
Vol.:(0123456789)

Multimedia Tools and Applications
https://doi.org/10.1007/s11042-024-18527-y

1 3

Automated decryption of siri bhoovalaya using cryptography
and natural language processing techniques

Jagadeesh Sai D1

Received: 27 February 2022 / Revised: 4 January 2024 / Accepted: 29 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
"The Siri Bhoovalaya is a seminal work of literature, believed to have been composed
approximately a millennium ago, which encompasses diverse information encrypted using
numerals of the Kannada language—a predominant language of southern India. Currently,
only a portion of this enigmatic text is accessible, and deciphering its content remains
largely a manual endeavor. This article presents a novel model designed to automate the
conversion of these Kannada numerals into phonetic alphabets of the designated language.
Subsequent to this conversion, algorithms rooted in Natural Language Processing (NLP)
techniques are utilized to form coherent words. These algorithms adhere to the linguistic
and grammatical structures of the target language. Through this research, we aim to estab-
lish an initial technical blueprint to shed light on the profound content encapsulated within
this age-old masterpiece."

Keywords  Software environments · Cryptographic algorithms natural · Language
processing · Lexical semantics · Cryptographic primitives

1  Introduction

Siri Bhoovalaya is a renowned multi-lingual literary masterpiece (see [2, 9]) that dates
back approximately a millennium, authored by the Jain monk Muni Kumudendu in Karna-
taka, India. One of its standout features is its unique composition—entirely in the numerals
of the Kannada language. Furthermore, this work is so intricately designed that applying
varied decryption methods unveils texts in different languages.

Each segment of this extensive work is termed a ’Chakra,’ while the method to
decode a chakra is known as a ’Bandha.’ The text consists of an impressive 16,000
chakras, organized into 56 chapters and further grouped into 9 Khandas. Cumulatively,
this amounts to 600,000 shlokas, encompassing roughly 1,400,000 characters. To put
its magnitude into perspective, Siri Bhoovalaya is approximately sixfold the size of

 *	 Jagadeesh Sai D
	 djsai@msrit.edu

1	 Department of Information Science & Engineering, Ramaiah Institute of Technology, Bangalore, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-024-18527-y&domain=pdf

	 Multimedia Tools and Applications

1 3

the epic Indian tale, Mahabharata. It employs intricate patterns such as Chakrabandha,
Hamsabandha, Varapadmabandha, Sagarabandha, Sarasabandha, Kruanchabandha,
Mayurabandha, Ramapabandha, Nakhabandha, among others. Recognizing these pat-
terns is crucial to determine the appropriate decryption technique. The chakras span
diverse fields, from religious doctrines like Jainism, Vedas, Ayurveda, and astrology, to
scientific disciplines including mathematics, physics, chemistry, and astronomy.

Each chakra aligns with the Saangathya metre, a hallmark of Kannada poetry. Spe-
cifically, every chakra presents a 27 × 27 matrix filled with integers, ranging between 1
and 64. Impressively, every integer corresponds to a phonetic alphabet in the Kannada
language. When deciphered, these chakras translate into verses spanning 718 dialects
prevalent across the Indian subcontinent. These dialects are comprised of 18 major lan-
guages, such as Sanskrit, Prakrit, Telugu, Tamil, Pali, Marathi, Apabhramsha, to name a
few, in addition to 700 other minor dialects.

Despite its impressive scope, this vast composition has largely remained obscure,
primarily because its numeric-centric nature makes decryption daunting. Consequently,
there arose a prevailing belief that the original work, along with the supposed five
extant copies, had vanished. This notion persisted until the 1950s when Pundit Yellappa
Shastri unveiled the sole surviving copy. However, this version only encompasses 1,270
chakras from the Prathama Khanda, termed as Mangala Prabhruta. To date, merely
about 8% of its content has been revealed, necessitating the application of diverse cryp-
tographic techniques, including substitution, transposition, and steganography.

The prevailing sentiment among scholars is that Muni Kumudendu didn’t encrypt
this work for the sake of hiding its contents. Instead, he harnessed these methods to
ingeniously embed content from various languages into a singular cipher text.

