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Abstract
Considering the noise impact in the bearing operating environment and the time-consum-
ing and non-universal design of traditional diagnostic algorithms, this paper proposes a 
new model for rolling bearing fault diagnosis, which uses convolutional pooling group 
(CPG) to extract features from data, At the same time, expanding the dual convolutional 
kernel to obtain a larger receptive field obtained the WCPGCNN (A CPG Convolutional 
Neural Network with Wide Convolutional Kernel as the First Lay) model based on the 
CPG network architecture. Firstly, the fault features of the input signal are automati-
cally extracted through four convolutional pooling groups; Next, fault features are further 
extracted using the fully connected layer, and finally input into the Softmax layer for fault 
identification. By utilizing algorithms such as Adam, dropout, and batch normalization, 
the model performs well in terms of accuracy, noise resistance, and timeliness, while also 
possessing good cross dataset high generalization ability. This article uses the rolling bear-
ing fault standard data from Case Western Reserve University (CWRU) and the American 
Society for Mechanical Fault Prevention Technology (MFPT), and verifies through multi-
ple controlled experiments that the model established in this article has high accuracy and 
good generalization characteristics.
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1 Introduction

With the continuous development of modern science and technology, rotating machinery 
is also constantly moving towards intelligence. Rolling bearings are known as "industrial 
joints" and are widely used in various fields. Due to the significant impact of the nonlin-
ear characteristics of bearings on the vibration characteristics of rotor systems [1, 2], in 
industrial sites, in order to identify the source of faults before they occur, real-time moni-
toring of the vibration generated by bearings during machine operation is usually carried 
out. Especially in harsh working environments and unstable conditions, it is easy to cause 
rolling bearings to malfunction, and it is even more necessary to grasp the health status of 
the bearings.

However, in actual operation, the failure of rolling bearings may occur due to various 
reasons, such as peeling, burns, crack defects, cage damage, scratches, rust and corrosion, 
etc. Compared to other mechanical components, rolling bearings have one of the most 
prominent characteristics, which is their large discrete lifespan. Even if the same process-
ing equipment, process, and materials are used, and the same worker processes the same 
batch of rolling bearings, their lifespan also varies greatly. Rolling bearings are affected 
by high temperature, high pressure, high noise, humid air, corrosive gases, and dust during 
operation, which increases the uncertainty of their lifespan [3–5]. When the failure of roll-
ing bearings causes mechanical equipment to stop working, it can cause economic losses in 
mild cases, catastrophic accidents in severe cases, and even threaten the safety of citizens’ 
lives [6, 7]. Therefore, the fault diagnosis technology of rolling bearings is of great signifi-
cance in the transformation and upgrading process of the manufacturing industry.

At present, there are endless methods for fault diagnosis, and bearing fault diagnosis 
has shifted from the initial "seeing, touching, and listening" to more advanced methods 
such as machine learning and deep learning. Bearing fault diagnosis can be divided into 
signal feature extraction and algorithm diagnosis [8], and the current popular signal feature 
extraction methods can be roughly divided into three stages. The first stage is the tradi-
tional signal analysis method, where the signals collected by sensors are often mixed with 
useless noise signals, which can lead to non-standard measured data. So, it is necessary to 
find a method to extract useful features inherent in bearings. The classic traditional signal 
analysis methods include Fourier transform [9], wavelet transform [10], empirical mode 
decomposition [11], singular value decomposition [12], etc. The shortcomings of these 
methods are that subjective factors have a significant impact on the diagnostic results and 
the accuracy of classification is not high. The second stage is that modern methods mainly 
revolve around machine learning, using methods such as statistical analysis or correlation 
analysis to achieve accurate fault identification. For example, k-nearest neighbor (KNN) 
[13], artificial neural network (ANN) [14], variational mode decomposition (VMD) [15], 
support vector machine (SVM) [16] can be used for classification. In recent years, Han 
et al. [17] proposed a freely switchable CNN-SVM system, which solves the problem of 
complex model training with small sample data. At the same time, the system has advan-
tages such as low time consumption, high accuracy, and strong generalization ability. Sinit-
sin et al. [18] established a new hybrid CNN-MLP model diagnostic method that combines 
mixed inputs for rolling bearing diagnosis.

The third stage is achieved through deep learning, which uses its algorithm to identify 
and classify bearings, reads fault features from the original signal or signals, and trains the 
deep network model to complete end-to-end direct diagnosis. This method has less depend-
ence on human experience knowledge, higher diagnostic efficiency, more accurate results, 
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and is more conducive to real-time detection. In recent years, deep learning based meth-
ods with automatic feature learning capabilities have received increasing attention, such as 
deep belief networks (DBN) [19], deep residual network (DRL) [20], convolutional neu-
ral networks (CNN) [21], and so on. Oh et  al. [22] used DBN and vibration imaging to 
classify different faults in rotor systems. Abid et al. [23] constructed SAE using extracted 
multi domain features of vibration signals to diagnose bearing faults. Long and Short Term 
Memory (LSTM) can improve the long-term dependency problem in traditional Recurrent 
Neural Networks (RNNs), but its training efficiency is reduced and the calculation time is 
long. The Khoram and Khalooei [24] LSTM models replace the RNN model for fault diag-
nosis, solving the problem of RNN being unable to obtain information from a long time 
ago, thereby improving the performance and classification accuracy of the model. In order 
to address this drawback of the RNN model, An et al. [25] proposed a new RNN model 
that can ignore the influence of different rotational speeds. In this process, the LSTM 
model was used to compensate for the shortcomings in the RNN model, thereby improv-
ing the performance of the model. In order to solve the problem of imbalanced data not 
meeting the training requirements of intelligent networks, Peng et al. [26] proposed a new 
imbalanced fault diagnosis framework based on generative adversarial networks (GAN), 
and combined Wasserstein loss with hierarchical feature matching loss to achieve higher 
classification accuracy with fewer data samples. In order to improve the performance 
of fault diagnosis under imbalanced data, Liu et  al. [27] proposed a new data synthesis 
method based on generative adversarial networks (GAN) and designed a new generator 
objective function, which has shown great potential in imbalanced fault diagnosis. Due to 
the difficulty in determining the parameters of the GAN model, which makes it difficult 
for the model to converge, Liu et al. [28] embedded self-correction in the generator of the 
GAN, enabling the generator to update parameters simultaneously based on the input and 
feedback of the discriminator, thus solving the difficulty of the GAN model convergence. 
The GAN model has advantages in data preprocessing and effectively solves the problem 
of model training for imbalanced data. However, it is difficult to achieve good synchroniza-
tion between the generator and discriminator of the GAN model, which makes it difficult 
for the model to converge. Yang et al. [29] proposed a transformer neural network bearing 
fault diagnosis method based on attention mechanism. By segmenting the original data, 
linearly encoding and positional encoding the subsequences, and feeding the encoded sub-
sequences back to the Transformer for feature extraction, fault recognition is achieved. The 
Transformer neural network has achieved excellent results in feature extraction, and self-
attention can generate more explanatory models. However, the computational complexity 
and efficiency of Transformer neural networks are too high, which also makes it temporar-
ily unable to replace mainstream deep learning algorithms.

