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Abstract
Small target polyps are prone to missed detection due to their small coverage area and
little information. To address this issue, a modified PATM-YOLO polyp detection model
based on YOLOv5 is proposed. The model first addresses the issue of missed detection
of small polyps by constructing a detection head for identifying small polyps and using
an improved Phase-Aware Token Mixing Module(PATM) attention module to increase the
network’s attention to small polyps and suppress the model’s focus on non-polyp regions.
Secondly, an improved Adaptively Spatial Feature Fusion(ASFF) module is proposed to
fully utilize multi-scale information, enhancing the network’s feature richness. Finally, by
introducing the Swin Transformer into the network and determining its optimal placement
through experiments, the detection accuracy is maximized without affecting the network’s
performance.After experimental comparison on the constructed dataset and the public dataset
SUN, the proposed PATM-YOLO network model alleviated missed detection in dense and
small polyp images, and achieved an precision of 91.3%, which is 8.5% higher than the
baseline YOLOv5 network model. This indicates that the detection performance of this
model outperforms other classical target detection networks and the original network.
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1 Introduction

Gastric cancer is a prevalent disease that poses a serious threat to human health [1]. According
to the estimates by the International Agency for Research on Cancer (WHO), around 1.09
million individuals across theworld suffered fromgastric cancer in 2020,with 769,000 deaths
attributed to the disease. This ranks gastric cancer as the sixth most prevalent malignancy
and fourth most deadly worldwide. China accounts for 36.42% of new cases and 37.58% of
deaths from gastric cancer worldwide, indicating the urgency of prevention and treatment.
However, gastric cancer is frequently difficult to detect at an early stage due to the lack of
specific symptoms in most gastric cancer patients, which is one of the reasons for the current
low diagnosis and treatment rate of early-stage gastric cancer. In addition, gastric polyps
can cause surface bleeding due to the corrosive effects of gastric acid, leading to symptoms
such as anemia at the later stages. If polyps can be detected at an early stage and undergo
regular follow-up or direct surgical treatment, the survival rate of patients can be significantly
improved. Therefore, effective prevention and treatment measures should be taken to reduce
the harm caused by gastric cancer to humans.

The main method for detecting polyps is gastroscopy screening, which is divided into
traditional manual screening and assisted screening methods based on deep learning technol-
ogy. However, traditional manual screening methods have limitations. Due to the irregular
variations in texture features [2, 3], shape [4, 5], size [5], color [6, 7], and other characteristics
of polyps, manual screening not only time-consuming to identify polyps but also requires
doctors to have relevant knowledge. Moreover, even if the doctor has the appropriate knowl-
edge, factors such as fatigue level [8] and the characteristics of the polyp itself can lead to
experienced experts making misdetection or missed detection of some polyps [9]. Therefore,
the development of computer-aided diagnosis technology to assist doctors in polyp detection
is of great significance.

Due to the significant breakthroughs in GPU computing power, recently, researchers have
devoted a lot of effort to computer vision. Compared to conventional manual screening
methods, deep learning-based approaches can help doctors focus their attention on identifying
suspected polyps, rather than wasting their time on a massive amount of normal images.
Therefore, deep learning technology is now utilized in the field of medical imaging [10,
11], aiming to address the above problems while improving the precision of polyp detection
and reducing the risk of missed diagnosis and misdiagnosis, providing doctors with more
comprehensive, reliable, and efficient diagnostic tools.