2 � Cryptographic techniques

2.1 � Mono‑alphabetic substitution cipher

In this technique, there exists a substitution table that gives the mapping from every
plain alphabet to a cipher alphabet. The plain alphabet is encrypted by replacing it with
the cipher alphabet given by the substitution table. Similarly, decryption occurs by
replacing the cipher alphabet with the plain alphabet in accordance with the table [5].

This concept is used in Siri Bhoovalaya where there exists a substitution table for
every dialect. Figure 1 shows the substitution table for Kannada language (c.f [2, 13]).

The substitution table gives the mapping between a phonetic alphabet of the Kannada
language and an integer between 1 and 64.

2.2 � Transposition cipher

A transposition cipher is a encryption method where the cipher text is a permutation of
the plain text and requires to be traversed in a particular order [6, 14].

There are a large number of transposition ciphers, two of which are described below.

Multimedia Tools and Applications	

1 3

2.2.1 � Chakra bandha

This is a deciphering technique introduced by Muni Kumudendu. The bandha gives a
transposition matrix as shown in Fig. 2. The cells of the chakra must be traversed as
illustrated in the figure from cells 1 to 729. Cell 1 is situated at row 1, column 14, cell
2 is situated at row 27, column 15 and so on until cell 729 which is situated at row 27,
column 14.

2.2.2 � Navmaank bandha

Here, a chakra can be divided into a set of 3 × 3 tiles. Each tile is a 9 × 9 matrix of cells
as shown in Fig. 3. Cell traversal is in accordance with the transposition matrix shown
in Fig. 4. The position of the tiles varies with chapters as shown in Fig. 5.

2.3 � Steganographic schemes

Stenography is the technique of concealing one message within another [7, 15, 16]. This
technique is widely applied in Siri Bhoovalaya. For instance, when Chakra 1–1-1 is
deciphered using Chakra Bandha and the transposition table for Kannada language, the
result is a Kannada text. When the first character of each line of Kannada text is assem-
bled, it gives a Gatha in Prakrit. Similarly, when characters in the center of each line of
Kannada text is aggregated, it results in a Sanskrit shloka.

Fig. 1   Substitution table for Kannada language

	 Multimedia Tools and Applications

1 3

The chakra’s exclusive numerical composition and the complex cryptographic tech-
niques re- quired for decryption have warranted the involvement of computers [2]. has
attempted decryption of chakras using Microsoft Small Basic. This program takes the
chakra as input and gives the deciphered characters as output as shown in Fig. 6.

This paper proposes a model to extend the automated decryption of chakra using
bandha as given in [2] by incorporating an automated association of these characters to
form words. This takes a step closer in understanding the shloka originally encrypted.

Fig. 2   Chakra Bandha transposition table

Fig. 3   Chakra divided into 9 tiles

Multimedia Tools and Applications	

1 3

Fig. 4   Navmaank Bandha transposition table

Fig. 5   Tile transposition scheme

Fig. 6   Screen shot of chakra decrypted by [2]

	 Multimedia Tools and Applications

1 3

3 � Model

The proposed model for automated decryption and logical association of alphabets into
words is shown in Fig. 7.

The model consists of the following components:

3.1 � Decryptor

This component of the model takes three inputs:

Fig. 7   Model for automated decryption and alphabet association

Multimedia Tools and Applications	

1 3

3.1.1 � Chakra

The chakra is a 27 × 27 matrix of integers in the range of 1 and 64 (as described in Sec-
tion 1). An instance of chakra is given in Fig. 8.

3.1.2 � Bandha

The bandha is a technique to decrypt a chakra using transposition. There are several band-
has to decrypt a chakra (as discussed in Section 2.2). The algorithm for Chakra Bandha is
given in Algorithm 3.

3.1.3 � Substitution table

The numerals obtained on application of bandha on chakra is replaced with its correspond-
ing alphabets using the substitution table. An instance of this is given in Fig. 1.

In summary, the decryptor applies the input bandha on the input chakra and substitutes
the output numerals with the corresponding alphabets using the input substitution table.
Thus, resulting in a list of decoded alphabets.