For Convolutional Neural Networks (CNN), as one of the representative algorithms of 
deep learning, it has the characteristic of “end-to-end” and can directly read the original 
vibration signal. It also has multiple functions such as feature extraction and classifier clas-
sification. This algorithm was first used to solve problems such as speech recognition [30], 
medical imaging [31], and computer vision [32]. Considering the characteristics of CNN 
models, many scholars have attempted to use CNN to solve bearing failure problems and 
have achieved certain results. Janssens et al. [33] directly used vibration signals as inputs to 
the network, maximizing the preservation of signal data features, reducing human interven-
tion, and reducing the difficulty and cumbersome steps in feature extraction. This model 
only has one convolutional layer, one fully connected layer, and one Softmax layer, and can 
only distinguish four types. Gültekin et al. [34] established a convolutional neural network 
bearing fault diagnosis model based on time segmented Fourier synchronous squeezing 
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transform, and selected the CNN model with the best parameters to evaluate the fault clas-
sification ability. Zhang et al. [35, 36] established classic network models such as WDCNN 
and TIDCNN for time-series vibration signals, and conducted detailed research on the rec-
ognition performance in environments such as variable loads and noise. Wang et al. [37] 
improved the multi-scale convolutional neural network bearing fault diagnosis model by 
using the reconstructed signal of the optimized VMD decomposition mode component 
as input to the CNN to obtain the fault diagnosis model. Levent et al. [38] constructed a 
shallow convolutional neural network model consisting of three convolutional layers and 
one fully connected layer to identify and classify bearing faults, and verified the effective-
ness and feasibility of this model structure. Due to inaccurate classification based on arti-
ficial experience, Gao et  al. [39] replaced traditional momentum in CNN with Nesterov 
momentum, improving the accuracy of fault identification. In order to adapt to different 
signal features, Wang et al. [40] used particle swarm optimization to determine the param-
eters of convolutional neural networks, and used t-distribution random neighbor embed-
ding (t-SNE) to visualize the hierarchical feature learning process, achieving good results. 
In order to overcome the limitation of having too many training parameters in CNN, Xu 
et al. [41] constructed a deep convolutional neural network architecture with fewer train-
ing parameters using a proportional exponential linear unit activation function and a global 
mean pool. Zhang et al. [42] designed a multi-scale full spectrum CNN (MH-CNN) that 
maps time-domain signals to the time–frequency plane using continuous wavelet transform 
to fully reflect the complex information contained in the signal. Then, two-dimensional 
multi-scale feature fusion is introduced to extract features at different scales, which can 
consider both global and local information. Liu et al. [43] utilized multi-sensor data fusion 
technology to handle complex conditions in fault diagnosis and proposed an integrated 
convolutional neural network model for bearing fault diagnosis to reduce information loss 
during the fusion process. Jin et al. [44] proposed a new intelligent fault diagnosis method 
based on convolutional neural networks and bidirectional short-term memory networks to 
address the difficulties of traditional rolling bearing fault diagnosis methods in noisy and 
variable load environments.

Although the neural network models mentioned above have achieved some good results, 
they have not taken into account the impact of noise. Once the noise signal is integrated, 
the bearing vibration signal will become unstable, leading to diagnostic errors. At the same 
time, they cannot comprehensively consider the characteristics of rolling bearing fault data, 
and only a single dataset model is used for diagnosis. Therefore, it is necessary to establish 
a diagnostic model with high accuracy and generalization features. Therefore, this article 
proposes a new convolutional neural network model WCPGCNN (ACPG Convolutional 
Neural Network with Wide Convolutional Kernel as the First Lay). The main contribu-
tions of this article are: (1)This article proposes a new model for fault diagnosis of rolling 
bearings—using convolutional pooling group (CPG) for feature extraction of data, while 
expanding the double-layer convolutional kernel to obtain a larger receptive field. A wide 
convolutional kernel convolutional neural network WCPGCNN model based on CPG net-
work architecture is obtained, which has multiple layers and fewer parameters, and can 
effectively extract short-term features, Has excellent ability to suppress overfitting and non-
linear expression. (2) Considering the actual noise environment in industrial scenarios, this 
model has excellent accuracy and anti-interference ability. (3) On the basis of establishing 
the model, the impact of different batch sizes, sample numbers, and iteration times on the 
accuracy of the model under the same dataset was studied, as well as the diagnostic per-
formance of different models under the same dataset and multiple data types. A T-SNE 
dimensionality reduction flowchart was drawn. (4) The model proposed in this article has 
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strong generalization and adaptability. In the cross load test, there is still a high classifica-
tion accuracy.

This article is divided into five parts. After the introduction, the second section intro-
duces the parameter selection of each layer of convolutional neural networks. The third 
section elaborates on the process of building a diagnostic model in detail. In the fourth sec-
tion, the model constructed in the third section was used to conduct a control experiment 
with multiple sets of different variables. The fifth section provides the conclusion.

2  Theoretical background

2.1  Convolutional layer

In convolutional neural networks, the role of convolutional layers is to extract input fea-
tures and generate corresponding features. The most important feature of convolutional 
layers is weight sharing. The one-dimensional convolutional layer operation formula is as 
follows [45].

where, k1(l) is the feature extracted from the l-th convolutional kernel, wl and bl are the 
weights and deviations of the l-th convolutional kernel rx represents one-dimensional input, 
m represents the number of data points in rx . Similarly, the two-dimensional convolution 
operation is shown in Eq. 2.

where, k2(l) is the feature extracted from the l-th convolutional kernel, rx,y represents 2D 
input, m and n respectively represents the number of data points in channels x and y in rx,y.

2.2  Activation layer

In the forward propagation process of convolutional neural networks, the activation layer is 
usually added after the convolutional layer, and the output of the convolutional layer is sub-
jected to nonlinear transformation. The function of the activation layer is to map the linear 
output of the convolution operation to another space, where the linear separability of fea-
tures is enhanced. In multilayer neural networks, there is a functional relationship between 
the input and output of each layer, which is called the activation function, also known as 
the activation function.

The commonly used activation function in neural networks include Sigmaid function, 
hyperbolic Tangent function Tanh and modified linear unit ReLU (Rectified Linear Unit), 
because the output is bounded, it is easy to use as input for the next layer. In this paper, 
the linear rectification function ReLU is used as the activation function of the convolu-
tional neural network, which can not only avoid the gradient dispersion phenomenon, but 
also accelerate the convergence of CNN. The mathematical expression of ReLU activation 
function is shown in Eq. (3), and the curve is shown in Fig. 1 [46, 47].

(1)k1(l) =

m∑

x=1

wl
x
rx+b

l , l = 1, 2,⋯ , n

(2)k2(l) =

m∑

x=1

n∑

y=1

wl
x,y
rx,y+b

l , l = 1, 2,⋯ , n
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where, xl(i,j) represents the j-th feature value in the i-th feature map of the l-th convolutional 
layer, dl(i,j) is the activation value obtained by the activation function of xl(i,j).