In 2020, Deeba et al. [12] introduced a computer-assisted algorithm for the detection of
polyps in both colonoscopy and wireless capsule endoscopy (WCE). This algorithm involved
several key components, including image enhancement, the generation of saliency maps, and
the extraction of histogram of oriented gradients (HOG) features, all of which played a cru-
cial role in the final classification process. By effectively amplifying clinically significant
features and reducing the number of search windows through saliency-based selection, the
algorithm ultimately improved detection efficiency. In 2021, Qadir et al. [13] created a colon
polyp detection system based on F-CNN, which used a two-dimensional Gaussian mask
instead of a binary mask, allowing the proposed system to successfully detect the flat and
small target polyps with blurred boundaries between the background and the polyp, reducing
the rate of missed detection of colon polyps. In 2021, Taş et al. [14] suggested a preprocess-
ing approach that used a super-resolution method based on convolutional neural networks
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(SRCNN) to enhance the resolution of colonoscopy images prior to polyp localization. This
method improved both recall rate and accuracy of the model compared to the low-resolution
case. In 2021, Chen et al. [15] improved the saliency of the polyp area by enhancing the con-
trast of the input image through the differentiation of foreground and background images. The
enhanced data were input into an improved deep residual convolutional neural network and
integrated learningmethod for automatic colon polyp detection. By adding attentionmodules,
the network can focus onuseful feature channels and suppress invalid feature channels, greatly
improving the precision of the detection network. In 2021, Cao et al. [16] proposed a network
for detecting gastric polyps, which incorporated a module that extracted and merged features
and was based on the YOLOv3 network. The network utilized both high-level and low-level
feature maps’ semantic information, resulting in improved detection of small target polyps,
with a recall rate of 86.2%. In 2022, Nisha et al. [17] proposed a dual-path convolutional
neural network (DP-CNN) that used image enhancement techniques, DP-RNN structure,
and the S-shaped classifier to detect polyps, successfully classifying polyps and non-polyp
patches in colonoscopy images and reducing complexity with fewer learnable parameters.
In 2022, Hu et al. [18] proposed a novel approach, NeutSS-PLP, aimed at extracting polyp
regions within colonoscopy images. The method combines neutral uncertainty theory and
saliency detection strategies to enhance the identification accuracy of specular reflections in
colonoscopy images and to perform suppression. In addition, a two-level short connection to
the saliency detection network was introduced to extract multi-level and multi-scale features
for better polyp region extraction.

Several effective strategies have been proposed for conventional polyp detection problem,
which have performed well in terms of accuracy, recall, and feasibility. However, due to the
irregularity, low resolution, and insufficient feature information of polyp targets, conventional
detection models often encounter issues of missed detection or false detection when facing
such small targets. Therefore, this study optimized the YOLOv5model for small polyp target
detection, including the following aspects: firstly, to address the issue of information loss in
small polyp targets, a new network was developed by adding a small target detection head
and utilizing Swin Transformer to enhance the network’s sensitivity to small targets, thereby
improving small polyp detection. Secondly, to fully utilize the information between different
scales, the new network integrated the ASFF module, which can be applied to four detection
heads. Additionally, to weaken the impact of non-detection object areas in the image on the
model results, a more outstanding plug-and-play Res-PATM attention mechanism module
was proposed based on the PATM module. The proposed PATM-YOLO algorithm achieved
91.3% precision and 86.6% recall in the constructed dataset and 95.6% precision and 90.8%
recall in the public polyp dataset SUN, outperforming other comparison algorithms in both
datasets. The presented PATM-YOLO algorithm demonstrates its effectiveness in detecting
small polyps, as indicated by these results.

2 Material andmethods

2.1 Dataset

In this study, the parts of the collected datasets [23, 24] related to polyps were extracted and
combined into a new dataset, in order to test the detection capability of the model with a
richer dataset. The dataset constructed in this study consists of 1759 images, most of which
are small polyps and can support related detection tasks for small polyps. Table 1 displays the
distribution of images used in this study. A total of 1,127 images were used for training the
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Table 1 Details regarding the public datasets employed in this study

Dataset Total Train set Val set Test set Dataset download link

Synthetic Dataset 1759 1127 281 351 https://github.com/jiquan/Dataset-
acess-for-PLOS-ONE

https://datasets.simula.no/hyper-
kvasir/

SUN 49136 31448 7862 9826 http://sundatabase.org

network model, 281 for validation, and 351 for testing the model’s performance. To validate
the model’s effectiveness, experiments were also conducted on the publicly accessible polyp
dataset SUN [25], using the corresponding techniques. SUN is an public dataset for polyp
detection, which contains up to 49,136 photos with polyp information collected from 100
patients and divided into 100 parts according to different patients. To ensure experimental
objectivity, these photos were randomly partitioned into training, validation, and test sets.
Within the training set, 31,448 photos containing polyp information were used for training.
Furthermore, the validation set consisted of 7,862 images, while the remaining 9,826 polyp
photos were allocated to the test set.

2.2 The improved ultra-small target detection head

Due to the high presence of small polyps in the dataset and the significant irregularity in
their shape, texture, and size, YOLOv5 does not perform optimally in detecting these small
polyps. To address this issue, this study constructed a detection head for small targets in the
model’s head to counteract the missed detection that occurs with YOLOv5 in small polyp
detection [19]. This approach enhances the model’s detection accuracy for small polyps
without compromising its ability to detect polyps of other sizes.