3.2 � N‑gram generator

It takes as input the list of decoded alphabets rendered by the decryptor and returns a list of
1-g[1] to 25-g sequences of alphabets.

Fig. 8   Chakra1-1–1

	 Multimedia Tools and Applications

1 3

3.3 � Bag of words generator

This component takes a corpus containing documents relating to a particular language
(language used by substitution table) and returns a dictionary for each word in the cor-
pus with its corresponding frequency of occurrence.

3.4 � Word matcher

This takes the following inputs:

1)	 List of generated sequences from the N-gram generator
2)	 List of words from the bag of words generator
3)	 List of decoded alphabets from the decryptor

These inputs are passed as parameters to the following procedures:

3.4.1 � Finding partial matching words for alphabet sequences. Algorithm 1 requires
the predefined function

(1)	 str_search_list(sequence, word_list) — Takes a string, sequence as a regular expres-
sion. Searches for this regular expression in the list of strings, word_list. Returns a list
of strings in word_list that match sequence. If no matches are found, returns ϕ.

Algorithm 1   Find partial matches for alphabet sequences

Procedure FindPartialMatch(sequence_list,word_list):

partial_matches ← {ϕ };

for sequence in sequence_list do

partial_matches[sequence] ← [ϕ];

results ← str_search_list(sequence,word_list);

if results != ϕ then

partial_matches[sequences] ← results;

end

end

return partial_matches

Multimedia Tools and Applications	

1 3

3.4.2 � Finding exact matching words for alphabet list. Algorithm 2 necessitates
the following predefined functions

(1)	 as.string(char_list) — Returns a string formed from the combination of all the charac-
ters in. char_list

(2)	 myarray.append(myelement) — Appends myelement to the array, myarray.
(3)	 str_search_str(substr,str) — Returns True if string, substr is a substring of string, str.

Else, returns False.

Algorithm 2   Find exact matches for alphabet list

Procedure FindExactMatch(alphabet_list,word_list):

exact_matches ← [ϕ];

all_string ← as.string(alphabet_list);

for word in word_list do

results ← str_search_str(word,all_string);

if results == True then

exact_matches.append(results);

end

end

return exact_matches

The component returns a dictionary of partial matches and a list of exact matches.

3.5 � Consolidator

This is the final component of the model that takes as inputs:

1)	 List of decoded alphabets from the decryptor
2)	 Dictionary of partial matches, and
3)	 List of exact matches

	 Multimedia Tools and Applications

1 3

Returns a sequence of exact matches that substitute the corresponding alphabets and
unmatched alphabets.

4 � Results

The model proposed in this paper has been implemented in R programming language
[8, 10] on a 128 GB RAM, 64-bit Linux system running R version 3.3.1. This imple-
mentation resulted in the generation of text files for the final and intermediate output.
To eliminate the need for si- multaneously viewing these text files, an interactive Shiny
[3, 17] web application was developed and deployed. This application is hosted on shin-
yapps.io [4, 6] and can be accessed at the address: https://​sirib​hoova​lya.​shiny​apps.​io/​
sirib​hoova​lya/.

The functionality of the application is explained as follows:

1)	 A chakra for decryption must be selected in the Input Chakra drop down. The selected
chakra is displayed on the Input tab.

2)	 The language is chosen in the Substitution Table drop down.
3)	 The desired bandha is selected in the Decryption Algorithm drop down.
4)	 Once the chakra, language and bandha are appropriately chosen, the Process button

must be pressed.
5)	 This will result in a Processing pop-up window to be visible in the bottom-left. This

pop-up window will reflect the progress of the processing. The processing can be halted
at any time by selecting the close button in the pop-up window.

6)	 Completion of the processing will display the Output tab that contains the following:

a)	 Decrypted Output pane that shows the list of decoded alphabets (as rendered by the
Decryptor component of the model)

b)	 Exact Matched Predicted words pane that depicts the exact matches (as presented
by the

c)	 Word Matcher component of the model)
d)	 Unigram Predicted words pane that portrays the partial matches (as provided by the

Word Matcher component of the model)
e)	 Processed Output pane that provides the sequence of exact matches and unmatched

alphabets (as given by the Consolidator component of the model)

Figure 9 shows the web application processing the given inputs, while Fig. 10 shows the
output pane of the web application.