2.3  Pooling layer

The pooling layer is a down sampling operation. The main purpose is to reduce the param-
eters of the neural network. Pooling layer is usually added after the activation layer. It reduces 
the amount of calculation by compressing feature dimensions and reducing network param-
eters, to some extent, it prevents overfitting, and enables the model to extract features in a 
larger range. The model constructed in this article will adopt Max Pooling operation, which 
can obtain position independent feature values in the perceptual domain. The mathematical 
expression for the maximum pooling operation is shown in Eq. (4) [36].

where, xl(i,j) represents the activation value of the t-th neuron in the i-th feature map of the 
l-th layer.

2.4  Fully connected layer

The function of the fully connected layer is to recognize and classify the features extracted at 
the filtering level. Mainly, the output features obtained from the last pooling layer are spread 
out into one-dimensional feature vectors, and then the features are extracted and classified, 
usually combined with Softmax classification networks [48].

(3)al(i,j) = ReLU
(
xl(i.j)

)
= max(0, xl(i.j))

(4)yl(i,j) = max
{
xl(i,j)

}

(5)yl+1(j) =
∑n

i=1
wl
ij
xl(i) + bl

j

Fig. 1  ReLU activation function
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where, xl(i) represents the output value of layer l; wl
ij
 is the weight of the i-th neuron in layer 

l and the j-th neuron in layer l + 1; bl
j
 is the bias of all neurons in layer l towards the j-th 

neuron in layer l + 1; yl+1(j) is the output of the j-th neuron in the l + 1 layer.
Softmax classifier is a common multi class classification algorithm widely used in deep 

learning. It is widely used in fields such as image recognition, natural language processing, 
and speech recognition. Softmax classifier is a multi class classification algorithm. Its goal 
is to divide an input vector into multiple different categories. In the field of deep learn-
ing, Softmax classifiers are usually used in the output layer to divide the feature vectors of 
the previous layer into probability distributions corresponding to the target category. The 
meaning of Softmax is no longer to uniquely determine a certain maximum value, but to 
assign a probability value to each output classification result, representing the likelihood of 
belonging to each category. For each element zi We exponentiate it exp(zi ), and then sum 
all elements: sum(exp (zi) ) to obtain the denominator result. Next, we can divide the above 
two results to obtain the expression of the Softmax Eq. (6):

where zi is the inactive value of the i-th neuron in the output layer; C is the number of 
categories that need to be classified; p(x)i is the probability output of the i-th neuron in the 
output layer.

2.5  Loss function

The output value of an input signal on CNN should be consistent with its target value. The 
function to evaluate this consistency is called the Objective Function, or loss function. This 
paper uses the cross entropy function as CNN’s loss function to measure the difference 
between the output probability distribution of the Softmax function and the probability dis-
tribution of the sample category. The mathematical expression of cross entropy loss func-
tion is shown in Eq. (7) [49].

where m is the size of the input sample batch (mini batch); p j

k
 represents the true classifi-

cation results of the sample; q j

k
 represents the Softmax output classification result of the 

sample.

2.6  Batch normalization layer and dropout layer

The BN layer mainly performs batch normalization processing. If the distribution of 
training data and test data is consistent, the generalization ability of the network will be 
greatly reduced. The gradient of each batch of training data is different, and the network 
will learn to adapt to different distributions in each iteration, which will greatly reduce 
the training speed of the network [50]. So the introduction of BN layer is to acceler-
ate convergence speed and solve the problem of data distribution during the training 
process. Currently, the dropout layer is only used for the final fully connected layer. 

(6)p(x)i =
eZi

∑C

k=1
eZk

, i = 1, 2,… , C

(7)L = −
1

m

∑m

k=1

∑

j

p
j

k
log q

j

k
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Temporarily discarding some data can effectively alleviate the occurrence of overfitting, 
reduce the complex coadaptation relationship between neurons, and achieve the regu-
larization effect to a certain extent.

2.7  Adam Optimization Algorithm

After calculating the derivatives of the loss function with respect to variables and 
parameters in each layer, optimization algorithms are needed to update the weights 
and biases of the convolutional layer and fully connected layer, repeatedly updating 
to reduce the value of the loss function until the value of the loss function no longer 
changes or the number of iterations reaches the set value. In the training process of shal-
low models, SGD algorithm is often used as the optimization algorithm for model train-
ing due to the small number of network layers, parameters, and hyperparameters. This 
can converge to the global optimum with fewer iterations.

The CNN model proposed in this article belongs to a deep level model, and if opti-
mized using the SDG algorithm, the result is likely to be a local optimal solution. The 
Adam algorithm can not only accelerate the convergence of the model, but also adap-
tively adjust the learning rate of each parameter. Therefore, choosing Adam algorithm 
as the optimization algorithm for the deep CNN model proposed in this article can 
effectively solve the problem of parameter optimization in the deep model. The Adam 
algorithm flowchart is shown in Fig. 2.

Fig. 2  Adam Algorithm Process
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3  The proposed method and the data used for experiment

3.1  WCPGCNN model modeling

Inspired by VGGnet [51], multiple convolutional and pooling layers were used to form a 
Convolutional Pooling Group (GPG). Each GPG contains two convolutional layers, one 
pooling layer, and one Dropout layer. In addition, the small core of the first layer is prone 
to interference from high-frequency noise commonly found in industrial environments. 
Therefore, in order to capture useful information in the low-frequency frequency range of 
vibration signals, we first use wide kernels to extract features, and then use continuous 
small kernels to obtain better feature representations. Therefore, a convolutional neural net-
work with a wide convolutional kernel as the first layer composed of GPG is proposed. The 
network model of WCPGCNN (A CPG Revolution Neural Network with Wide Revolution 
Kernel as the First Lay). The proposed WCPGCNN method is shown in Fig. 3 As shown 
in the figure, it is divided into three parts, namely data preprocessing, model training, and 
result analysis.

When performing data preprocessing, first locate the file with the corresponding health 
status; Next, label these data; Finally, these data are proportionally divided into training 
sets, validation sets, and test sets, where the training set data is enhanced using the dataset.

When conducting model training, first initialize the parameters of the WCPGCNN 
model; Secondly, enable input data to enter the network for forward propagation; Next, 
update the model parameters using backpropagation of model errors; Finally, use the vali-
dation set to verify the effectiveness of this training session and output the training results 
of this iteration. Repeat this process until the set number of iterations is reached.

When conducting model testing, input the test set into the trained WCPGCNN model 
and output the test results.

The WCPGCNN model constructed in this article takes the raw fault signals of CWRU 
and MFPT as inputs. Firstly, the fault features of the input signal are automatically extracted 
through four convolutional pooling groups; Next, further extract fault features using the 
fully connected layer and input them into the Softmax layer; Finally, fault identification is 
performed in the Softmax classifier. During the training process, the cross entropy function 
is selected as the loss function of the WCPGCNN model to measure the difference between 
the output probability distribution of the Softmax function and the probability distribution 
of the sample category. The Adam algorithm is used as the optimizer of the network, and 
the learning rate is set to 0.002.