2.3 Improved PATM attentionmodule

Currently, attention mechanisms are being widely used in the field of vision. Inspired by this,
this study introduces the PATM attention module, which combines the advantages of smaller
inductive bias and simpler architecture in MLP, to enhance the network model’s attention
to effective targets and suppress attention to non-target areas [20], based on the following
principle:

The PATM attention module characterizes a token as a wave function that possesses phase
and amplitude, defined as follows:

Z̃ p = |Z p| � eiθ p , p = 1, 2, . . . ,m, (1)

Where i represents the imaginary unit that satisfies i2 = −1, |·| represents the absolute
value operator, and � represents the element-wise dot product operator. The amplitude |Z p|
represents the real-valued feature for each token, eiθ p is a periodic function, and θp represents
the phase, corresponding to the current position of the token within the wave period. The
phase term θp affects the summing result of different tokens during aggregation.
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Calculate the corresponding amplitude information Z p and phase information θp based
on the given input features using Formula 2 and Formula 3, respectively.

Z p = Channel − FC(X p,W
c) = WcX p, p = 1, 2, . . . ,m, (2)

θp = �(X p,W
θ ), (3)

Where Wc represents a weight that possesses learnable parameters, and W θ represents
learnable parameters.

As Formula 1 is represented in the complex domain, Formula 4 is needed to expand it and
represent it in terms of real and imaginary parts.

Z̃ p = |Z p| � cosθp + i |Z p| � sinθp, p = 1, 2, . . . ,m, (4)

In the above formula, the real and imaginary parts of complex-valued tokens are signified
by two vectors, correspondingly. Then, different tokens Z̃ p are merged using the token−FC
operation, i.e.:

Õp = Token − FC(Z̃ ,Wt )p =
∑

q

W t
pq � Z̃q , p = 1, 2, . . . ,m, (5)

Where Z̃ = [Z̃1, Z̃2, . . . , Z̃m] represents all the wave-like tokens in one layer. In Formula
5, the interaction between tokens takes into account both their amplitude and phase informa-
tion. The resulting output, Õp , is represented by complex values that combine the features.
Following the common quantum measurement approach that involves projecting a quantum
state, characterized by a complex-valued representation, onto an observable real value. The
real-valued output Op is obtained by weighting and summing the real and imaginary parts
of Õp with parameters. Combined Formula 5, the output Op can be obtained:

Op =
∑

q

W t
pq Zq � cos θq + Wi

pq Zq � sin θq , p = 1, 2, . . . ,m, (6)

WhereWt andWi each representweightswith learnable parameters. In the above formula,
the phase θq dynamically adjusts itself based on the semantic content of the input data. In
addition to the unchanging weights, the phase also modulates the aggregating process of
different tokens.

As shown in Fig. 1, the PATMattentionmodule generates amplitude and phase information
using Formula 2 and the phase estimation function Formula 3, respectively, given the input

Fig. 1 Schematic diagram of the Res-PATM principle
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features. The complex-value representation is obtained by expanding the output as wave-
like tokens using Formula 4 and aggregating them with Formula 6. The output features are
enhanced by transforming them with another Channel-FC to increase the representational
power and fed into the bottleneck residual module to deepen the network, thus improving the
detection capability for small targets. This study refers to the improvedmodule as Res-PATM.

To investigate how the improved PATM attention module can be applied with the bottle-
neck residual module, this study conducted experiments comparing four adding methods as
shown in Fig. 2. These experiments aimed to maximize the detection results of the network
and determine the optimal number of bottleneck residual modules to be used in the PATM
attention module.

The experimental findings presented in Fig. 2 indicate that the optimal performance of the
network is achieved when two bottleneck residual modules are incorporated into the PATM
attention module, allowing it to concentrate on more relevant information.

2.4 Determining the location of swin transformer

The Swin Transformer-v2 architecture benefits from the shift-window operation, which
restricts the attention operation to a window and reduces the computational cost. Addi-
tionally, the Patch Merging operation can increase the receptive field and obtain multi-scale
features [21]. Swin Transformer-v2 architecture makes the amplitude controllable by apply-
ing layer normalization afterwards. Inspired by these methods, this study replaced some of
the original Cross Stage Partial(CSP) modules in YOLOv5 with CSP modules based on the
Swin Transformer-v2 architecture(Swin-CSP).The schematic diagram related to the Swin-
CSP module is shown in Fig. 3.

To further verify the optimal placement of Swin Transformer modules in the network, this
study conducted experimental comparisons of the optimal placement positions, as shown in
Table 2.