5 � Conclusion

This paper presents a comprehensive model which when given a chakra, a bandha and a
substitution table will not only return a list of decrypted alphabets but is also capable of
returning words predicted from these alphabets. The model also provides the words that
partially match the alphabets.

https://siribhoovalya.shinyapps.io/siribhoovalya/
https://siribhoovalya.shinyapps.io/siribhoovalya/

Multimedia Tools and Applications	

1 3

Fig. 9   Web application processing the inputs

Fig. 10   Output pane of web application

Accounting for the fact that Siri Bhoovalaya is a work that encapsulates works from
several fields of study by applying numerous encryption techniques to create a seem-
ingly simple set of 729 numbers per page, the authors share the view of several contem-
poraries [2, 11, 12, 18] in believing that researchers of no particular area of research
will be able to solely unravel the mysteries of this intriguing creation.

This paper makes an initial attempt towards associating alphabets to form words and
portrays both the partially matched words and the exactly matched words with the intention
of providing a common base for linguists, cryptographers, religious experts, etc.to work
towards solving the intricacies of Siri Bhoovalaya.

	 Multimedia Tools and Applications

1 3

6 � Future work

Two primary challenges stand out in the study at hand. First, while the paper outlines two
transposition techniques in Section 2.2, there’s an understanding that Muni Kumudendu
utilized several other, perhaps lesser-known, transposition methods as mentioned in Sec-
tion 1. Comprehensive research is required to pinpoint these techniques and develop a
bespoke approach for their decryption concerning this work.

Second, the challenge of deciphering ancient word associations in Siri Bhoovalaya is
intensified by its age. Given that it was composed roughly a millennium ago, it likely con-
tains archaic terms that have since fallen into obscurity. Compounding this challenge is the
fact that many potentially helpful reference materials, which might contain these obsolete
words, haven’t been digitized. Considering that the chakras decode into 718 dialects, some
with antiquated terms and texts not readily available digitally, creating a pertinent corpus
appears to be a monumental task. Collaborative efforts among experts spanning various
disciplines—from linguistics to computer science—are imperative [19, 20].

The introduced web application represents a pioneering attempt to simplify the deci-
phering process, obviating the need for intricate hardware and software. However, it has
its limitations in terms of the number of chakras, the substitution table, and the decryption
algorithms it currently supports [21, 22]. Efforts are in progress to digitize the available
chakras. Additionally, substitution tables for numerous primary languages are in develop-
ment and will soon be accessible. Notwithstanding, integrating decryption algorithms is
intricate and demands a deeper, more nuanced understanding [23–25].

Appendix 1

Chakra Bandha Transposition algorithm

Algorithm 3 requires the following predefined functions:

1)	 myarray. append(myelement) — Appends myelement to the array, myarray.
2)	 mynumber +  + — Increments the integer or float, mynumber by one.
3)	 mynumber1: mynumber2 — Returns array of all integers between the two integers,

mynumber1 and mynumber2. If the mynumber1 and mynumber2 are floats, then array
of all floats between these two floats will be returned.

4)	 rev(myarray) — Reverses the array, myarray.
5)	 len(myarray) — Returns the number of elements in the array, myarray.

Multimedia Tools and Applications	

1 3

Algorithm 3   Chakra Bandha transposition algorithm

←

← ← []

Procedure ChakraBandha(chakra):

n 1; out ϕ ;

for

col 14 to 25 do out.append(chakra[1,col]);

out.append(GetFirstLower(chakra,col));