The schematic diagram of the WGPGCNN model structure is shown in Fig. 4, with the 
following characteristics.

a. WGPGCNN is composed of multiple convolutional pooling groups, which can achieve 
a larger Receptive field with fewer parameters. This not only increases the depth of the 
network, improves the expression ability of the network, but also effectively prevents 
the occurrence of overfitting.

b. The multi convolutional pooling group network model structure consists of four CPGs, 
each containing two convolutional layers and one maximum pooling layer. Since there 
are no parameters in the Global Average Pooling (GAP) layer and the data can be flat-
tened, in order to reduce the number of parameters in the network structure, the GAP 
layer is used instead of the three full connection layers for flattening, which can effec-
tively avoid overfitting of the model.
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c. The first convolutional layer uses a 64× 1 wide convolutional kernel, which can more 
effectively extract short-term features and suppress high-frequency noise, helping to 
obtain a good representation of input signals and improving network performance.

d. In addition to the first and second convolution layers of the entire network, the rest of 
the convolution layers use 2 × 1 small convolution cores. With smaller convolution cores 
and deeper network layer structure, larger Receptive field can be obtained, and at the 
same time, the nonlinear expression ability and recognition ability of the model can be 
increased.
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Fig. 3  WCPGCNN overall model method



71127Multimedia Tools and Applications (2024) 83:71117–71149 

1 3

3.2  Configuration

In Section  3.1, the main structure of WCPGCNN is introduced, and this section will 
design reasonable parameters for this model. The design core of convolutional neural 
networks is the receptive field, which is the perceptual range of a neuron in the lower 
layer of the network. In order to enable the network to learn more features, Using 
T ≤ R0 ≤ L as the design criterion, where, R0 represents the receptive field of the last 
pooling layer neuron in the input signal; T represents the number of data points recorded 
by the accelerometer after one revolution of the bearing, and L represents the length of 
the input signal.

The neurons in the last pooling layer, Rl in the receptive field of layer l , and Rl−1 in the 
receptive field of layer l − 1 , are shown in Eq. (8).

where, S(l)and W (l) represent the step size and kernel width of the l-th convolutional layer; 
P(l) represents the size of the pooling operation for the l th pooling layer.

Due to the particularity of the WCPGCNN model, when l>1, given S(l)=1, W (l)=1, and 
P(l) = 2. So, Eq. (8) can be written as Eq. (9):

When l=n , R(n)=1.Among them, n is the number of convolutional layers in the network, 
and there are 8 convolutional layers in the WCPGCNN network model. So, R(8) =1 and 
taken into Eq.  (9), we obtain R(1)=128. By combining Eq.  (8), the receptive field of the 
neurons in the last pooling layer on the input signal can be obtained, as shown in Eq. (10).

(8)R(l−1) = S (l)
(
P (l)R (l) − 1

)
+W (l)

(9)R(l−1) = 2R(l)
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Due to T ≤ R 0 ≤ L, and considering that S (1) must be divisible by l , the relationship 
used to constrain S (1) can be obtained, as shown in Eqs. 11 and 12.

The input signal length of the WCPGCNN model constructed in this article is L = 2048, 
so the period T≈ 400. So only when the step size of the first convolutional layer is 2 or 4, 
can the model parameters of WLGCNN meet the design requirements. Therefore, in this 
article, the step size of the first convolutional layer is set to 4, as this can shorten the diag-
nostic time and increase efficiency. The specific model parameters are shown in Table 1.

The parameter settings of the WGPGCNN model are shown in Table 1. The input of 
the model is the frequency domain signal of 2048× 1. The relevant hyperparameter of the 
model are set as follows through the test:

(1) Using the Adam optimizer, the learning rate is 0.0001.
(2) The cross entropy function is used as the loss function of the network.
(3) The pooling layer selects the maximum pooling operation.
(4) All activation function used by hidden layers are ReLU functions.
(5) The dropout rate of all dropout layers is set to 0.3.

The model proposed in this article has strong feature extraction and classification capa-
bilities, achieving adaptive data-driven fault diagnosis. In the diagnosis process, it not only 
greatly reduces the impact of intermediate human intervention on data, but also greatly 
reduces the dependence on expert experience. The workflow of this article is shown in the 
Fig. 5:

(10)R(0) = 255 × S (l) + 128

(11)T ≤ 255 × S (l) + 128 ≤ L

(12)S (1)|L

Table 1  WGPGCNN model 
parameter configuration

Network layer Nuclear size Number 
of nuclei

step Output depth Padding

Conv_1-1 64 16 16 SAME
Conv _1-2 64 16 4 16 SAME
Pooling_1 2 16 SAME
Conv_2-1 8 64 2 64 SAME
Conv_2-2 8 64 2 64 SAME
Pooling_2 2 64 SAME
Conv_3-1 2 256 2 256 SAME
Conv _3-2 2 256 2 256 SAME
Pooling_3 2 256 SAME
Conv_4-1 2 512 1 512 SAME
Conv_4-2 2 512 1 512 SAME
Pooling_4 2 512 SAME
GAP 1 SAME
Softmax 16 1 1 1 SAME
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(1) By using dataset augmentation technology, samples are collected from the original 
fault data to form the original dataset;

(2) Normalize the data, and then classify the samples into test sets and training sets. The 
training set data is further divided into training data and validation data. The above 
three sets of data do not overlap, and the samples within the group are arranged in 
random order;

(3) Build a WCPGCNN model and use training set data for training. Obtain sample features 
through forward propagation, calculate the accuracy of the learned features compared 
to real features through loss function, and optimize network parameters through reverse 
propagation; Until the detection indicators of the set parameters meet the requirements, 
output and save the model that meets the conditions.

(4) Input the test set data into the model obtained in step (3) for diagnostic testing, and 
evaluate the diagnostic effectiveness of the model using accuracy, loss function, and 
confusion matrix.

3.3  Data source and classification

This article selects the open bearing failure standard dataset from Case Western Reserve 
University (CWRU) and the American Society for Mechanical Fault Prevention Tech-
nology (MFPT) in the United States. For CWRU, taking rolling bearing SKF6205 as the 
research object, the sampling frequency is 1.2 kHz. In the experiment, faulty bearings with 
diameter damage of 0.007 mm, 0.014 mm, and 0.021 mm were selected. Each fault diam-
eter contains three types of faults: ball, inner ring, and outer ring.

The experimental dataset consists of 9 fault datasets and 1 normal dataset. Since the 
accelerometer is used to pick up vibration signals, it will be installed on the driver, fan and 
base of the motor housing, so that the measurement results of three different sensors can be 
obtained. This article selects 10 types of faults, with each diameter damage corresponding 
to three fault states. Please refer to Table 2 for details.

The MFPT bearing dataset is also used to validate the proposed model. It includes 17 
sets of 4 fault situations and 3 sets of normal data. The load under normal bearing condi-
tions is 270 pounds, and the input shaft speed is 25 Hz; The fault load of the three outer 
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rings is 270 pounds, and the input shaft speed is 25 Hz; The load of 7 outer ring faults is 
25, 50, 100, 150, 200, 250, and 300 lbs respectively, and the input shaft speed is 25 Hz; 
The loads of 7 inner ring faults are 0, 50, 100, 150, 200, 250, and 300 lbs respectively, and 
the input shaft speed is 25 Hz. This article selects 10 types of faults. The parameters are 
shown in Table 3 below.