The results presented in Table 2 demonstrate that the detection model performs best when
replacing one CSP module in the backbone network and all in the neck, and is able to extract

Fig. 2 Comparison of Experimental Results in Four Different methods
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Fig. 3 Illustrations related to Swin Transformer-v2: (a) The schematic diagram of the Swin Transformer-v2
block; (b) Swin-CSP module

more effective features compared to other network structures. Finally, we extended this to the
PATM-YOLO model. As depicted in Fig. 5, only one CSP module in the head was replaced,
whereas all CSP modules in the neck were replaced.

2.5 The improved ASFFmodule

The initial structure of YOLOv5 is affected by the irregular variations in size and shape
of polyps, resulting in differences in detection difficulty due to polyps of different sizes.
To reduce the detection difficulty fluctuations caused by polyps of different sizes, this study
introduced theASFFmodule [22]. TheASFFmodule’s fundamental concept revolves around
empowering the network to dynamically acquire spatial feature weights across various scales
during fusion, and its implementation can be divided into two parts: feature size normalization
and scale fusion, as follows:

Table 2 Experimental results of
optimal placement positions

Number of replacements P R mAP@0.5
Head Neck

1 0 0.839 0.844 0.895

2 0 0.842 0.846 0.897

4 0 0.809 0.769 0.845

2 2 0.814 0.860 0.883

1 4 0.846 0.857 0.884

2 4 0.841 0.833 0.880
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Unified Feature Size: Due to the various resolutions and channel numbers in the network
header, the feature layerswill eventually need to perform the summation operation as depicted
in Formula 7. Therefore, it is crucial to ensure that each layer has uniform channel numbers
and featuremap size.This canbe achievedby initially utilizing a regular convolutionoperation
to obtain equal channel numbers, and then adjusting the sampling strategy for different levels
of upsampling and downsampling to ensure uniform feature map size. As shown in Fig. 4, the
blue line indicates the downsampling operation and the red line represents the upsampling
operation used to enhance resolution.

As shown in Formula 7, the scale fusion operation is performed on the l-th level as an
example. By dividing the feature layers of different resolutions into levels, the same resolution
feature maps obtained from the other three levels after the feature size unification operation
(i.e., downsampling operation) are weighted and summed to obtain the final features.

yli j = αl
i j ∗ x1→l

i j + βl
i j ∗ x2→l

i j + γ l
i j ∗ x3→l

i j + δli j ∗ x4→l
i j (7)

Where αl
i j , βl

i j , γ l
i j and δli j are the spatial feature fusion weights of their corresponding

featuremaps relative to the featuremapof level l, and theseweights are shared across channels.
It is worth noting thatαl

i j ,β
l
i j , γ

l
i j and δli j are subject to the constraints ofα

l
i j+βl

i j+γ l
i j+δli j =

1 and αl
i j , β

l
i j , γ

l
i j , δ

l
i j ∈ [0, 1] and are defined as follows:

αl
i j = e

λlαi j

e
λlαi j + e

λlβi j + e
λlγi j + e

λlδi j

(8)

Where αl
i j , βl

i j , γ l
i j and δli j are defined by the softmax function with λlαi j ,λ

l
βi j

,λlγi j , and

λlδi j as the control parameters.

Fig. 4 Framework of ASFF module
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Fig. 5 Structural diagram of the PATM-YOLO algorithm

2.6 The PATM-YOLO algorithm

Based on the above enhancements, the present study suggests an improved algorithm Phase-
Aware token Module based YOLOv5(PATM-YOLO) based on YOLOv5, which is dedicated
to enhancing the missed detection of dense, small polyps due to the loss of information on
small polyps, unevenness in polyp texture and polyp size, and the complexity of the detection
background. Figure 5 depicts the structural diagram of the PATM-YOLO algorithm.

3 Results

3.1 Implementation details

3.1.1 Training setting

In this paper, the experimental setup utilizes the Ubuntu 20.04 operating system. The central
processing unit (CPU) employed is a 24 vCPU Intel(R) Xeon(R) Platinum 8255C CPU @
2.50GHz, while the graphics processing unit (GPU) chosen is the RTX 3090 with 24GB
memory capacity. The experimentation environment is configured with Python 3.8.1 script-
ing language, PyTorch 1.10.0 deep learning framework, and CUDA 11.3 GPU acceleration
library.

The key training parameters for the experiments were configured as follows: input image
dimensions were set to 640 by 640 pixels, the initial learning rate was established at 0.01,
learning rate momentum was assigned a value of 0.937, and the weight decay coefficient was
set to 0.0005. The training process spanned 100 epochs with a batch size of 64.

