six models. DarkCovidNet
achieves outstanding results, demonstrating a perfect ability to distinguish between classes
across all metrics. Most models report excellent AUC scores however, the CXR pre-trained
networks, namely CXR-8 and Wehbe, score significantly lower.

Alarmingly, the CXR-8 model scores the lowest of all, achieving an AUC of 0.629. When
tuned to 98% sensitivity, only DarkCovidNet achieves high specificity and precision scores.
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Table 1 Internal test scores

Model AUC Specificity Precision

DarkCovidNet 1.000 (±0.000) 1.000 (±0.000) 1.000 (±0.000)

Deep-COVID (ResNet-16) 0.989 (±0.005) 0.258 (±0.048) 0.258 (±0.088)

ImageNet (DenseNet-121) 0.946 (±0.000) 0.552 (±0.014) 0.068 (±0.002)

CXR-8 (DenseNet-121) 0.629 (±0.025) 0.086 (±0.014) 0.034 (±0.001)

Wehbe (DenseNet-121) 0.881 (±0.001) 0.154 (±0.003) 0.037 (±0.000)

Conv-4 0.840 (±0.011) 0.135 (±0.013) 0.036 (±0.001)

Specificity and precision are calculated when models have been tuned to 0.98 sensitivity. Scores are averages
of three model runs. Confidence intervals at 95% are provided in parenthesis. The highest metrics overall are
emboldened

The poor precision scores indicate that the models are biased towards the COVID-19 class.
Reviewing these metrics alone, one would conclude that DarkCovidNet is the most reliable
model, and that the CXR-8 pre-trained network is the worst. However, the results of the
cross-dataset evaluation reveal a different story.

Turning to the results of our cross-dataset evaluation, as shown in Table 2, it becomes
clear that the internal scores are not accurately representative of the applied performance of
the models. Highlighted in Fig. 7, the best performing models from the Internal test tend to
suffer the worst performance degradation when tested externally. While generally scoring
lower in internal tests, the CXRpre-trained networks consistently achieve the strongest AUCs
on external datasets, maintaining small standard deviations (SD) of less than 0.1 across all
datasets.

The only exception is on External I, where the ImageNet and Wehbe models report the
highest AUC scores, followed by CXR-8 with a relatively poor AUC of 0.672. While a low
score, it still outperforms the other architectures, and it achieves the second strongest AUCs
on both external II and III, surpassing its internal performance.

Most surprising is the dramatic generalisation failure of DarkCovidNet, which despite
achieving exemplary performance on the internal test, displays little to no ability to distinguish
between classes, with a large AUC SD of 0.232. The external scores are comparable to Conv-
4, our baseline model. Deep-COVID performs slightly better in external tests, indicating
some discriminative ability, however, these scores are still poor and markedly lower than
its internal performance. Overall, these results show that pre-training on a closely related

Table 2 Cross-dataset AUC scores for all evaluated architectures

Model AUC
Int. Ext. I Ext. II Ext. III SDall

DarkCovidNet 1.000 0.553 0.552 0.510 ±0.232

Deep-COVID (ResNet-16) 0.989∗ 0.652 0.677 0.609 ±0.174

ImageNet (DenseNet-121) 0.946 0.718∗ 0.569 0.571 ±0.178

CXR-8 (DenseNet-121) 0.629 0.672 0.764∗ 0.743∗ ±0.063∗
Wehbe (DenseNet-121) 0.881 0.782 0.825 0.772 ±0.050

Conv-4 0.840 0.612 0.547 0.505 ±0.149

SD is the standard deviation of AUC across all datasets. Scores are averages of three model runs. Best
performing model score on each dataset is emboldened, ∗ denotes the second best
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Fig. 7 Bar plot visualising model cross-dataset AUC. Statistically significant predictive ability (0.5) is denoted
by the red dashed line. Black bars visualise the difference between the highest and lowest performing datasets
for each model

task can significantly improve the performance of models on external datasets, even when
fine-tuning on a challenging dataset.