3.4  Data enhancement

Before conducting deep learning, it is necessary to label and enhance the collected data. In 
this respect, it is actually necessary to adjust the hyper-parameter, and correspond the input 
and output one by one. The data augmentation method used in this article is overlapping 
sampling. As shown in Fig. 6, there is a high possibility of overlap between two consecu-
tive training samples when dividing training data from the original signal. When overlap 
occurs, sampling is performed as shown in the figure. The overlap ratio refers to the pro-
portion of time overlap between adjacent time windows. For the overlap ratio, the larger 
the overlap ratio, the more time series samples generated and the better the quality, but at 
the same time, the computational complexity is also increasing.

The reason why the number of samples increases is because each time series sample 
contains multiple time windows, and there is also overlap between adjacent time windows. 

Table 2  CWRU fault type 
parameters

Fault type Fault diameter/inch Label

Ball 0.007 1
0.014 2
0.021 3

Outer race 0.007 4
0.014 5
0.021 6

Inner race 0.007 7
0.014 8
0.021 9

Normal 0 10

Table 3  MFPT fault type 
parameters

Fault type Load/ lbs Sampling fre-
quency

Label

Outer race 270 97,656 1
25 48,828 2
50 48,828 3
100 48,828 4
150 48,828 5
200 48,828 6

Inner race 50 48,828 7
100 48,828 8
150 48,828 9

Normal 270 97,656 10
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At the same time, there is inevitable overlap when sliding windows slide between samples. 
Therefore, the number of samples and the step size of the sliding window are both factors 
that affect the overlap ratio.

3.5  Data feature extraction

Before extracting and processing the features, all 10 types of fault data were mixed together 
in a disorderly manner with high dimensionality. When the dimensionality is high, the 
computational efficiency of the algorithm slows down because the complexity and compu-
tational complexity of the model are proportional to the dimensionality, so dimensionality 
reduction operations are required. Dimension reduction refers to the use of feature mapping 
methods to reduce data from high dimensions to low dimensions. Commonly used dimen-
sionality reduction methods include PCA [52] and T_ SNE [53] et al. This article uses T_ 
SNE performs dimensionality reduction operation. The full name of T_ SNE is (T-distrib-
uted Stochastic Neighbor Embedding). T-distribution random nearest neighbor embedding 
is a technology that combines dimensionality reduction and rendering. It is based on SNE 
visualization enhancement and solves the characteristics of crowded sample distribution 
and blurred SNE boundaries after imaging. T_ SNE models the similarity of the original 
space as probability density, and the distribution of similarity is given by Gaussian distri-
bution. The initial data graph without classification operation after dimensionality reduc-
tion is shown in Fig. 7. In short, in the original space, the similarity between a point and 
other points can be expressed by a probability density distribution:

where, pj|i is the conditional probability, xi is a random data point, xj is the nearest neighbor 
point of xi , |

|||xi − xj
||| |

2

 is the distance between the two points, �i is the data point xi is the 
Gaussian distribution standard deviation of the mean, xk is the nearest neighbor point of xi , 
||||xk − xj

||| |
2

 is the distance between the two points. �i for each xi are all different and have a 
predetermined confusing impact, �i is automatically set.

In the dimensionality reduced space, we use the T distribution instead of the Gaussian 
distribution because the T distribution can retain more similarity over longer distances. So 
in the target space after dimensionality reduction, the joint probability distribution is:

(13)pj�i =

exp(−
��xi−xj��2

2�2
i

)

∑
k≠iexp(−

��xi−xk��2
2�2

i

)

Training samples

Offset Overlap

Fig. 6  Overlapping data enhancement
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where, qj|i is the joint conditional probability density, yi is the mapping point of high-
dimensional data xi in low latitude space, yj is the mapping point of high-dimensional data 
xj in low latitude space, ||||yi − yj

||| |
2

 is the distance between two points. yk is the mapping 
point of high-dimensional data xk in low latitude space, yl is the mapping point of high-
dimensional data xl in low latitude space, |||yk − yl

|| |
2 is the distance between two points.

From the graph, it can be seen that the original input signal has the maximum entropy 
and the highest degree of confusion. Various faults are mixed together and cannot be sepa-
rated, and the feature interval is relatively fuzzy. Each color in the figure represents a type 
of fault data, and the edge areas are very scattered. The more concentrated the center area 
is, the harder it is to distinguish. Therefore, deep learning should be used to identify differ-
ent types of faults for better classification.

4  Validation of the WGPGCNN model

A controlled experiment refers to an experiment conducted to investigate the impact of a 
certain condition on a research object, in which all other conditions are the same except 
for different conditions. This chapter adopts a controlled experiment method, which only 
changes one variable at a time and keeps the other unrelated variables unchanged, to verify 
the accuracy of the model.

This chapter uses rolling bearing fault standard data from Case Western Reserve Uni-
versity (CWRU) and the American Society for Mechanical Fault Prevention Technology 
(MFPT). Through comparative experiments, the impact of different batch sizes, sample 
sizes, and iteration times on alignment accuracy of the model under the same dataset is 
analyzed, as well as the diagnostic performance of different models under the same dataset 

(14)qj�i =
(1 + ����yi − yj

��� �
2

)
−1

∑
k≠l(1 + ���yk − yl

�� �
2
)
−1

Fig. 7  Initial data visualization
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and multiple data sets. At the same time, the impact of environmental noise was also con-
sidered, and the accuracy of the model under different noise levels was simulated. The 
detailed analysis flowchart is shown in Fig. 8.

4.1  Test results of different batch sizes

Select a set of samples in the training set to update the weight, with a value of generally 17. 
Choose a value that can be evenly divided by the test set. If the final training count cannot 
be segmented, the number of epochs will increase by 1. Because the dataset is divided in 
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a 6:2:2 ratio, the batch size values are set to 16, 32, 35, 64, 70, and 128. In deep learning, 
SGD training is typically used, which involves obtaining batch size data from each training 
set. Its advantage is that it can accelerate training speed and occupy relatively less memory 
during the training process. After the weight update, the next batch of data can be used 
to improve the training speed, but it may cause significant gradient fluctuations. To pre-
vent unexpected situations, multiple tests were conducted, and the average accuracy was 
calculated.

From Fig.  9, it can be seen that the accuracy is highest when the batch size value is 
32. When the batch size value is large, the image does not converge, and the accuracy 
decreases sharply. At appropriate values, as the number of iterations increases, the overall 
accuracy shows an upward trend, but it also takes more time. To divide the batch size by 
the training set, set the batch size to 35 during this process.

4.2  Experimental results of different numbers of training samples

In order to train a large number of parameters, sufficient sample data is a prerequisite for 
WGPGCNN, in order to study how much training data is sufficient, and the performance of 
WGPGCNN under different sample data. So, in the experiment, WGPGCNN input training 
data of different sizes on groups of 60, 300, 600, 1200, 3000, 4800, 6000, 9000, and 12,000 
training samples for training. During the training process, with a load of 0hp, using the 
Adam optimizer, the learning rate is 0.0001, and the number of cycles is 20.