←

out.append(GetFirstUpper(chakra,col,n));

out.append(GetJump(chakra,col,n));

n++;

end

out.append(chakra[1,26]);out.append(chakra[27,27]);out.append(chakra[26,1]);

out.append(GetSecDiag(chakra)); out.append(chakra[2,27]);

n 1;

while n < 13 do out.append(GetSwap(chakra,n));

out.append(GetSecondLower(chakra,n));

out.append(GetSecondUpper(chakra,n)); n++;

end

out.append(GetSwap(chakra,n));

out.append(GetSecondLower(chakra,n));

return out

	 Multimedia Tools and Applications

1 3

Algorithm 4   Chakra Bandha trans-
position algorithm (continued)

Function GetFirstLower(chakra,col):

← []

out ϕ ;

←

rows 27:(col+1);

←

cols rev(rows);

←

for i 1 to len(rows) do

out.append(chakra[rows[i],cols[i]]);

end return out

Function GetFirstUpper(chakra,col,n):

← []

out ϕ ;

←

←

rows col:(2*n); cols 1:(col-(2*n-1));

←

for i 1 to len(rows) do

out.append(chakra[rows[i],cols[i]]);

end return out

Function GetJump(chakra,col,n):

← []

out ϕ ;

←

←

rows (2*n+1):2; cols (col-2*n-1):col;

←

for i 1 to len(rows) do

out.append(chakra[rows[i],cols[i]]);

end return out

Function GetSecDiag(chakra):

← []

out ϕ ;

←

Multimedia Tools and Applications	

1 3

Algorithm 4   (continued) rows 27:1;

←

cols rev(rows);

←

for i 1 to len(rows) do

out.append(chakra[rows[i],cols[i]]);

end return out

Function GetSwap(chakra,n):

← []

out ϕ ;

←

rows n:1;

←

cols rev(rows);

←

for i 1 to len(rows) do

out.append(chakra[rows[i],cols[i]]);

end return out

	 Multimedia Tools and Applications

1 3

Algorithm 5   Chakra Bandha
transposition algorithm (con-
tinued)

Function GetSecondLower(chakra):

← []

out ϕ ;

←

←

rows 27:(2*n+1); cols (n+1):(27-n);

←

for i 1 to len(rows) do

out.append(chakra[rows[i],cols[i]]);

end return out

Function Get SecondUpper(chakra):

← []

out ϕ ;

←

rows (2*n+2):(n+2);

←

cols (27-n):27;

←

for i 1 to len(rows) do

out.append(chakra[rows[i],cols[i]]);

end return out

Multimedia Tools and Applications	

1 3

Funding  On Behalf of all authors the corresponding author states that they did not receive any funds for
this project.

Data Availability  All the data is collected from the simulation reports of the software and tools used by the
authors. Authors are working on implementing the same using real world data with appropriate permissions.

Declarations 

Conflict of Interest  The authors declare that we have no conflict of interest.

References

	 1.	 Brown PF, Desouza PV, Mercer RL, Della Pietra VJ, Lai JC (1992) Class-based n-gram models of natural
language. Comput Linguist 18(4):467–479

	 2.	 Jain AK (2013) An inimitable cryptographic creation: Siri Bhoovalaya
	 3.	 Shiny (2017) Shiny. https://​shiny.​rstud​io.​com/
	 4.	 shinyapps.io (2017) shinyapps.io. https://​www.​shiny​apps.​io/
	 5.	 Stallings W (2006) Cryptography and network security: principles and practices, 4th edn. Pearson

Education India, pp 35–49
	 6.	 Stinson DR (2005) Cryptography: theory and practice. Chapman and Hall/CRC​
	 7.	 Stallings W (2007) Network security essentials: applications and standards. Pearson Education India
	 8.	 R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Sta-

tistical Computing, Vienna. https://​www.R-​proje​ct.​org/
	 9.	 You Y et al (2018) A review of cyber security controls from an ICS perspective. In: 2018 international

conference on platform technology and service (PlatCon). IEEE
	10.	 Zhang H, Lin Y, Xiao J (2017) An innovative analying method for the scale of distribution system

security region. In: 2017 IEEE power & energy society general meeting, IEEE
	11.	 Bianchi T, Bioglio V, Magli E (2014) On the security of random linear measurements. In: 2014 IEEE

international conference on acoustics, speech and signal processing (ICASSP). IEEE
	12.	 Do T, Gan L, Nguyen N, Tran T (2012) Fast and efficient compressive sensing using structurally ran-

dom matrices. IEEE Trans Signal Process 60(1):139–154
	13.	 Rao A, Jha B, Kini G (2013) Effect of grammar on security of long passwords. In: Proceedings of the

third ACM conference on data and application security and privacy (CODASPY ’13). ACM, New
York, pp 317–324. https://​doi.​org/​10.​1145/​24353​49.​24353​95