3.1.2 Evaluation metrics

In this research, the effectiveness of pre- and post-improved network models in detecting
both dense and small polyp images using a constructed dataset was assessed under similar
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experimental conditions. The differences in experimental outcomes were compared to assess
the network performance, i.e., the status of missed and false detections. The three main
metrics chosen for this study included precision, recall, and mean average precision (mAP),
which were calculated as follows:

Precision = T P

T P + FP
, (9)

Recall = T P

T P + FN
, (10)

mAP@0.5 =
∑N

i=1 APi
N

, (11)

The formulas presented above use T P to indicate true accurate predictions, FP to indicate
false predictions, and FN to indicate false negative i.e., false predictions,and is frequently
employed for assessing the overall target detection network model’s detection performance.

3.2 Ablation experiment

To further verify the impact of the proposedmodules and optimizations on the detection algo-
rithm in polyp detection tasks, this study conducted a set of ablation experiments. Based on
the YOLOv5s network, this study added the Swin Transformer network to create YOLOv5s-
a, added the ASFFmodule to create YOLOv5s-b, added the PATM attention module to create
YOLOv5s-c, and added the small target detection head to create YOLOv5s-d. The network
with all modules added to the YOLOv5s baseline is referred to as the proposed PATM-YOLO
network. The results of the ablation experiments are shown in Table 3. In comparison to the
YOLOv5 network, the separate addition of each module to the network not only led to a
minimum improvement of 1.8% in precision but also yielded a performance increase of at
least 1.1% in both recall and mAP@0.5. This underscores the feasibility of enhancing the
model.

3.3 Experimental comparison betweenYOLOv5 algorithm and improved algorithms

In this section, the PATM-YOLO algorithm is compared with the YOLOv5 series algorithms.
In order to objectively demonstrate the performance on the dataset, considering all existing
YOLOv5 models, including YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5x, and YOLOv5l.

Table 3 Ablation experiments of PATM-YOLO

ID PATM Small target Swin ASFF P R mAP@0.5
detection head Transformer

YOLOv5s × × × × 0.828 0.833 0.873

YOLOv5s-a × × � × 0.846 0.857 0.884

YOLOv5s-b × × × � 0.872 0.844 0.886

YOLOv5s-c � × × × 0.876 0.858 0.908

YOLOv5s-d × � × × 0.847 0.861 0.886

PATM-YOLO � � � � 0.913 0.866 0.920
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Table 4 Comparison of experimental results between the PATM-YOLO and YOLOv5 series networks

Model Parameters Weights P R mAP@0.5
(Million) (MB)

YOLOv5n 1.8 3.9 0.746 0.792 0.825

YOLOv5s 7.0 14.5 0.828 0.833 0.873

YOLOv5m 20.9 42.2 0.814 0.763 0.828

YOLOv5l 46.1 92.9 0.784 0.798 0.835

YOLOv5x 86.2 173.1 0.809 0.798 0.846

PATM-YOLO 40.9 82.7 0.913 0.866 0.920

Table 4 shows the different performance of PATM-YOLO algorithm and YOLOv5 series
algorithms on the constructed dataset.

Figure 6 displays a comparison of performance parameters between the PATM-YOLO
algorithm and the YOLO series algorithms, revealing that the PATM-YOLO algorithm
exhibits superior precision, recall rate, and mAP@0.5 compared to other models. With ref-
erence to Table 4, it can be inferred that the PATM-YOLO algorithm attains an precision
rate of 91.3%, a recall rate of 86.6%, and an mAP@0.5 of 92% in the detection experiment
of polyp targets when contrasted with the original YOLOv5 series network. This constitutes
an improvement of 8.5%, 3.3%, and 4.7%, respectively, over the YOLOv5s baseline net-
work model. It can be observed that the performance of the PATM-YOLO algorithm on the
constructed dataset exhibits an advantage.

For specific detection tasks involving dense and small targets, the detection performance
of the YOLOv5 and PATM-YOLO network models is shown in Figs. 7 and 8. Figure 7
corresponds to dense polyp images with three targets in the original image, of which the
original network detected two targets but missed one, while the improved PATM-YOLO

Fig. 6 Comparison of different performance parameters between the PATM-YOLO and YOLOv5 series algo-
rithms

123

71783Multimedia Tools and Applications (2024) 83:71773–71788



Fig. 7 Comparison of detection results for dense polyp images: (a) PATM-YOLO; (b) YOLOv5

network detected all polyp targets. For small polyp images in Fig. 8, the original network
exhibited missed detection, while the improved network was able to detect all targets.