It is important to find the appropriate number of training samples, as the larger the num-
ber of training samples, the longer the time required. However, it is also difficult to con-
tinue improving accuracy when reaching the bottleneck. Figure 10 represents the accuracy 
curves for training samples of 4800, 6000, and 9000, respectively, Fig. 11 represents the 
Loss curves for training samples of 4800, 6000, and 9000, From Figs. 10a and 11a, it can 
be seen that when the number of training samples is small, the fit is not good enough, 
resulting in violent fluctuations, making it difficult to distinguish fault types clearly. From 
Figs. 10b and 11b, it can be seen that when the number of training samples is 6000, the 
accuracy curves of the training and validation sets fit well, and the overall trend is close to 
1.0. From the Loss curve, it can be seen that the validation setting steadily decreases and 
approaches 0.0. In this case, various types of faults are obvious. When it exceeds 6000, as 

Fig. 9  Impact curve of different 
batch size values on accuracy
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shown in Fisg. 10 c and 11c, there will be a slight overfitting phenomenon, and the curve 
will have a small major fluctuation, but it has little impact on the overall effect.

Figure 12 shows the confusion matrix for different sample sizes. Confusion matrix is 
the most basic and intuitive method to measure the accuracy of classification model. By 
observing the confusion matrix, the closer to 1, the higher the accuracy. By comparing the 
confusion matrix under different sample numbers, when the number of samples is 6000, 
the higher the accuracy is, the better the fault classification is.

Figures  13 and Table  4 show the recognition rates of different training sample sizes 
tested in the experiment. When the training sample is 12,000 times, the recognition accu-
racy is as high as 98.4%, while when the training sample is 60 times, the recognition accu-
racy is only 38.6%. The experimental results demonstrate the impact of training sample 
size on diagnostic accuracy. When the number of training samples exceeds 3000, the accu-
racy can reach over 93.8%, and it is not difficult to find that as the sample size increases, 
the accuracy initially improves significantly. However, after reaching a certain threshold, 
the speed of accuracy improvement begins to slow down, and after reaching the peak, the 
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speed of accuracy improvement begins to slowly decrease. When the sample size is 6000, 
the accuracy is 99.50%, which is the vertex of the curve. When the sample size exceeds 
6000, the accuracy slightly decreases and remains around 99%. Through this experiment, it 
is not difficult to conclude that 6000 sets of training data are an ideal value. Not only does 
it have the highest accuracy, but it can also meet the requirements of WGPGCNN in terms 
of quantity and scale. When the training sample data exceeds 6000, the accuracy rate of 
the training sample will increase, and the overfitting problem will cause the accuracy rate 
of the test set sample to decline. In other words, when the training data set is too small, 
there will be under fitting, and when the training data set is too large, there will be overfit-
ting. Therefore, in the following experiment, the WGPGCNN model was trained with 6000 
samples.

4.3  Experimental results under different training cycles

One epoch means that one loop represents the entire dataset being passed forward and 
backward only once in the neural network structure. For a convolutional neural network 
with a large training set, only one transmission is not sufficient to obtain accurate experi-
mental results. In the same neural network, a complete dataset needs to undergo repeated 
transmission cycles to obtain results. As the number of epochs increases, the number of 
times the weights in the neural network are changed also increases. The test dataset goes 
from under fitting to optimal, and then to Overfitting.

It is important to find the correct number of iterations, as higher iterations require 
longer time. However, when the bottleneck is reached, it is difficult to continue improv-
ing accuracy. In this section, the number of data in the training set is 6000, the test dataset 
is 2000, the load is 0hp, and the learning rate of the Adam algorithm is 0.001. Figure 14 

Fig. 13  Recognition rate of 
WGPGCNN under different 
number of training samples
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Table 4  WCPGCNN recognition rate under different training samples

Number 60 300 600 1200 3000 4800 6000 9000 12,000

Accuracy(%) 38.6 ± 3.8 45.5 ± 4.1 68.9 ± 2.1 78.2 ± 1.8 93.8 ± 1.5 97.8 ± 1.2 99.5 ± 0.3 99.1 ± 0.5 98.4 ± 1.0
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represents the accuracy curves with iterations of 20, 25, and 30, while Fig. 15 represents 
the loss curves with iterations of 20, 25, and 30, respectively, From Figs. 14a and 15a, it 
can be seen that when the number of iterations is 20, the accuracy curves of the training 
and validation sets are well fitted, and the overall trend is close to 1.0, with a high accuracy 
rate. From the loss curve, it can be seen that the validation setting steadily decreases and 
approaches 0.0. In this case, various types of faults are obvious. When the number of itera-
tions exceeds 20, as shown in Figs. 14b and 15b, there will be a slight overfitting phenome-
non, and the curve will have a small major fluctuation, but it has little impact on the overall 
effect. When the epoch increases again, the loss curve will experience severe fluctuations, 
as shown in Fig. 15c.

Figure 16 shows the confusion matrix under different iterations. By comparing the con-
fusion matrix under different iterations, it can be seen that when epoch = 20, the higher 
the accuracy, the better the fault classification. With the increase of epoch, its precision 
decreases, indicating that a slight overfitting phenomenon has occurred.
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In this experiment, the epoch values in the WGPGCNN model were adjusted to 
1,5,10,15,20,25,30. As shown in Fig.  17 and Table  5, the accuracy increased by 68.5% 
when epoch increased from 1 to 15. 20 epochs, with a maximum accuracy of 99.6%. When 
epoch increases to 25, the recognition rate is 98.2%, and when epoch increases to 30, the 
accuracy rate is only 97.5%. Obviously, the experimental results obtained strongly support 
our previous conclusions. When the epoch is between 1 and 20 times, the neural network 
model belongs to an under fitting state. When more than 20 times, the error of the train-
ing data set decreases, while the error of the test data set increases, and the neural net-
work model belongs to the overfitting state. So we determined the optimal epoch number 
to be 20. If the number of epochs is too small, it will lead to under fitting, but if the num-
ber of epochs is too high, it will lead to overfitting. Compared to the past (1000 epochs), 
WGPGCNN can achieve higher recognition rates with fewer epochs.

4.4  Experimental results across datasets

Due to different operating conditions such as load and speed, the features extracted by 
signal extraction techniques are also different. In order to verify the generalization char-
acteristics of the model and whether the model can operate stably under different work-
ing conditions, this article selects other fault datasets as input to the model for diagno-
sis, as shown in Table 6. Due to different operating conditions such as load and speed, 
the features extracted by signal extraction techniques are also different. To ensure that 
only one variable is changed, all data with a total of 10,000 were selected. Except for 
the original dataset 0HP, the other four types of datasets used different datasets of 1HP, 

Fig. 17  Recognition rate of 
WGPGCNN under different 
epochs
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Table 5  WCPGCNN recognition rate under different training times

Epoch 1 5 10 15 20 25 30

Accuracy(%) 27.8 ± 5.2 71.5 ± 3.1 89.6 ± 1.8 96.3 ± 1.2 99.6 ± 0.2 98.2 ± 0.8 97.5 ± 1.4



71139Multimedia Tools and Applications (2024) 83:71117–71149 

1 3

2HP, 3HP, and MFPT, respectively. For each type of dataset, in addition to 6:2:2, the 
dataset is also divided according to 7:2:1. The differences in the observed results are 
shown in the histogram of Fig. 18. It can be seen that the model has good data process-
ing ability under different working conditions. As the number of iterations increases, the 
overall trend is upward.