These findings are supported by the results of our occlusion test, as shown in Table 3.
Random occlusion causes a small drop in performance across all models. In contrast, chest
occlusion has a much more varied impact on the different models. Figure 8 clearly illustrates
that CXR pre-trained models experience a significant decrease in performance when the lung
tissue is hidden, with AUCs dropping to values within 0.15 of random guessing (0.5).

The other models generally maintain AUCs around 0.8 and higher, indicating their ability
to distinguish between classes, despite true pathology features being hidden. Interestingly,
ImageNet pre-training reports one of the smallest drops in performance fromControl toChest
occlusion (0.04 AUC), indicating these models rely almost exclusively on features outwith
the lung tissue.

Reliance on features from non-pathology regions appears to align with model stability, as
indicated by the SD of AUC. Models with lower stability performed more poorly on external
datasets, indicating a lack of generalisation capacity. These results suggest that transferring
closely related weights not only improves model generalisation, but may also encourage
models to focus on learning relevant features closer to the pathology features that human

Table 3 Occlusion test scores for
all evaluated architectures

Model AUC
icontrol ichest SDall

DarkCovidNet 0.999 0.842 ±0.232

Deep-COVID (ResNet-16) 0.982 0.910 ±0.174

ImageNet (DenseNet-121) 0.917 0.877 ±0.178

CXR-8 (DenseNet-121) 0.597 0.453 ±0.063

Wehbe (DenseNet-121) 0.864 0.614 ±0.050

Conv-4 0.781 0.761 ±0.149

icontrol refers to the control occluded images, ichest to the chest region
occluded images and SDall as defined in Table 2. Scores are averages of
three model runs
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Fig. 8 Bar plot visualising model performance in occlusion evaluation. Statistically significant predictive
ability of 0.5 AUC is denoted by the red dashed line. Black bars on the Chest occluded results visualise
performance drop fromControl toChest occluded images.Orange bars indicatewhenperformance has dropped
to below 0.5

radiologists utilise. This, in turn, supports the generally held belief that while deep learning
models can perform better on highly specific tasks, humans remain better at generalisation.

Finally, the performance of the pre-trained Wehbe model surpasses all others in our study
however, as it has been exposed to another controlled COVID-19 dataset, any performance
benefits using these weights could be attributed to this additional data. To determine the
impact of the original weights, we compare the original Wehbe model weights as shared
by the authors, against both the CXR-8 model weights and the Wehbe model weights fine-
tuned on the internal dataset. The results are shown in Table 4. Surprisingly, the original
Wehbe performs significantly poorer than our fine-tuned version and only outperforms the
CXR-8 model on the internal test set. However, despite the weaker performance, the original
Wehbe weights exhibit similar cross-dataset stability to the other CXR pre-trained networks.
Combinedwith the previous results, we can infer that network pre-training on a closely related
task can help prevent a model from aggressively turning to easy but irrelevant distinguishing
features in the data. However, as shown by the original Wehbe model weights, this does not
guarantee the model will perform well overall. Exposing these models to more diverse data,
as with our fine-tunedWehbe model, appears to significantly improve model generalisability,
even when the dataset has proven challenging.

In summary, the results lead us to the vital recommendation that computer vision models
intended for medical applications adopt a robust and reproducible approach to assessing
generalisation. These experiments show that performance gains attributed to novel model

Table 4 AUC scores of DenseNet-121 models initialised with different weights

Model AUC
Int. Ext. I Ext. II Ext. III SDall

CXR-8 0.629 0.672 0.764 0.743 ±0.063

Wehbe (Original) 0.691 0.581 0.618 0.637 ±0.046

Wehbe (Fine-Tuned) 0.881 0.782 0.825 0.772 ±0.050

The Original weights are those shared by the authors, whereas the Fine-Tuned weights have been transferred
into a new DenseNet-121 and trained on the internal training set
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architecturesmay actually be enhancing shortcut learning and thus undermining any potential
gains in a general setting.