3.4 Comparison of the PATM-YOLO algorithmwith other algorithms

To further validate the effectiveness of the PATM-YOLO model, comparative experiments
were conducted with other algorithms under the condition of maintaining consistent config-
uration environments and initial hyperparameters as much as possible.

Table 5 shows the experimental results of thePATM-YOLOalgorithmandother algorithms
on the dataset constructed in this paper. As shown in the table, under the input size of
640*640, the detection performance of the PATM-YOLO algorithm and other algorithms are
outstanding, and are able to achieve better performance that surpasses other algorithms in
polyp detection tasks.

Fig. 8 Comparison of detection results for small polyp images: (a) PATM-YOLO; (b) YOLOv5
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Table 5 Comparison between the
PATM-YOLO algorithm and
other algorithms

Model P R mAP@0.5

YOLOv5s 0.828 0.833 0.873

SSD 0.843 0.867 0.879

YOLOv7 0.904 0.863 0.919

YOLOv8 0.875 0.865 0.865

PATM-YOLO 0.913 0.866 0.920

3.5 Testing of the PATM-YOLO algorithm on the SUN dataset

This section aims to introduce the experiments of the PATM-YOLO algorithm proposed in
this study on the public polyp dataset SUN. Similarly, to ensure the fairness of the polyp
detection experiments, the experiment is conducted using similar parameter settings as the
previous experiments.

Figure 9 shows the training process and validation results of YOLOv5, YOLOv7,
YOLOv8, and PATM-YOLO. As shown in the figure, the red line representing YOLOv8
has lower recall, precision, and mAP@0.5 compared to the other three detection algorithms.
The proposed PATM-YOLO algorithm can achieve higher precision and recall in a shorter
time compared to the baseline YOLOv5 network. Furthermore, although the training process

Fig. 9 The validation results of the model training: (a) mAP@0.5; (b) Recall; (C) Precision
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Table 6 The comparison results
between PATM-YOLO and other
algorithms on the SUN dataset

Model P R mAP@0.5

YOLOv3-CSP [26] 0.953 0.750 0.844

YOLOv4-CSP [26] 0.928 0.799 0.974

YOLOv3 [26] 0.958 0.808 0.988

YOLOv4 [26] 0.930 0.802 0.979

YOLOv5-ABS [27] 0.934 0.814 0.922

YOLOv5 0.941 0.888 0.943

YOLOv7 0.952 0.900 0.946

YOLOv8 0.914 0.833 0.924

PATM-YOLO 0.956 0.908 0.961

shows that PATM-YOLO and YOLOv7 have similar precision and recall, the PATM-YOLO
algorithm actually outperforms YOLOv7 in the test set. When Table 6 is integrated into the
analysis, it can be observed that the PATM-YOLO algorithm on the SUN dataset shows an
increase of 0.4% in precision and 0.8% in recall.

It can be observed from Table 6 that the PATM-YOLO algorithm outperformed the detec-
tion performance in the public dataset SUN by a significant margin in terms of recall and was
more suitable for the polyp detection task compared to other detection networks [26, 27].

4 Conclusions

The study proposes a newmethod for detecting small polyps in images, called PATM-YOLO.
The proposed method addresses the issue of missed detection of small polyps. In terms
of network architecture, a detection head is firstly constructed for detecting small targets,
followed by an attention mechanism to obtain richer information and limit the influence of
background areas in the image on the target. Secondly, the Swin Transformer structure is
employed to augment the network’s feature extraction capacity. Finally, the ASFF module is
incorporated into the network to enhance the integration of multi-scale features and enrich
the network’s feature diversity. The PATM-YOLO algorithm achieved better performance
than other YOLOv5 series algorithms, with an precision of 91.3%, a recall rate of 86.6%,
and an mAP@0.5 of 92% on the constructed dataset. In addition, the algorithm also achieved
an precision of 95.6% and a recall rate of 90.8% on the public SUN dataset, making it more
suitable for polyp detection tasks. The study shows that PATM-YOLO algorithm can improve
the detection performance of polyps. In addressing the computational requirements, there is
a need for further improvement in the PATM-YOLO algorithm. Enhancing the algorithm to
reduce computational costs whilemaintaining detection accuracy and improving its detection
performance to facilitate deployment on resource-constrained devices will be a focal point
of our future work.
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