From Table 7, it can be seen that when the original dataset is divided by 6:2:2, the 
processing effect is slightly better than other datasets. Under low iteration, the accuracy 
of dataset V under 2HP operating conditions is 91.64%, and the processing ability is 
slightly poor. Overall, CWRU has weak adaptability to 2HP. When epoch = 20, the aver-
age accuracy is 99.05%. From the table, it can be seen that the fault diagnosis model 
established in this article has good adaptability and generalization characteristics. Due 
to different types of datasets, the model proposed in this article has slightly poor pro-
cessing ability for MFPT data.

Table 6  Parameter tables for 
different datasets

Train Valid Test Motor load

DT I 7000 2000 1000 0HP
DT II 6000 2000 2000 0HP
DT III 7000 2000 1000 1HP
DT IV 6000 2000 2000 1HP
DT V 7000 2000 1000 2HP
DT VI 6000 2000 2000 2HP
DT VII 7000 2000 1000 3HP
DT VIII 6000 2000 2000 3HP
DT IX 7000 2000 1000 MFPT
DT X 6000 2000 2000 MFPT

Fig. 18  Bar chart of model preci-
sion under different datasets
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4.5  Experimental results of different models

In order to verify the accuracy and effectiveness of the convolutional neural network model 
established in this article, the results of this method were compared with traditional sup-
port vector machines (SVM) [54], convolutional neural networks based on fast Fourier 
transform spectra (FFTCNN) [55], convolutional neural networks based on continuous 
wavelet transform time–frequency maps (CWTCNN) [56], and one-dimensional convo-
lutional neural networks based on wide convolutional kernels (WDCNN) [35]. Using the 
same dataset and epoch = 20, in order to prevent unexpected phenomena, each model needs 
to be trained 5 times and the most stable value selected.

As can be seen from Fig.  19, the accuracy of the adaptive feature extraction method 
of the convolutional neural network is higher than that of the three traditional intelligent 
diagnostic methods under the conditions of different load domains. This is mainly because 
the adaptability of the manually designed feature extraction is poor, and the recognition 
rate of SVM under different load conditions is limited by the nonlinear expression abil-
ity. Although FFTCNN and CWTCNN have strong fitting ability, their generalization abil-
ity is low, and their accuracy under different loads still needs further improvement. The 
automatic extraction and classification of features by WGPGCNN is directly end-to-end, 

Table 7  Model Precision under Different Datasets

DTI DTII DTIII DTIV DTV DTVI DTVII DTVIII DTIX DTX

epoch = 15 97.20% 98.40% 95.30% 94.23% 91.64% 95.45% 95.83% 96.54% 88.56% 87.65%
epoch = 20 99.40% 99.50% 99.32% 98.95% 98.46% 99.00% 99.25% 99.25% 91.60% 90.30%
epoch = 25 98.60% 99.12% 95.80% 99.30% 95.81% 96.75% 98.25% 99.02% 91.40% 89.33%
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without the need for manual intervention. It relies entirely on one-dimensional convolu-
tional neural networks. Compared with the three traditional methods mentioned above, 
WGPGCNN eliminates the process of feature extraction without the need for FFT trans-
formation, and better preserves hidden features in the samples. Compared with WDCNN, 
each convolution kernel of WGPGCNN is wider and has double convolution layers, which 
can get a larger acceptance region, make the features it gets more global, and have more 
effect on restraining overfitting. The accuracy of the above models is shown in Table 8.

From Fig. 20, it can be clearly seen that the accuracy of WCPGCNN is higher at the 
initial epoch. This reflects the excellent classification performance of the WCPG network. 
With the increase of epoch, the accuracy of the WCPGCNN model established in this arti-
cle exceeds that of the other five models. The above results indicate that the model estab-
lished in this article has good convergence and the recognition ability of the entire model 
has been improved.

Although the accuracy of the model can be improved by stacking parameters and design-
ing more complex structure, it will lead to more computation and slower training speed. 
Therefore, how well the model predicts is not the only consideration, training time will lead 
to higher costs. The convolutional neural network is split into CPU and GPU, and GPU com-
puting is about 40 percent faster than CPU. Considering that not every computer can be cal-
culated using the GPU method, all subsequent experiments in this article are carried out using 
the CPU. The network architecture also has a big impact on the speed of the models, and the 

Table 8  Accuracy of different model test sets

Model SVM[54] FFTCNN[55] CWTCNN[56] WDCNN[35] WCPGCNNN[the present model]

Accuracy 90.55% 92.47% 94.83% 98.20% 99.70%
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lightweight convolutional neural network models are quick to diagnose because of their sim-
ple structure.

Figure 21 shows the speed of the training using the length of time the program ran. In order 
to prove that the convolution iteration times of this model are fast, a comparative experiment is 
carried out. A self-coding fault diagnosis model based on one-dimensional residual convolu-
tion 1DRCAE [57], a wide convolution kernel neural network WDCNN [35] fault diagnosis 
model and a Support vector machine SVM [54] are added to the comparison test.

As can be seen from the figure, in the overall comparison, 1DRCAE has the longest diag-
nostic time because of the presence of self-encoders, with the largest computational load 
among all models. The WCPDGCNN model established in this paper can be seen in the over-
all comparison with a very fast diagnostic speed.

4.6  Test results under white noise

In the actual operation of bearings, there is usually external interference noise. The noise of 
the diagnostic signal is generally additive Gaussian white noise. This scene is more consistent 
with the situation in real industrial production. Because the noise changes greatly, we cannot 
get all marked training samples in different noise environments. First, the composite signals 
with different signal to noise ratios are processed with additive Gaussian white noise. The 
signal to noise ratio (SNR) is the standard to evaluate the noise intensity. The definition of 
signal-to-noise ratio is as follows.

(15)SNRdB = log10(
Psignal

Pnoise

)

Fig. 21  Comparison of program 
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where, SNRdB is the signal-to-noise ratio, usually expressed in decibels (dB), Psignal repre-
sents the power of the normal signal, Pnoise represents the power of noise.

According to Eq. (11), the larger the noise, the lower the signal-to-noise ratio. The sig-
nal-to-noise ratio of a composite noise signal is 0 dB, and when the signal-to-noise energy 
is the same, the signal-to-noise ratio is 0. Therefore, in this experiment, Gaussian additive 
white noise with signal to noise ratio of 0-10db is added to the training set to detect the 
noise immunity of WGPGCNN. In Fig. 22, Gaussian white noise with different signal-to-
noise ratios is added to the original signal of the normal bearing.