5 Conclusions

In this paper,we performed a generalisation study on chest x-ray classifiers for the detection of
COVID-19. Since the COVID-19 publication boom, additional clinical datasets have become
publicly available. As such, we were able to thoroughly analyse the applied performance and
generalisation capacity of high-impact and heavily cited methodologies. Specifically, we
evaluated the performance of models when trained on a challenging dataset that faithfully
represents those available during the pandemic, butwere tested on a greater variety of datasets.
This allowed us to establish whether specific techniques could improve CXR model gener-
alisation. We also introduced a chest occlusion evaluation to determine model reliance on
known shortcut features without radiologist annotations.

The results of this study reveal a concerning pattern; that models can achieve state-of-the-
art performance in internal tests but experience severe performance degradation in external
evaluations. Some highly-cited models displayed symptoms of shortcut learning, with dis-
criminative ability on external datasets close to random guessing.We also observed that while
models trained on a closely related task did not always achieve state-of-the-art performance,
they proved to be more stable, performing almost as well on new datasets as they did on their
training distribution. Furthermore, architecture choice apparently had little impact on perfor-
mance, with bespoke COVID-19 architectures generalising as poorly as a relatively simple
CNN. One of the more significant findings to emerge is the marked improvement of shortcut
robustness when implementing specialised CXR pre-training strategies. Furthermore, the
chest occlusion test can share useful insights to model ability when external evaluation data
is unavailable. Our results suggest that models with strong predictive ability in the occlusion
test are likely to produce poorly generalising models. However, the generalisability of these
findings are subject to certain limitations. For instance, due to the limited internal dataset
size, manual generation of occlusion images was feasible. On larger test sets, an automated
process would likely be required. The use of lung segmentation models may produce inaccu-
rate occlusion boxes on heavily diseased CXRs, leading to inaccurate evaluations. Similarly,
due to the shape of the occlusion box, it may also occlude known shortcuts, such as laterality
markers. Finally, our occlusion test can only report on spurious feature reliance outside the
lung tissue region. Non-pathology indicators may still be present in the lung tissue, and this
evaluation can only approximate reliance outside the lung tissue without additional radio-
logical annotations.

We have established concerning issues regarding how deep learning models have been
trained for the detection of COVID-19, and the consequent severe generalisation failure.
Going forward, we must consider how best to approach these challenges beyond COVID-
19 classification to medical image models as a whole. The incorporation of cross-dataset
evaluation into model publications is paramount to address the significant risk of unreliable,
dataset-specific biases and to determine the applied performance of models. In this paper,
we have supplied a protocol for the use of existing datasets such that generalisation testing
is reproducible. Although generalisation testing will likely slow down the development of
exceptional accuracy, it is vital to encourage the adoptionof the latest deep learning techniques
into the medical arena.
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The results of this study indicate that a combination of controlled, clinical and diverse
datasets are necessary for improvingmodel generalisation. However, relatively small samples
of each from closely related tasks can contribute greatly to model stability. Recent works
have proposed novel methods of guiding networks to regions of interest, which may help
mitigate the extent to which models rely on spurious correlations. For example, [50] used
lung segmentation networks to square crop CXRs to the minimal required region, which
helped boost their architecture performance in their internal evaluations.However, the authors
observed severe segmentation failure in severe cases with many lung opacities, which led
to classification failure. Alternatively, [51] incorporated radiologist eye-tracking into their
model, to focus on known regions of interest. Future work must incorporate validation of
these models on external datasets, so that the impact of such features on model generalisation
can be quantified. Achieving reliable learning is foundational for success in this domain, but
progress here will positively impact broader applications.

Further research is required to determine the efficacy of focused network pre-training on
more challenging classification tasks, such as broader chest x-ray classification, as well as
different forms of imagery. Additionally, methods which artificially introduce diversity to
datasets, such as GANs and data augmentation, should be investigated to determine whether
they can effectively enrich limited datasets and improve generalisation when used for fine-
tuning.
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