	14.	 Yan Y, Huang J (2017) Cooperative output regulation of discrete-time linear time-delay multi-agent
systems under switching network [J]. Neurocomputing 241(7):108–114

	15.	 Zhou L, Li C (2017) Out sourcing Eigen-decomposition and singular value decomposition of large
matrix to a public cloud. IEEE Access 4:869–879

	16.	 Paillier P (1999) Public-key cryptosystems based on composite degree residuosity classes. In: Stern J
(ed) Advances in cryptology—Eurocrypt. Springer, Berlin, pp 223–238

	17.	 Jha DP, Kohli R, Gupta A (2016) Proposed encryption algorithm for data security using matrix prop-
erties. In: 2016 International conference on innovation and challenges in cyber security (ICICCS-
INBUSH). IEEE

	18.	 Patel B, Desai P, Panchal U (2017) Methods of recommender system: A review. In: 2017 international
conference on innovations in information, embedded and communication systems (ICIIECS). IEEE

	19.	 Thomas A, Sujatha AK (2016) Comparative study of recommender systems. In: 2016 international
conference on circuit, power and computing technologies (ICCPCT). https://​doi.​org/​10.​1109/​iccpct.​
2016.​75303​04

	20.	 Yang S, Chen B (2023) SNIB: improving spike-based machine learning using nonlinear information
bottleneck. IEEE Trans Syst Man Cybern: Syst 53(12):7852–7863. https://​doi.​org/​10.​1109/​TSMC.​
2023.​33003​18

	21.	 Sharma RK (2018) Title of the article. J Indian History Culture 2:11–35
	22.	 Kumar SP, Sethi R eds (2021) Krishna Sobti: A counter archive. Taylor & Francis
	23.	 University of Kerala (2000) International journal of Dravidian linguistics, vol 29. Department of Lin-

guistics, University of Kerala

https://shiny.rstudio.com/
https://www.shinyapps.io/
https://www.r-project.org/
https://doi.org/10.1145/2435349.2435395
https://doi.org/10.1109/iccpct.2016.7530304
https://doi.org/10.1109/iccpct.2016.7530304
https://doi.org/10.1109/TSMC.2023.3300318
https://doi.org/10.1109/TSMC.2023.3300318

	 Multimedia Tools and Applications

1 3

	24.	 Hong Z et al (2021) Challenges and advances in information extraction from scientific literature: a
review. JOM 73(11):3383–3400

	25.	 Khurana D, Koli A, Khatter K et al (2023) Natural language processing: state of the art, current trends
and challenges. Multimed Tools Appl 82:3713–3744. https://​doi.​org/​10.​1007/​s11042-​022-​13428-​46

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1007/s11042-022-13428-46

	Automated decryption of siri bhoovalaya using cryptography and natural language processing techniques
	Abstract
	1 Introduction
	2 Cryptographic techniques
	2.1 Mono-alphabetic substitution cipher
	2.2 Transposition cipher
	2.2.1 Chakra bandha
	2.2.2 Navmaank bandha

	2.3 Steganographic schemes

	3 Model
	3.1 Decryptor
	3.1.1 Chakra
	3.1.2 Bandha
	3.1.3 Substitution table

	3.2 N-gram generator
	3.3 Bag of words generator
	3.4 Word matcher
	3.4.1 Finding partial matching words for alphabet sequences. Algorithm 1 requires the predefined function
	3.4.2 Finding exact matching words for alphabet list. Algorithm 2 necessitates the following predefined functions

	3.5 Consolidator

	4 Results
	5 Conclusion
	6 Future work
	Appendix 1
	Chakra Bandha Transposition algorithm

	References