The results of the WGPGCNN model proposed in this article under different noise envi-
ronments are shown in Table 9. It can be seen that the wider the first layer of kernel, the 
higher the accuracy. For example, when the kernel size is 8, the average accuracy is only 
58.38%, while when the kernel size increases to 64, the accuracy surges to 90.18%. In addi-
tion, the extraction results are best when the kernel size is 64 and 72, rather than when 
the maximum size is 80, which also proves that larger kernel sizes are not suitable for 
extracting local features. As shown in Fig.  22, the accuracy comparison under different 
noise environments is shown.

From Fig. 23, it can be seen that both the size of the kernel and the size of the noise 
have an impact on the accuracy of the model. When the kernel size is too small, the larger 
the noise, the lower the accuracy. As the kernel size continues to increase, the impact of 
the noise on it gradually decreases. When S = 64 is reached, the impact is minimal, and 
the diagnostic effect of the model decreases when the kernel size continues to increase. 
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Based on the above observations, it can be inferred that when the core size is small, it is 
susceptible to high-frequency noise interference, and low-frequency features are difficult to 
capture; When the kernel size is large, the resolution in the time domain decreases, which 
is prone to missing some detailed features, resulting in a decrease in accuracy instead of an 
increase. Therefore, selecting the appropriate size of the first layer kernel has a significant 
impact on the noise resistance performance of the model.

4.7  Network visualization

Usually, CNN is considered a blind box because some of its internal operating mecha-
nisms cannot be clearly captured and are difficult to understand. In this article, we use the 

Table 9  Results of WGPGCNN under different noise environments

Kernel size S SNR/dB

0 2 4 6 8 10

8 58.38% 67.01% 78.65% 86.65% 93.44% 97.31%
16 68.25% 80.45% 88.37% 93.20% 96.82% 98.62%
24 80.21% 86.53% 93.47% 96.04% 97.52% 98.89%
32 82.85% 90.20% 94.06% 97.21% 98.58% 99.28%
40 84.01% 92.04% 95.69% 98.25% 99.31% 99.55%
48 85.91% 91.34% 96.84% 99.22% 99.55% 99.68%
56 88.04% 93.05% 98.07% 99.28% 99.75% 99.71%
64 90.18% 95.08% 98.65% 99.34% 99.79% 99.83%
72 88.91% 94.56% 98.44% 99.25% 99.73% 99.83%
80 86.31% 93.08% 98.63% 99.08% 99.52% 99.72%
MAX 90.18% 95.08% 98.65% 99.34% 99.79% 99.83%
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Fig. 23  Accuracy under different noise environments
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activation function of visual neural networks to explore the internal operating process of 
the WGPGCNN model.

Firstly, in order to better understand which types of features were extracted by decon-
volution kernels, we drew the filter kernels learned by WGPGCNN and the frequency 
domain features of FFT transform. Figure  24a shows the time-domain waveform of the 
first layer wide convolutional kernel, from which we can also see that there are significant 
differences in the data features learned by different convolutional kernels in the first layer; 
Some convolutional kernels have shapes similar to sine functions, such as the 2nd, 4th, 7th, 
and 8th convolutional kernels (marked in the figure), and exhibit large periods. Therefore, 
these convolutional kernels extract low-frequency features of the input data, while high-
frequency features are filtered out by them.

Figure 24b shows the frequency domain representation of the convolutional kernel for 
this layer (the convolutional kernel data is obtained through fast Fourier transform). From 
its frequency domain expression, we can see that, the labeled convolutional kernels learn 
features that are medium to low frequency, and the frequency bands learned by different 
convolutional kernels are different. For a single convolutional kernel, it can adaptively 
extract sensitive frequency bands between faults and filter out data features from other fre-
quency bands besides its own learning, making it more targeted. Compared with traditional 
filtering methods, using wide convolutional kernels not only reduces human intervention in 
the filtering process, but also has a better adaptive filtering process. It can also extract input 
frequency band features more targeted, providing higher quality data for subsequent feature 
extraction.

In order to see clearly the capability of WCPDGCNN model for bearing fault diagno-
sis, the dimension reduction operation is performed and the image is output, as shown in 
Fig. 25, which shows the visualization process at different times in CWRU and MFPT data-
sets. From Fig. 25a, we can see that the original input signal has the biggest entropy and 
the highest degree of confusion. In the process of diagnosis, the dimension of the model 
was cut down at a certain moment, as shown in Fig. 25b. It can be seen that the model has 
shown some classification ability after a period of convolution operation. The same cat-
egory of fault data began to converge, and some fault data has even been completely sepa-
rated. Figure 25c shows a reduced dimension map of the model final classification, with 
fault data separated into its own groups as shown in the figure. Many of the same types of 
fault data have been overlapped, and the ten types are clustered and dispersed. At the same 

Frequency domain representa�on

a Time domain waveform b Frequency domain representation

Fig. 24  First layer wide convolution kernel visualization
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time, the classification effect of MFPT data set is worse than that of CWRU data set. The 
reason for this may be due to different fault classification scenarios.

5  Conclusions

In this paper, a new deep convolution neural Network tomography diagnosis method is pro-
posed to solve the problems of traditional fault diagnosis, such as inefficient and accurate 
identification, greater dependence on human prior knowledge, and single fault diagnosis 
method model. A convolutional neural network model that can directly act on the original 
time-domain signal was constructed and validated on the standard bearing fault dataset, 
achieving excellent results. The main achievements of this article are as follows.

(1) This article proposes a new model for fault diagnosis of rolling bearings—using con-
volutional pooling group (CPG) for feature extraction of data, while expanding the 
double-layer convolutional kernel to obtain a larger receptive field. A wide convolu-
tional kernel convolutional neural network WCPGCNN model based on CPG network 
architecture is obtained, which has good performance in accuracy, noise resistance, and 
timeliness. At the same time, it also has good cross dataset high generalization ability.
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(2) We conducted some control experiments. By studying the impact of different batch 
sizes, sample sizes, and iteration times on the accuracy of the model under the same 
dataset, as well as the diagnostic performance of different models under the same data-
set and multiple data types. Through comparative experiments and analysis, it can be 
seen that the accuracy of the model established in this paper is relatively high during 
the initial iteration. As the number of iterations increases, the accuracy of the model 
established in this paper exceeds that of the other four models. The model established 
in this article has a reduced diagnostic ability in extracting fault datasets from the 2HP 
terminal. However, it achieved the highest accuracy on the 0HP base, increasing by 
3% compared to conventional diagnostic models, reaching 99.50%. SVM, FFTCNN, 
CWTCNN, and WDCNN, as more traditional machine learning methods, have good 
self-diagnostic performance, but their accuracy is slightly lower than that of the models 
built in this article. At the same time, the speed of this model is also faster than the 
other four models in terms of running speed. In summary, the model performs well in 
terms of accuracy and timeliness.

(3) Considering the impact of environmental noise, this article also simulated the accuracy 
of the model under different noise conditions. The model added noise during train-
ing, so that the trained model can maintain high recognition rate when the test signal 
changes. In summary, the model also exhibits good noise resistance under different 
operating conditions. The experimental results verify that the multi pooling group 
feature processing with large receptive field characteristics has good performance, and 
deep learning has better diagnostic performance than machine learning.
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